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Abstract

In this paper the class of homogeneous n-person games "without dummies and
steps" 1s characterized by two algebraic axioms. Each of these games induces a
natural vector of length n, called incidence vector of the game, and vice versa.
A geometrical interpretation of incidence vectors allows to construct all of

these games and to enumerate them recursively with respect to the number of
persons.

In addition an algorithm is defined, which maps each directed game to a minimal
representation of a homogeneous game. Moreover both games coincide, if the
initial game is homogeneous.



§1 Basic Notations and Definitions

A simple n-person game is a pair (fl,v). Here ) = {1,....n} is called the set of

players, and v : #(() — {0,1}, v(f#) = 0, is the "characteristic function" in
the sense of Game Theory. An element of »(f}, i.e. a subset of ), is a

coalition.

A coalition § is winning if v(S) = 1 and losing otherwise. If each proper sub-
coalition of a winning coalition is losing, this winning coalition is called
minimal.

The set of minimal winning coalitions is denoted by W, or W*(Q,v), if the depen-
dence of the game is to be stressed.

Sometimes the expression "n-person" is deleted.

Let n = (ml,...,mn) € Ng and let 1 € N. In the context to be discussed we shall

call mi player i's weight and m(8) := % m, the weight of coalition §. Finally
i€8
A is called the level. This terminclogy is justified by the feollowing construc-

tion: Assume that 0 ¢ J < m{{)) and define a simple game ({},v} by

v(s§) =

1, if m(S) > A
0, if m(8) < 4,

v 15 also written

v=1 om = vm

[A,mih] A
vhere 1T is the indicator function of T. Intuitively we interpret v ("the
characteristic function™)} as to represent the power structure of a parliament or
committee where each member {or rather each party) is commanding a certain
number of votes according to its weight. Obviously, various pairs (J,m) may

result in the same v.

Thus a pair {(J,m) resulting in a function v as specified above is called a re-

presentation of (fl,v); we shall wuse notations 1like (J,(ml,...,mn)) and

(J;ml,...,mn) simultaneously.

A simple game having a representation is called weighted majority game. It
should be noted that such a game is completely determined by its minimal winning

coalitions.

R
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If a weighted majority game has a representation (J4,m} such that all minimal
vinning coalitions are exactly of weight A, then both the simple game and the
representation are called homogeneous. For a special case the terms "simple”,
"weighted majority”, and "homogeneous"” were introduced by von NEUMANN and
MORGENSTERN [13]. SHAPLEY [12] considered homogeneous games in general. ISBELL
[1,2,3], ostMann [5], PELEG [7], and ROSENM{ULLER [8,9,10,11] should also be
mentioned in this context.

Following OSTMANN [5] each player i of (1 belongs to an equivalence class 1,
called type of i: i ~ j, if there is a permutation Il of ] such that v =v ol
and I{i) = j. Let T be the set {j€ft|i~j}. In the paper just mentioned it is
shown that all representations of a given weighted majority game ({},v) are indu-
cing the same order of the types of fl, i.e. for all types t1 # t2 and all

players 116t1, 12€t2 either mil) mi2 or mil( mi2 for all representations {A,m).

Let ({},v) be a simple game. The relation < C 92, defined by i < j.

if v({i} U s} € ({i} U s) for all S with {i,3} N 5 = @, is called desirability
relation of ({,v). For this definition we refer to [4]. The simple game ({,v) is
called ordered, if its desirability relation is complete, and is called

directed, if additionally 1 » 2 » 3 » ... » n is valid.

Two simple games (fl,v) and (fl,v') are equivalent, if there is a permutation Il of
{} such that v o Il = v'. Consequently the equivalence class of an ordered game
can be identified with its unique directed representative. As our interest is
restricted to these equivalence classes of ordered games only, it is assumed

w.l.o.g. from now on that all considered games are directed.

Each weighted majority game is ordered and thus directed by the assumption,
which implies that it has a directed representation, i.e. a representation (4,m)

with the property o, 2 ee. 2 o, -
For these definitions and assertions we refer to [6].

The representations (A,m) of a weighted majority game are ordered by total mass
m({{}). OSTMANN [5] has shown that there is a unique minimal representation of a
homogeneous game, which is automatically homogeneous. Two further proofs are
contained in [10]. Therefore a homogeneous game is often identified with its
minimal representation, which automatically is directed, since in [5] it is
shown that players of the same type have the same weights in the minimal repre-

sentation.
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Let D = D{f,v} = {i € Q|v(sU{i}) = 0 for all losing coalition S} be the set of

dummies.

The fact that two coalitions S and T do not differ earlier than at i, formally
meaning § N [1,i-1] = T N [1,i-1], is abbreviated by § ~ T- If i and j are

nonnegative integers, we put [i,j]n := [i,i] N HO' Sometimes, if a misunderstan-

ding is excluded, the lower index "n" is deleted.

A player i € {} \ D is a sum, iff there are two coalitions §, T € W, such that
i€S, ifT and § ~5 T, and is a step otherwise. If D{({),v) is nonvoid, the decrea-
sing order of the weigths n, cause the existence of a first dummy player j, i.e.

pif,v) = {j,....n}.

If (A,m}) is the minimal representation of a homogenecus n-person game, the

following assertion is obviously true:

{ 0, iff 1 is a dummy
i

A, iff {i} is a one-person winning coalition

Lemma 1.1: There are canonical bijections

0 m)l {(A,m) is the minimal representation of
' a homogeneous n-person game

\:) 0 m)l {J,m) is the minimal representation of a
te1 ! homogeneous t-person game without dummies
and
() m)l (A,m) is the minimal representaticn of a
f homogeneous n-person game without dummies

game without dummies and with-

{A,2) is the minimal representa- ]
out one-person winning coalitions

{ } \:) ' tion of a homogeneous t-person
(1;1,.... 1)y U (4,m)
N e’ t=2

n-times

Proof: Definition of the first mapping:

If (A.m) is a minimal representation of a homogeneous game, then there is a

player 1 < i, ¢ n such that pifl,v) = {io+1,...,n}. The vector (J;m,....m; )
0

clearly is the minimal representation of a homogeneous game without dummies and
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the mapping (4,m) w— (J:ml,...,mi ) is bijective.
0

Definiticon of the second mapping:
Distinguish two cases:

1. {A,m) = (1;1,...,1) — (J,m)
N~

n-tipes

2. If {A,m} does not coincide with some (1;1,...,1), then there is an io,

1<i m, 4 0= A > m; . The vector
0 0
(J:mi ,...,mn) is the mipimal representation of a homogeneous game without

0

one-person winning coalitions.

€ n-1, such that m, = ... =

0 1

The inverse function is constructed as follows:
If (A,m}) is the minimal representation of a homogeneous t-person game
without one-person winning coalitions, define the image of this function

as (A: J,....4, ml,...,mt), otherwise (1; 1,...,1}, i.e. if

. e
{n-t)-times n-times
{(A,m} = (1; 1,...,1). q.e.d.
N’
n-times

In view of the last lemma only homogeneous games without dummies and without
one-person winning coalitions are being considered in the following presenta-
tion. Furthermore, the pathological case, that {} is the only winning coalition,
is excluded without being always explicitely mentioned.

Let ({},v) be a directed n-person game. The matrix

SEW,

with lexicographically ordered rows, this order being induced by

0(8) := ¥ 2", is called incidence patrix of (f1,v).
i€s

Let (fl,v) be a homogeneous n-person game without dummies and one-person winning
coalitions. From OSTMANN [5] we Xnow the following algorithm, which generates
the minimal representation of this game:

If i is a sum, let S(i}, T{(i) be the lexicographically first pair in W, such
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that S(i) ~, T(), i € §(i), i g T(i).

If i is a step, define h (i) := max {n(E) | § € {[i.n] \ s | i€s, sew }}, meN".

Define
m{T(i) \ $(i)), if i is a sum
m, :=
: 1+h (4) , if i is a step,

A = m(sl}, vhere 5(1) is the lexicographically first minimal

winning coalition.
It follows
Lexma 1.2: (A,m) is the minimal representation of ({i,v).
Remark 1.3:

1. (i,m) is well defined, since it can be calculated successively by star-
ting at n:
m o=1+h/n) =1+ n(@ = 1.

2. It is not necessary to use the lexicographically first pair §(i), T{i),
in case i is a sum, to construct the minimal weights, only the fact
S{i) ~ T(i), i € s(i), i £ T(i) is needed.

3. In the following all games considered are assumed to have no one-person

winning coalitions, unless otherwise specified.

In order to classify homogeneous games without dummies we can restrict our
attention to those "without"™ steps, i.e. with just one step, since player n

always is a step. Indeed, if Hn denotes the set of minimal representations of

homogeneous n-person games without dummies, steps and one-person winning coali-

tion, the following assertion is true.

Lemma 1.4: There is a canonical bijection from
H,, \ {o: 1,....1)}

to

| (A,m) is the minimal representatiocn of a }

{ (d/m) homogeneous n-person game without dummies



Proof:
{J; ml,...,mn+1) — (4 ml,...,mn) has the desired properties:

{l1: n ,...,mn) is a homogeneous representation of a simple game and the above

1
algorithm shows the minimality - note: m = 1 if (4; nl,...,mn+1) has no steps.
The element (n; 1,...,1) must be excluded since the image would have only one

(n+l}-times
winning coalition. On the other hand the algorithm also shows that

(4; ml,...,mn) —t (4, ml,...,mn,l)

maps homogeneous games to those without steps. This map is obviously inverse to
the first. q.e.d.

By using the identification of homogeneous games with their minimal representa-

tions, we also identify Hn with
{(@,v) | @,v) has a representation (A,mé€ H }

and denote this set again by Hn'
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82 The Incidence Vector of a Homogeneous Game

The incidence matrix of a2 simple game is frequently of a respectable size. It is
desirable to select an appropriate submatrix which allows for a unique jdentifi-
cation of the game. Given the incidence matrix of a homogeneous game without
dunmies and steps we are going to show that there exists an nxn submatrix which
completely determines the game. The n rows defining the submatrix are chosen in
such a way that for each player i # n there exist at least two rows §,T with i €
S, 1 £Tand s ~ T

At first some notation is needed. Let ([,v) be a directed game, not necessarily

homogeneous and without dummies and steps.

Definition 2.1:

For a nonempty coalition let 1(5) be the length of S, meaning the one
player of S who has the highest index, i.e.

1(s) :=max {j | j € 5}.

Given § € W,, let j be such that [j, 1(S}] C s.

1f s \ {3} U [L(5)+1, n], is winning, define

ps(s) =8 \ {i} U [1(5)+1,t],

where t is minimal such that S \ {j} U [1(5)+1,t] is winning.

For a minimal winning coalition T, which is not the lexicographically

paximal one, define
e{m =1 U {r} \ [t.2 (D],
where r =max {j £T |3 < 1(T} and
t =min {t" | TU{£} \ [t', 1(T}] is winning]}.

Player r exists, since T is not lexicographically maximal, and player t
exists, since (fl,v) is directed.

Remark 2.2:
{i) pj(s) is the lexicographically next minimal winning coalition to

S, in which j is substituted by players of smaller or egqual type.

{ii) With the above notations the following holds true:

p (T} = T, tp(pj(s)) = S.
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(iii) From the "Basic Lemma” of ROSENMULLER ([8,9]) we know the follow-
ing: If (i,m) is homogeneous, then

m, = m([1(S)+1,t]},

J
n([t, 1(T]) -

R
r

The existence of n rows of the incidence matrix with the desired properties is a

direct consequence of the following

Theorem 2.3:

Let {Q,v) be a game of Hn and 81 be the lexicographically maximal minimal
winning coalition.
If 52,...,5k are minimal winning coalitions and kx < n, such that for all j
€ [2,%] there is an i < j with

pj_l(si) = Sj'
then there is ij € [1,k] such that

Seap T pk(sio)

is defined.

Note that the property pj—l(si) = Sj can be replaced by p(sj) = S, (see

Repark 2.2 (ii}).

Proof:

Assume the contrary.

For each coalition 5 define

r{s) =max ({3 | J £8, 3 <11} U {o}h.

Let S be a coalition in { s S is a minimal winning coalition and}

pk(s) is defined

- which is indeed nonempty, since ({l,v) has no steps except n -, such that
r := r(S) is maximal, thus r > 1, since § cannot be the lexicographically maxi-

mal minimal winning coalition Sl. We distinguish two cases.
1. 1(Sr+1) < 1(s). Then 1(S_,,) ¢k, otherwise Pk(sr+1) would be defined.

Therefore
(5 U {r} \ [Lp(s, 0041, 1S )]
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is defined, contradicting the maximality of r.

2. 1(Sr+1) > 1(5). Then it is obvious that 1(Sr+1) > 1(S) and 1(p(5r+1)) <k,
otherwise pk(sr+1) resp. pk(g(sr+1)) would be defined. As a direct conse-
quence

Si=5,,, U{r}\ [pE)+, 1(5)]

is a minimal winning coalition with [k-1, 1(5)] N ¥ = §.

A simple computation shows that

LEMLX (), - G kg

Py ¥ 12
but r ¢ k-1, a contradiction to the maximality of r. Let us illustrate this

situation by an example:

r k 1(8) (s ,q)
I | I |
s = (x—>*01 1 10 0)
[ 1] I | |
S 41 = (*—=*01 1 10 0)
) | ) | | ,
p(8) = (* ] 1 10 0)
pils ) = (r—=1 10 l | 0)
[ | I | |
f = (? ] 1 1 0 l I 01 10 0)
PR g ? 0 | 0 1—1 0 0)
Lip(8)) Llp(s )
g.e.d.

With the help of the last important theorem we will define a unique sequence of

minimal winning ccalitions recursively.

Definition 2.4:

Let ({l,v) be a game in Hn and SI be the lexicographically maximal minimal

winning coalitiecn.
If s“,...,s; (k ¢ n) are already defined, then

v ez v
Sk+1 H Pk (sio)r
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where
iy =min {t <k | 1(s,) = min {1s)) | r <k, 1(s) 2 k}}.

v v
1,...,Sn

Besides note that it may be useful to compare this procedure with the context of
section 5, pp.324-327, in [10].

In view of Theorem 2.3 the sequence § is well defined and hence unique.

Corollary 2.5:

The function
B — (27,

defined by
(v} — (s",...,si),

is injective.

Proof:
Let (f),v) be a game with the desired properties.
Define successively

- - v v

¥V, _ oV
vhere pis;) = Sj.
and A= mtsz).

With this notation it can be shown analogously to Lemma 1.2 that (A:ml,...,mn)

is the minimal representation of (Q,v). qg.e.d.

Corollary 2.6:
The mapping

Ho— {Q.....1) €N},
v v
0,v) — (1(s]),...,2(5]))

is injective.

Proof:

From (1(81),...,1(83)) the seguence (Sv,...,s:)

can be reconstructed successively:
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sy={i€n|1¢i <ts) ),

if SI,...,S; are already comnstructed, then

Vv _ WV v v

Sge1 = S \ {x} U {1(sj)+1,...,1(sk+1)},
where

j=min {t <k | 1(s,) = min {1(5) | r <k, 1(s.) 2 x}}.

g.e.d.

In the following it will be shown that the image of the mapping given in
Corollary 2.5, i.e. the vectors (I(SI),...,I(SE)), can be characterized by alge-

braic means.

Lemma 2.7:

If ({},v) is a homogeneous n-person game without steps and dummies, then

(i) 1(s]) > min {1(5?)[1 <j € i-1, 1(s§) > i-1} for all 2 <i <n

s v YV, ie s Vors oo v . .
(ii) 1(s;,4) €1(s;), if min {1(Sj)|J < i-1, l(Sj) > i-1} > i.

FProof:

Assertion (i) is a direct consequence of the successive construction of
the sequence sv,...,sz.

The order of the minimal weights, i.e. m, 20002 LN for (}:ml,...,mn) being the

minimal representation of the game, directly implies assertion {ii}.

q.e.d.

We show now, roughly speaking, that the converse is also true, i.e. every vector
which fulfills (i} and (ii} of the last lemma is of the form (I(SI),...,I(SX))

for some homogeneocus game ({},v). Thus, a new characterization of this class of
homogeneous games is obtained as soon as a proof of the theorem, containing the
above mentioned assertion, is provided.

The following notation simplifies the formulation of this important result. For

technical reasons n > 3 is presumed.

Definition 2.8:

(1) R vector 1 = (1,,...,1 ) € {2,...,0}" is called an n-person inei-
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dence vector, iff - for all i € [2,n] -

(i) 1, > min {1j|15jgi-1, 1 > i-1},

(ii) 1,4 €1, if min {1j|1 <j €i-1, 15 > i-1} ) i.

(2) The sequence of coalitions (si,...,si) is associated to 1, iff

1 _ 1 1
5] = {1.....11}, Sys1 = Si \ {x} U {1i+1,...,1k+1},
where

i=min {j <k | 1, = min {1, |t <x 1. 2 k}}

(3) 1 generates (A:ml,...,mn) via

1, m. =m +...+

1

I+l i+l

vhere
j=min {1, |k <di, 1 2i)}, 4 =nis).

{4) Let In denote the set of n-person incidence vectors.

In order to illustrate the last definition we give an explicit example:

The vector 1 = (3,7,6,5,7,7,7,8) is an 8-person incidence vector.

The associated sequence of ccalitions is

(1110000 0)

]

=(01111110)

©“

= (1 0)

(L=
[
H
[y
[y
o

v
B W N B

= (1101100 0)

v w (7
O ~dpd Chi=t (A

o

The coalition at the origin of

at the top of the arrow.

11

=(11010

{10111

(01111

10}

10)

10)

10

1)

each arrow is needed to construct the coalition
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The generated representation turns out to be

(15; 615141‘2'2;1'1'1)4

Remark 2.9:
{1 A direct consequence of the definition of an incidence vector 1 is
that both the sequence Si,...,s; and the generated vector
(A:ml,...mn) are well defined.
{2) If (fl,v) is a homogeneous game in some Hn' then by Lemma 2.7 the

¥y

vector 1 := (1(5:),...,1(8:)) is an incidence vector, (sv,...,sn

is associated to 1 and 1 generates a tupel (J,m), which is - this
can be shown analogously to Lemma 1.2 by the way - the minimal

representation of ({l,v).
The main result of this chapter is stated in form of the following

Theorem 2.10:

Each homogeneous n-person game without dummies and steps can be jdentified

with some n-person incidence vector and vice versa, formally:

Ln:Hn-"-*In

v v
(0.9) — (1(5]),...,1(5]))

is bijective.

Proof:

The injectivity is already shown. So it is enough to prove that the vector

():ml,...,mn), generated by an incidence vector 1, is the minimal representation

of some homogeneous game without dummies and steps. The associated sequence

Si,...,si, the members of which must then be minimal winning coalitions, guaran-

tees that there cannot be dummies or steps and that (A,m) is a minimal represen-
tation, if it is a representation of a homogeneous game at all.

First of all, the order of the weights, i.e. my 20002 LI is shown by induction
on n-i:

m =1¢mn foralll i <n.
n i =+ =
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Assume my 2...2 . then

m, =R

i-1 +...+ By v

I+l i
where

j=min {1, jt<i-1, 1 2 i-1}.

Two cases are distinguished:

1. 1, >3 21 : Then B, =m +...+ 1

i 1 and li+1 <1

3+l i+1 1

{see Definition 2.8, {(ii)), thus B _q ? m, -

2. j = i-1 : Then m,_q =B +...+ m1i 2 m, -

Referring to Definition 2.8 (i) the case j > 1i cannot occur, thus the induction

is finished.

The first part of this proof implies that (4;m) is a representation of some

simple game {{},v). It remains to show the homogeneity of ({},v):

Let [{1,,....1 }| =2 r for some 2 < r < n-1 and write

1 r
{11,...,1n} = {1 P | }

such that

It is enough to show per induction on 0 i < r-1:
it s €W (0,v) with 1% ¢ 1(8) < 1%*L, then 1(s) = 1**! and n(s) = A,

For i = 0 the assertion is immediately implied, since s} is the lexicographi-

cally first minimal winning coalition in (fl,v).

Let S, be a coalition in {S € W, | 1(5) = min {L(T) | T € ¥, and 1(T) > 1*1},
such that r := r(so) is maximal, where r(S) is defined as in the proof of
Theorem 2.3. Define 1, := 1(S,). Observe that 1y < 134

It can be remarked that r > 0O since So cannot be the lexicographically first

coalition in W,.

The inductive hypothesis implies

Lip(sy)) < 1%, mip(sg)) = A,
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Let lj be minimal with lj >r, thus r € s; - othervise lj > 1(?(8;)) 2 r. The
minimality of 1j shows that

1; & Hp(5y),

thus
max {1(S) | § € W,, 1(S) < 1(5%)} <r.

If lj = 1(?(50)) nothing remains to be shown, because of the definition of

1

sr+1'

Therefore, assume 1j ¢ 1(p(S,}) and define

S

With this notation

1
= 55 \ {r} U {Ltpisy)) +1.....1059) ).

1(§0) = 1(s,) and m(go) = m(Sy).
Since additionally

r < 1ptsy)) £ 8,

this assumption contradicts the maximality of r. g.e.d.

The procf of this theorem also implies the following

Corollary 2.11:
Let (f},v) € Hn and S € W (Q,v).

Then there is a j € [1,n], not necessarily unique, such that

1(5;) = 1(5).

Remark 2.12:
The identification Ln of homogeneous games and incidence vectors permits

us to provide an upper bound for the number of these n-person games:
If 1 € In' then 11 is determined by the other components of the vector,
since Definition 2.8 (i), (ii) guarantees that

1, 20021y, <1

1 11+2’

showing that

1, =max {t | 2 <t <n, 1, 2...2 lt} -1.

i 2
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Additionally the just menticned definition implies

3¢1,¢n, k<1 < for all k € [3,n].

2

Therefore 12 can run through at most n-2 values and 1k can run through at

most n~k+1 values. This implies

| H | € (a-2)! (0-2) ¢ (n-1)!

So far the number (n-1)! was the smallest known upper bound for the cardinality
of the set of homogeneous n-person zero-sum games (see [3]). Clearly this set is

by comparison a very small subset of the considered class of simple games Hn;

hence it would seem that the preceding result is certainly an improvement. How-
ever, in the next chapter it will turn out, that we can achieve much more: We
will construct an explicit recursive formula for the number of incidence

vectors.
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§3 Geometrical Description of Incidence Vectors as Anti Step Functions,
Providing a Recursive Formula for the Number of Homogeneous Games

It is the aim of this chapter to enumerate the homogeneous games without dummies
and steps recursively w.r.t. the number of players. This will be done by parti-
tioning the corresponding class of n-person incidence vectors into certain sub-

sets vhich will be defined later on.

We assume n 2 3, unless otherwise specified.

Definition 3.1:

A function £ : [0, n-1] — [0, n-1] is a guadratic n-person step function,

iff
(i) £{0) =0,
(ii) there is a natural number r such that there are k; € K U {0} for

all integers i € [0,r] with 0 = ky ¢k, ¢...¢ k. =n-1, k, 2 2 and

f£(x) = k; for all x € (x,_,, k,], if i € [1.r] .

The denotation "quadratic” reflects the fact that each step of a quadratic step
function is as high as long.

LSRR ¢

Since a vector (k k), kiEIifor all i, 1 € i {r and 2 < Xk

) R 4 1

kr = n-1, uniquely determines a quadratic n-person step function and vice versa

{see Definition 3.1 (ii)}, this function is often identified with its vector of

values, the zero being sometimes deleted.

The following sketch provides an illustration of the quadratic 14-person step

function (3,7,10,12,13): f£(x) ¢
12- - - L] L] - - L] L] ¢
- - - - - - L] H - .
9. . . . *
6- - . t—-—! hd L ]
33— . e
o 1 ] 5 ) L] é [] [] é 1 1 izl L] x

Figure 1
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Definition 3.2:

A function h : [0, n-1] — (0,n] is called p-person anti step function,

iff there is a quadratic n-person step function f with the vector of

values (0, k ,...,kr) such that

1

(i) h ([0, n-1]) = {k; |1 <1 <} U {a},

(i1} h, restricted to the left open and right closed interval (j,j+l],

is constant, formally h = const for all 0 < 3 < n-2,

|43.3+1]

(iii) h, restricted to sections where f is constant, is - not necessari-
ly strictly - decreasing, i.e.

h . k is not increasing for all i, 0 ¢ i €r - 1,
| if i+1]

(iv) h(x) > £(x) for all x € [0, n-1].

Let us introduce the following notations:

0
]

{f | f is a quadratic n-person step function}

ot
n

{h | b is an n-person anti step function}.

It is obvious from the last definition, part (i), that the anti step function h
uniquely determines a quadratic step function f, so we define for each quadratic
step function f:

A(f) := h | h is an anti step function which determines f by
Definition 3.2

An n-person anti step function h is often identified with its vector of values
{(h{0),...,h{n-1})).

Note that A(f) is nonvoid since

(kl'kz'""k2'k3'""ka""'kr""'kr'n"'"'n)

L % J L J — r - g
k, times (k,-k,)times (k __,-k _,)(k -k _,)times
times

is the vector of values of an anti step function, which is a member of A(f),

where (O.kl,...,kr) is the vector of values of f.
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Example 3.3:

The vector (3,14,14,7,13,12,10,10,14,14,13,13,13,14) = (h{0),...,h(13)) is
an anti step function in A(f), where f is the above defined quadratic
14-person step function (3,7,10,12,13).

Figure 2 illustrates the graphs of h and f.

hix¥— — =
4 . 6'1 %______4._.
1 8 s
10 }___é_ .....
2 TR
5
. - -
0 Y T v E T r T T 1‘0 T T v ,—-’—"x
The lines ".-.-.-." represent the graph of f.
Figure 2
Remark 3.4:
lo, | =277

This assertion is verified by induction on n:
For n = 3 there is only one quadratic step function with the vector of
values (0,2). This is a direct consequence of Definition 3.1.

From a quadratic n-person step function f resp. k = (kl"”'kr) two qua-
dratic (n+l)-person step functions are constructed, namely

1

£3 defined by k* = (kyoennrk_, B)

f detlnEd by k = (k]rvt-'k ]I n).

1 1

The maps k ~— k~ and k +—— kz reps. £ — £" and £ f2 are injective
and bave disjoint images. It is obvious that the union of these images
contains all quadratic (n+l)-person step functions, thus the proof is

finished.
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A sketch of the preceding mappings is given in the following illustration:

nf?:“.ﬁﬁii T };;;_;;1}'1
1 SRR
{(XT :/"
kp; N . (._/]
wd
f 60 5‘
+
n-j .............. - ..
— X, s
s /. i/
: |
VA 1 Vs
kr—i ........... H . y
;/ V4
Z ’
k] al e f—y
s (x) R
kl"_j / -3}
,’/ : k, . f_f7*<"
a( n-'i.i 5:’/
k "?_jﬂ :
k- -/ .
Figure 3 ! /: :
4 .
Lemma 3.5: e y

(i)

(ii)

Proof:

If h € An' then (h(0},...,h(n-1)) € In'
The mapping
A =y T
n n
h — (h(0),...,h{n-1)}

identifies the n-person anti step functions and the n-person inci-
dence vectors, i.e. is bijective.

Let h be a nember of An' say h € A(f) for some f € Qn with values

0 ¢k, ¢...¢ kr = n-1. Then

1

(i)  (b(0),...,h(n-1)) € {2,....n)}",

(i1) h(i) > min {a(3) | 3 € [0,i-1] . b(3) 2 i-1} and

(iii) h(i+1) ¢ h(i), if min {n(3) | j € [0.i-1] . h(§) 2 i - 1} 2 i.
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Assertion (i), ({(ii) resp. {(iii) is a consequence of Definition 3.2 (i) and

kl 2 2, Definition 3.2 (iv} resp. Definition 3.2 (iii).

Thus (h{0}),...,h(n-1)} is an incidence vector.

If 1 = (11,...,1n) is an incidence vector, then the inverse arguments to (i) -

{iii) show that this vector is the vector of values of some anti step function.

qg.e.d.

In view of the last lemma incidence vectors will often be jdentified by anti

step functions. If h € A, we define i(h) := (h(0),...,h(n-1)). In order to

enumerate the homogeneous games the set of anti step functions will be decom-
posed into subsets, the members of which having a common property called type.
To begin with some notation will be needed.

Definition 3.6:
Let h € An. Then h € A{f) for some £ € Qn with values 0 < k,(...(kr= n-1.

Define

o, = [{ieW|3jelx k;] and h(3)} = n}|.

i-1'
Then there is a chain

11 (... ¢ lt

for some t € N such that
{ijoo..i}={i el |afoandielr]}

Since a # 0, this last set must be nonvoid. The vector (ai ponestly ) is
1 t

called ceiling of h.

With this notation (2,2,1) is the ceiling of the anti step function h, given in
Example 3.3, since (2,0,2,0,1) = (al, 02,...,a5).

Lemma 3.7:
If f = (ﬂl,...,ﬁt) is the ceiling of some n-person anti step function and
t t t
7= (3 ,...,3t) € N is a vector such that T f, = I Pi, then there is
i=l i=1

a canonical bijection from

{b €2 | the ceiling of b is f}



- 22 -

to
{b € » | the ceiling of h is 3}.

Proof:

Let h be an anti step function of ceiling f#, let us say h € A{f) for some

f with values 0 ¢ kl QR ¢ kr = n-1 and let o = (al,...,ar) and (ail,...,ait) be

defined according to Definition 3.6, implying

g = (ai peenelly ).

1 t

We put

N B.,if k=i, for some 1 ¢ j <t

a, = J ] ;1 <k<r

0, otherwise

and

K. := k., - a.-0, .—...~a,+8.+...40., 1 <j <r

j iT %% 1% 1333

Conclude that
Ei - Ei-l = k., - k. + a -0, >0

i i-1 i i="i
and thus
Ry K- 9 =k -k ey
Observe that h{(i}) = n is equivalent to i € [kj+1, kj+aj+1]n for some

j € [0,r-1]  and gefine analogously
n, if i € +1, K.+%, for some 0 { j { r-1
Bi) = { [EJ a1l meviIar

for some j and s, such that

k., if i = K.+0.  +s<k.
1 i i+l j+1 hik.+a.
J

1+s) = kl.

A simple computation shows that £ is an anti step function of ceiling ¥ and §i €
A(f), where T is the quadratic step function with values 0 < fl {...¢ Er = n-1.

The inverse mapping can be defined analogously by interchanging the rdles of ?
and 4. g.e.d.

The following example graphically represents the preceding canonical bijection:
Let
f=1(2.21, F=1,1,3)

and h be the anti step function given in Example 3.3.
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With the notation used in the above proof we get
(al,...,ur) = (2,0,2,0,1), (al....,nr) = (1,0,1.0,3)

and

k.,....,k) = (2.6,8,10,13).

1 r

Figure 4 illustrates the anti step function h and B.

h &) h
i | —4 i - —
] — — | 3 — -
— S ;
104 e i m e — : ] ; 10/ — ——
; : : L 1 . .
i | —3--
— - ——. .
J N f—)_—' —_———
57 5 :
1
P . {
o
IR R i z
The lines "--.-." represent the underlying quadratic step functions.
Figure 4

Defipition 3.8:
Let h be a member of A with ceiling (ﬂl,...,ﬂt).
Then {t,p) is called type of h, if
t

p= L 4 -t.
i=1

The subset of An' vhose elements are of type (k,p), is denoted by Aﬁ'p

and, in addition, the cardinality of this set is abbreviated by az’p,
formally:
k,p _ : k,p _ |,k.p
R = {nh€n |nis of type ,p}}, a " = |a 7).

Note that if az'p #0, then X € K, p € "0'
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Additionally we introduce the notation

k:D e I krp
17 = {1 [ hea "}

-

and observe that lIk'pI = afP
n n

The rest of this chapter will be used to give a recursive description of the

k. p

cardinalities a and starts with the following important

Theorem 3.9:

Let n > 3. Then the following assertions are valid.

{i) al'0 = ¥ b aﬁ'p;

n+l kX1 pY0

CEVIE I ;kfl) 5 oFP a¥ 10 ie x y 2
K>k-1 P20
cis k.,p _ k.p-1 ptk-1
(iii) a+1 = 3 P ifp>1
Proof:

The cancnical identification of anti step functions with incidence vectors
(see Lemma 3.5) simplifies the arguments.
ad (i): If h is a member of U U Ak'p, then
k21 p20
1,0
(h(0),...,h(n-1), n+l) € In+1'

1,0

n+l’ then

Conversely, if f € 2

(h(0),....hin-1)} € U U 1;"’.
k31 p>0

These considerations induce a function and its inverse and thus verify

assertion (i).

ad (ii): If b € nﬁ;g. then b has the ceiling (1,...,1).
H’.—/
k times

Put 1 := i-lth). If kl L U kr = n are the values of this anti step function

{(exept n+l), then k = n~1 and the vector {0,k

-1 kr} defines a quadratic

1:---r
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step function £, such that h € A(f). Define
h(x) := min {h(x), n} for all x € [0,n-1].

Let ¥ be the quadratic step function defined by the vector of values

(0.k k._,) and observe that

1reee

B end.
1f (ﬂl,....ﬂt) is the ceiling of fi, then it is clear that

t
b) ﬂi > k-1 and t > k-1,
i=1

since {i ¢<n | hii) =n+1} € {i ¢<n | K(i) = n}.

t
As there is at least one plaver i such that h{(i) = n = h{(i), the case I
i=1

5 =

k-1 = t cannot occur. Put T := 1 1(f).

K.p

For the converse let I = (1 ln) define a member of An' , 1l.e. i(h)=1, of

PEREEY
some ceiling (ﬁl""’ﬂf) such that

p+ K>k K 2x1. -

Let 0 ¢ k1 ¢...¢ kr = n-1 define the quadratic step function f such that

h € A{f) and put

o, = |{j €N l;=nand k;, ¢3-1¢ ki }H

i-1

{the vector (o ,ar) has already been constructed in Definition 3.6).

greee

Following this definition there is an increasing subsequence (il""'iﬁ) of

{1,...,r) such that

{8 ....,ﬂg) = (ail....,aigi.

Let T be an arbitrary subset of {1,....k} of cardinality k-1.

Define

+1 for some 5 € T or i=n+l
l? t= 1
i

n+l, if :L=ki _
1i' otherwise

T T

T k.0, . _
(11,...,1n n+1 1S straightfor

To verify that 1 +1) is an incidence vector in I

ward and therefore skipped here.
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Note that the case K = k-1 and p = 0 must be excluded, since then T automati-
cally coincides with {1,....k-1} and 17 cannot be an incidence vector (1§+1 =

n+l = min {lg | 1 <3 ¢<nm, 1§ > n}, thus condition (i) of Definition 2.8 is

violated).
With the above notation the following assertions are valid:

(1) 17 =1,

0

(ii) For each 1 with 1°1{1) € AE;I there is a unique T C {1,...,K} of cardina-

lity k-1 such that TT =1land T € IE'p.

From combinatorics it is known that the binomial coefficient (k?l) describes the

cardinality of the set of subsets of {1,....K} containing k-1 elements, thus

assertion (ii) of the theorem is shown.

Figure 5 illustrates per example how the map 1 1T works.

ad (iii): The mapping
(ﬂl,...,ﬂk) — {31,ﬁ1+52,...,ﬂ1+...+ﬁk_1}

yields a bijection from

k
. _ _ _ k,p
{(ﬁlpo.cpﬂk) I ifl ﬁi k - p.r ﬁi e N} - T

to
{M Cc{1,....%x+p-1} | |¥] = k-1}
for each k ¢ K, p € N,
thus
k. k+p-1
B S I M

Analogously it can be shown:

| {8y, B €T | g 22} 1= (BPT%)

Let 1 define a member of A:;f with a ceiling (ﬂl...-.ﬂk) such that ﬂk 2 2. Then

define for each 1 {1 < n

1i , 1f 1i € n-2

. ={n-1, if 1, =n
1 1

fl
=)
+
|

n, if 1i
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The case 1i = n~1 cannot occur since ﬂk 2> 2 directly implies {i < n+l | 1i =

n-1} = §. It is clear (see Definition 2.8) that T = (I

k,p-1
o .

1""’Tn) is an incidence

vector, thus 1 € I

Furthermore the function

k.t
{tex ]

k,p-1

| 1 has the ceiling (4 ,...,ﬂk) with ﬂk > 2} — I

1 — T

is bijective, because it is obvious how to define the inverse mapping.

Combining the above observations and definitions, and using Lemma 3.7, we get:

k
Fix a ceiling § = (ﬂl,...,ﬁk) such that X ﬂi-k =p > 1, then
i=1
k,p s o . k+p-1 - k:p
[{n € & ;7 | b has the ceiling B} - OG5 = Al

k+p-2

k-1 )

[{n € Aﬁ;? | b has the ceiling £}| - (

k,p-1

[{h € A5;P | b has the ceiling (B ,.... %) with B, > 2}| = )

n+l

Consequently
(ke
k.p = k.p-1 k-1 - k,p-1  p+k-1
a1 =3 ;Eif:fy a P qg.e.d.
k-1

The following example illustrates the maps 1 +— 1T constructed in part (ii) of

the preceding proof.

Example 3.10:

3,1
2

the ceiling of 1. There are exactly 3 subsets of {1,2,3} with two ele-
ments, namely T, = {1,2}, 1, = {1,3}, 7, = {2,3}. So we have to construct

T
1

Let n=17, k=3, and } = (3,7,7,5,7,6,7). Then 1 € I.’'", since (2,1,1) is

i 4=1,23.

Since i-l(l) € A(f}, vhere f is the quadratic step function, defined by
- the values (0,3,5,6), we get:
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far
I

= (3,8,7,5,8,6,7,8),

-
n

(3,8,7,5,7,6,8,8)

[
I

= (3,7.,7,5,8,6,8,8).

These incidence vectors are sketched in the following diagramms (as graphs of

the corresponding anti step functions).

. +— e— —3
— =3 — —3---
1 —1- -t ] —- -
51 e s -
| S 1) Vo THIY
——y — ; . -
—3 o — ? e L —
— 3 - — -
—3--- —3---
3. - 54 (,__]_._._.-.
-- .. T
S — 19173 S I*173)
——

The lines "-.----" represent the underlying gquadratic step functions

Figure 5
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Corollary 3.11:

(i) a =0

{ii) Let (k,p) # (1,n-3). Then ai'p # 0 if and only if the following

holds true:

(a) k < [3]
(b) p+ 2k < n.
(c) (x,p) € N x N U {0}.

These assertions can be verified by induction or n:
Since (2,3,3) is the only 3-person incidence vector, the corollary is

valid in the case n = 3. The last theorem directly completes the proof.

Let us introduce the following notation: D= {tx,p) | a;,p #0}.

The next assertion is a direct consequence of the last corollary.

Corollary 3.12:

T if n is odd
I Dn ] = 2
5 v if n is even.

Since the number of homogeneous n-person games without dummies and steps equals

aiig by Theorem 3.9 (i), it is very useful to eliminate the aﬁ'p, p » 0. Define

ak := ak'0
n n

and for technical reasons

e
1
[

[ ]

a1
2
With these notations the following recursive formulae are valid.

Theorem 3.13:

2]
2 n-2k
. _ k+p-1, _k
W ey = BT T e,
-, [5E]
- nzz 22 (X+p-1) K
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K 7] ¥.oF oy g o2k ¢ gy
(i) a',, = X (")a + I () % (TP
n+l =k k-1 E‘___k_l k-1 =1 n-p P
[25E]
M-t R R TR A B
- k-1 P fn-p a -
p=0 k=k-1
. n+l
if 2 <k ¢ [‘E"'

The proof of this theorem will be postponed, as we shall have to apply the

k.p

folloving formula which describes a in terms of some ag.

Lemma 3.14:

k+p-1

( ) for all x ¢ [31, p € n-2.

n  “n-p

Proof (by induction on n):

In the case p = 0 nothing remains to be shown. Since (2,3,3) is the only
3-person incidence vector, we have

a%'l =1 = a1

If p > 1, then by Theorem 3.9 (iii):

k,p - ak,p—l (p+k-1

n+l n p )

a

k.0 (k+p-2) (Qigli) (by inductive hypothesis)

n-p+1 p-1
_ Xk,0 k+p-1
= A H-p { P ). qg.e.d.

We now proceed by proving the theorem:
It is straightforward - by interchanging the summation indices - that the second
equality of {i) resp. (ii) holds.
The first equalities are shown by induction on n:
by Theorem 3.9 (i) resp. (ii) we get
ai = 1 resp. ai =1

which coincides with
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11 ) 1 1 1 _
! = {k+p 1) ag_ resp. L (:) RIFE (t) X (k+p 1) ag_ .
k=1 ps0 P P k=2 k= p=1 P P
Assume the validity of the assertions for some n.
Then this assumption, Lemma 3.14 and Theorem 3.9 (i) resp. (ii) imply
2L [atl
1 2 n+l-2k X,p _ 2 n-2k X K+p-1
4o = ) ) a i = )> bX 3 4y-p )
k=1  p=0 k=1 p=0 P ¥
resp.
+]
51 -
R (E)n%zgag"’-a"‘l
n+2 R=k-1 k-1 p=0 n+l n+l
+1 n
B 5] -
_ 2 ¥ ¢ 2 g n+1-2k ¥ R+p-1
= ¥ ) a + ¥ (7)) I a { Y,
K=k k-1" “n+l ¥ek-1 k-1 p=1 n+l-p P
if k> 2. g.e.d,

A sketch of the recursive development will be given in the following figures. We
restrict our attention to the case that n is even and k is at least two. The

other three cases can be treated analogously. We presume that all ai, t < n-1,

are already known.

The element in the j-th row and 1-th column of Figure 6, which is often deleted

for clearness reasons, shall represent a;.

Figure 7 is Pascal's triangle, rotated to the left by 1% right angles. Thus the

element in the j-th row and l-th column shall represent (3;1}.

The marked areas of Figures 7 and 6 cover each other and the distances of the
vertical axes are equal. The binomial coefficients of the first column of the
marked area of Fig.7 have to be multiplied with the first element in the weak

marked {(k-1)-st row, the second column with the second element and so on.

The number az will be obtained by summing up all the products of the coeffi-

cients in the marked areas of Fig.6 and the wmodified coefficients of the marked

area of Fig.7 (elementwise).
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84 Test of Homogeneity

In this chapter an algorithm is constructed which enables us to decide whether a

directed game is homogeneous or not.
In the following the homogeneity of a directed game ({},v) is tested.

Definition 4.1:

Let (fl,v) be a directed n-person game without one-person winning coali-

tions and let S, be the lexicographically maximal minimal winning coali-

1

tion. If sl,...,s are already constructed, define

k

p(S;), if i = min {15j5k|1(sj)=min {l(st)|1$t$k,1(st)2k}}'

the preceding set is nonvoid and pk(si) exists
k+l

@ , otherwise

n
AN 8, is called set of pseudo-dummies. If Si49 = $ and i is not a pseudo-
i=1

dummy then it is called pseudo-step. Let {k0+1,...,n} be the set of pseudo-

dunmies. Then (11,.. } is an incidence vector, where

.rl
k0+1

L. {1(sj), if s, $ 8
j

k0+1, othervise

If (A,m) is the minimal representation, generated by (11,...,1k +1) {for the
0

expression "generated representation" Definition 2.8 is referred to), define
s(l,v) = (M; ml....,mko, 0,...,0).

(n-ko)-times

A straightforward consequence of this definpition, Remark 2.9 and Theorem 2.3 is

the following
Theorem 4.2:

Let (),v) be a directed n-person game without one-person winning coali-

tions.

Then :(f),v) is the minimal representation of a homogeneous game, where

exactly the pseudo-steps resp. pseudo-dummies of (f},v) are the steps resp.
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dummies of ¢(fl,v).

Additionally, if ({l,v) is homogeneous, then ¢(fl,v) is the minimal repre~

sentation of the same game.

Proof:

The first part is obvious from Corollary 2.11 and Lemma 1.4. As the chain
sl""'sn constructed in the last definition, does not depend on the represen-

tation but only on the game it can be started with a mirimal representation,
which is itself automatically homogeneous, if the game is. Thus, the second part

again is implied using the just mentioned assertions. g.e.d.

Remark:

It is obvious how to generalize the preceding definitions and assertions

to directed games containing one-person winning coalitions.

Corollary 4.3;

A directed game {{),v) is homogeneous, iff the incidence matrices of ({l,v)

and :(f},v) coincide.

A practicable, slightly modified test of homogeneity, which already has been
implemented on a computer, is presented in what follows.

Let (fl,v) be a directed game. A minimal winning coalition S is called shiftmini-
mal, if s U {i+1} \ {i} is losing for all players i such that i € s, i+l £ s.
(For this notation we refer to [6]). The matrix

=3y = 1

S shiftminimal

with lexicographically ordered rows is called shiftminimal matrix of ({},v).
OSTMANN [6] has shown that x*(ﬂ,v) uniquely determines (fl,v) and that neighbo-
ring players i, i+l are of different type (for the definition of the term “type"
ve refer to section 1), iff there is a shiftminimal coalition § with i € S, i+l
£ S. The term "type" can easily be generalized to coalitions: § and S' have the
same type - § ~ S§' -, iff there is a permutation Il of f} such that II(S) = $' and
H(i) ~ i for all i € {). With this definition it is obvious that all coalitions

of one type are winning resp. minimal winning if only one does.
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In the homogeneous case this notation trivially implies: each minimal winning
coalition § corresponds to a unique shiftminimal coalition § = : SH(S)
satisfying § ~ S. In the general case SH(S) is to be defined as the
lexicographically last coalition such that SH(S) ~ S.

Lemma 4.4:

If (f},v) is a homogeneous n-person game, not necessarily without dummies

and steps, and sl""'sn are constructed according te Definition 4.1, then
the following assertions are equivalent.
(i) i % i+l

(ii) There is a j, 1 € j < n, such that {i, i+1} N SH(S,) = {i}.

Proof:

We only have to show that (i} implies (ii).
Assume i 4 i+1. If Si41 = pi(Sj) for some 3 < i, then i € SH(Sj) by definition.

If i+l ¢ SH(Sj), nothing remains to be shown. In the other case i+l € Sj, thus

Si42 = Pi+1(sj) {see Definition 2.8). Consequently SH(Si+2) n{i, i+1} = {i}.
If Si41 = f, two cases may occur:
1. None of the cecalition Sl""'si contains player i. Then i and thus i+l are

pseudo-dummies of ({},v). Since :{Q},v) represents (fl,v), both players are
dummies and consequently of the same type, which contradicts assumption
(i}.

2. Player i is a pseudo-step of (f},v), thus a step. The fact that :(},v) = (-

A; Byseenoly 0,...,0) is the minimal representation of (fl,v)} implies
o

m. >n

i i+1 (see section 1) and thus ~ by Definition 2.8 - the existence of

t such that iest, i+l ¢ S Then SH(St) satisfies property (ii) by

definition. q.e.d.

Lemma 4.5:

Let X* be the shiftmirimal m x n matrix of a homogeneous game. Then the

following assertions are valid:
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(i) Ift <X ), t gx' N
1.0 tE Xy.¢ then t ~ 1z, )
(*)
(ii) It tg r=min {5 | 5 €X, , 5 g%, }ct <1, )
0° I EX X, i+1.7¢

* L]
t £%,,,. then t ~ 1(Xi,.), for all 1 <i < m.

Proof:

%
ad (i): The fact that xl' = SH(S), where § is the lexicographically maximal

minimal winning coalition, directly implies {i).

*
ad(ii): Again Xf = SH{p, (X, )) directly implies (ii). g-e.d.
i+1- t0 i-

Definition 4.6:

*
Let X be a shiftminimal matrix of a directed n-person game (Q,v), satis-

fying condition (*)}. Let il el ¢ ir = n be the last players of the

different types of the game and io = 0. Let SIV be the first row of X*. If

Tv

Tv
1 1

5 X

are already constructed and k ¢ r, define

Tv T U Tv, .. . Tv .
SH(pik(Sj V), if J=m1n{3g1k|JE{t€{t5k|1(Sk )glk}||[1k+1,n]nst | minimal}}
_ . : : Tv ;
Sk+1— the preceding set is nonvoid and pk(sj ) exists

¢ ’ otherwise

Analogously to Definition 2.8 (3) the matrix

Tv
5
§TV - [ - ]
Tv
sr
generates a vector {J,m) via
m = ...=mn_=0, wvhere k, = max {1(s?v) | 1 <i <r}, let us say
k n 0 i
0o+l
ko = it ;omy = .. =D = 1. If By yqr veer m, are already con-
0 to-l to t

structed for some t ¢ t, and t 2 1, define
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Tv , Tv
m([1 +1 n]nst+1\s if s t+1 # P, where SH Py (s V)= St41
mit_l+l=...=m{; 1+m([it+1,n]\sj . otherwise where i ES V and ISTh[l +1,n]| is
mlnlmal wlth thls property.
A = mtsiv).

Lemma 4.7:

*®
Let X ({l,v) satisfy (*). Then the representation :(fl,v) coincides with the

vector (4,m) generated by sTv

Proof:

Let 51,...,5n be defined according to Definition 4.1. Then it is obvious

that S1 ~ S}v. Using an inductive argument we easily see that there is a
= 4 : s o ~ Tv
sequence 0 = ig < Jl (...¢ i, =n such that Sj $1 Moo Sj ~ St for all t,
t-1 t
1<t <r. It is straightforward to finish the proof by comparing Definitions
2.8 (3) and 4.6, g.e.d.

Summarizing the preceding notation and assertions we get

Theorem 4.8:

*
Let ({},v) be a directed game, whose shiftminimal (mxn) matrix X satisfies
condition ({(*).

(f2,v) is homogeneous, iff the following conditions are valid:

(i) i ¢ i+1, iff there is a t such that i € 5.', i+1 £ 5;'.
{ii) n(S) = A for each row § of X*, vhere (A,m) is the vector generated
-Tv
by §
s . . LI s *
(iii) Let j € [1.m] . If i € Xj.0 1 4ty = min {tit € Xt F xJ+1 }
it1 ¢ i 4 t,, where x;+1_ is the empty coalition, then

n([i+1,0]\x; ) ¢ m .

Proof:

“Assume (f},v) is homogeneous. Assertion (i} is a direct consequence of
Lemma 4.4 and the proof of Lemma 4.7 and again Lemma 4.7 implies (ii). Condition
(iii) follows from the fact that SH(S) is shiftminimal for each minimal winning
coalition S.
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Conversely if x* satisfies (*), the matrix §Tv is well defined and generates the
minimal representation (J,m) of a homogeneous game (f),¥) by Lemma 4.7. Each
winning coalition w.r.t. ({,v) does win w.r.t. (f),¥), since for each shiftmini-
mal coalition § the equality m(S) = ) holds true. Assume there is a losing coa-
lition § w.r.t. (fl,v) which wins w.r.t. {(Q,v¥). ¥.l.o.g. let S be shiftminimal
w.r.t. (0,¥). Then there is a unique j € [1.m] such that O(X;_) > 0(S) >

* *®
O(Xj+1.). Define 1 = min{t| t € X .00t £S5} and i = max {t| t ~ I}. Then it is
obvious that i < to, thus i ~ tO by condition (iii). Consequently, x;+l_ has a

proper subcoalition § with m{(%) = A, thus 1(X;+1.) is a dummy w.r.t. {i,m). By

{i) we have i := l(x;+ ) £ to, i+ to, which contradicts (iii). g.e.d.

1-

The following 3 examples show that none of the conditions (i}, (ii), (iii) can
be deleted in Theorem 4.8. The shiftminimal matrices of the considered ganmes,
which all are weighted majority games, given in terms of representations, have
property (*). Since it is straightforward to verify the relevant properties of

these games, the concerning proofs are skipped.

The game (f},v) represented by (10;5,5,2,2,2.2,2)

(7:5,3,3,1,1,1)
(29;19,12,12,5,5,5,2,1,1)

(i), (ii)

(i), (iii)

(iii)
but not (ii)}

(1)

satisfies conditions respectively

(ii), (iii)

The following diagram illustrates some properties of these games.

representation of representation, satisfied
* =Tv ~Tv L
({1, v) X (v S generated by S conditions

(101000 101000

{7:5,3,3,1,1,1) 100011 011001 {5:;3,2,2,1,1,1) {i), (ii}
011001 100011
(1100000

{10;5,5,2,2,2,2,2) 0100111 téiggggﬂ (6:3.3,1,1,1,1,1) (1), (iii)
0011111
101000000 101000000
100011000 011001000

(29;19,12,12,5,5.5,2,1,1) 011001000 100011000 {5:3,2,2,1,1,1,0,0,0) | {ii), (iii)
001111100 000000000
00111101 000000000
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