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ABSTRACT

It is known that the lattice-minimal representation of a weighted majority
game maybe not unique and may lack of equal-treatment. The same fs true
for total-weight-minimal representation. Maybe both concepts coincide. We
focus on the total-weight-version for homogeneous games.

A Lemma tells us that all representations of a game induce the same order
on the set of equivalence classes of the players. So we can compare players
by their weights and can speak of greater or smaller ones.

To calculate adequate weights for a condidate for a minimal representation,
we look at the incidence matrix of the lexicographically ordered minimal
winning coalitions and we distinguish two sorts of players: sums and steps.
A sum is defined by the existence of a substituting coalition of some
“smaller" players: and a step is a non-sum.

Now we can calculate a candidate inductively going from smaller players to

the greater ones. This candidate is a representation of the game we are

Tooking at, and it is homogeneous. The smallest non-dummy gets one and the
representation assigns the same weight to players that are equivalent.
Furthermore we can show that the candidate is the unique minimal representation.



§ 1 BASIC NOTATIONS

A simple game is a pair (N,v) with N = {1,2,...,n) , a finite subset
of N, called players, and v : P (N) ~ {0,1} , v (§) = 0. The elements
of P (N} := {S; SN} are called coalitions. Sometimes we identify

P (N) with 2N by 5.1
Let W =W (N,v) be the set of winning coalitions, i.e. W :=v" (1).
Correspondingly L := v © (0) is the set of loosing coalitions.

(N,v) is called superadditive iff v Sy + v (T) <v (SuT)
for all S,Te 2N, sn T = p.

(N,v) has zero-sum iff v(S) + v (N~ S) = v(N) for all S e ZN.

tet NO = Nu {0} . We identify Ng with the integral measures on N

and write mS or lem for fés my .
We speak of a weighted majority game (w.m.g.) iff the simple game (N,v)
is "representable by integral measures", i.e. iff there exist

m e NQ L, mN £°0 and pe N, u>mN/? with

(*) vV = l[u’ m(N) ) om

the pairs (u,m) € Nx NQ » M(N} # 0, w>m (N)/2 with () are called
representations of (N,v).

We denote the set of representations by R = R (N,v).

A w.m.g. is superadditive and simple by definition, and so we can study
its structure by the following two subsets of 2N:



First the set W, of minimal winning coalitions,
Wy = {Sel; A S~{ite L}, and next

€S
the set L* of maximal loosing coalitions,

¥ :=¢sel; /A\ANSu{ie W .
igs

*

If a w.m.g. is zero-sum, then the application w* -+ L7 :S-N~S

is well-defined and bijective.

Total mass m(N)} induces a preference on R by {u,m) A\ (u'sm') iff
mN > m'N. The optimal elements of (R, ﬂ) are called minimal representations.

For some purposes it is instructive to look at the real version R of R
by substituting RY «x (R; )n to N'x Ng . R is a convex cone. R
and R are the solutions of the following system of inequalities:

ms > p s S E N*
ms <u , SeL* .

Let us conclude by a short look at the -
symmetry group T = r(N,v) of a simple game. Permutations of N induce
motions in coalitions, games, and - for w.m.g. - on N x Ng resp.

R x (R:)n . The symmetry group T 1is defined by T := {n is permutation
of Ns v =w v} .

I splits the player set N into transitive classes i called types:
i~ J iff player i is element of the orbit of Js ie. Terj.

Let 7= {jeN, 1 ~ j} and N = N/, = {T; i € N},

Let us define two special types D =D (N,v) and E =E {N,v):

D =N~ 5 S is the dummy type and

*

E:=n S 1is the type of unavoidable players (or "veto players"; iff
W

*

E #0 the game is called weak).



§ 2 THE NATURAL ORDER

For further considerations we need the following

LEMMA (2.1): Let (N,v) be a w.m.g.
A1l representations are inducing the same order on N.

~

Proof. We assume that there are different orders induced. Then there

are i, J €N, i +j and two representations (u,m), (u',m') € R with
I' 1

mi > mj and mJ > m. .

We shall prove i ~ j ; this contradiction will complete the proof of
the lemma.

It is enough to prove that the permutation

v v oF 1,]
T (v) = i v =]
J v =1

s element of the symmetry group r of the game. To this end, consider W,.

Let S ¢ w* LIf i, 3€eS or i, J€S then nS e N* . Hence, w.1l.0.9g.

Tet ie€S,j&€S. Then nSeW by . <m'(S)<m'S - m%+mj =m'n S.

Moreover for k € S we shall get S~kel :

(1) If k%1 then n(S~k) =nS~k and
p >m(S) - m > msS - m; + ms - m =mm S - M

(2) If k=1 then m (n(S~ 1)) = m(S~ 1).
S0 we got nS € W, .
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§ 3  SUMS AND STEPS AND ZERO-SUM

Lemma 2.1 ensures that we can define the smallest non-dummy type

Fi=i if m = min m_ for some (u,m) € R .
LN

-

Since T s transitive on the types i we can restrict our attention
to one fixed order on N and can assume m; > m for all i <.

A representation (u,m) is said to preserve types if i~ j >m. = ms. .
If a minimal representation does not preserve types then it is not unigue-

DEFINITION 3.1 X 1= X (N,v) =

SeW,
with the lexicographic order on W, 1s called incidence matrix (of the
game (N,v), or of W,). The lexicographic order L on W, s induced

By o i= 2 1g(1) - 2" and SLT iff wg >gq .

(pc s the corresponding dual number).
S

Example 3.2 Let (N,v) be the game defined by the representation
(9:5,4,3,2,2), so

1000
0110
0101
0011
1110
1101

N = ({1},{2},{3},{4,5))

o T e O T S S G S

the given representation preserves types.

D=0, E=9,F={4,5) .



Example 3.3 For (533,2,2,1) we get
1100
X = 1010
0111

DEFINITION 3.4 Let ~j , j € N be the relation on 2" defined by

S~J3 T iff ‘/\ ls(i) = 1T(i)
i<
If S ~j T the both coalitions differ not earlier then at j. The
induced relations on N* can be visualized by submatrices of X of
length n-j from behind.

Remark 3.5 If X has a row ls(j) = 0, ls(i) =1 with j <i , then
there exists T ¢ W, with S~j T and 1.3y = 1.

This is a direct consequence of Lemma 2.1.

DEFINITION 3.6 A player i €N~D is called sum iff there exist
5,Te W, with S~iT and i€S, i&T. Otherwise i € N~D is
called step. A step 1 s called final iff there exists § ¢ W, »
TS with j¢S for all J>1.

The members of E are steps. The Tast player in D is a final step. In 3.2 there
is only one step; in 3.3 the last two players are final steps.

DEFINITION 3.7 A w.m.g. (N,v)} is called homogeneous iff there exists
a representation (p,m) with

(%) Xm = u.lN

A representation fullfilling (%) is called homogeneous.



LEMMA 3.8 For a homogeneous representation (u,m)

1. the weight of a sum is a sum of some smaller
players weights;

2. the weight of a final step exceeds the sum
of the smaller players weights.

Proof: 1. Let S(i), T(i) be the Texicographically first pair in W,
with S{i) ~; T(i) and i € S(i), i € T(i). Look at the corresponding
rows of (%) - they are in Texicographic order: at i is the first
difference, after i both S(i) and T(i) are of type (1...1 0...0).
T(i) has to have a longer period of ones by the fixed order on N.

So we get:

i

Similarly we get 2.

LEMMA 3.9 Let j bea stepand i e N with i > i . If
ieSe W, then jes.

I.e. Steps rule its followers.

Proof: Let us assume there would exist T e w* with 1eT, jeT.
Then Remark 3.5 tells us that j 1ds not a step.

LEMMA 3.10 Zero-sum w.m.games have only one step.

Proof: W.l.0.9. let D=0 .
Let us assume there would be another step j+n. There is
S ¢ w* with ne€ S . By Lemma 3.9 we know j € S . Zero sum
yields N~ S elL™, but (N~S)u {n} is Joosing too.

Lemma 3.10 is a sharper version of the known fact that homogeneous zero-
sum games without dummies are nondegenerate, i.e. rank (X} = n.
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But the step-version is also true for game that are not homogeneous.
For inhomogeneous games nondegeneracy and rank (X) =n is not the same.

A zero-sum game (N,v) is called majority game iff there exists
(usm) € R(N,v) withmN = 2u- 1 (cf. ISBELL 1956).

LEMMA 3,11 If (p,m) is a minimal representation of a zero-sum w.m. game
then mN = 2 -1 | I.e. it is no difference between zero-sum w.m, and
majority games.

Proof: mN < 2 by definition. There is a coalition S with mS = po-1,
else we can lower . to ' and for {u'sm) we can lower some weight,
since a minimal representation (u',m) guarantees for all ieN~D the
existence of a coalition T, i € T with mT = ' . Now we have

ms =p -1, mN~S)>un and mN>2 -1, g.e.d.

mN =2 4, -1 is the condition for the nucleolus to generate the minimal
representation (PELEG 1968).

Now Tet (i,m) a homogeneous representation of a zero-sum game.
By Lemma 3.9 we can solve the equation

from behind, analoguesly to Lemma 3.8.



Let XC be the submatrix of X of the rows used; then by elementary
operations on rows we get

1 0
m = -
0 0
...... 1 il
and
1._ 0 él 0
. m =
n 0
i
or
my = - a, m (i#n)
anmn=u

For a minimal element of the homogeneous representations we can set
m, =1 . This is the only minimal one.

n
Now
m; = - ay (i + n)
m, = 1

These arguments proved the following

LEMMA 3.12: There is & unique minimal element {e,m) of the
homogeneous representations of a Zero~-sum game;
ms equals one for i & F and (usm) preserves

types. -
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'§ 4 THE HOMOGENEOUS 7ERO-SUME CASE

THEOREM: If (N,v) is a homogeneous zero-sum game, then its minimal

representation (u,m)

O o ow

d
e

(
(
(
(
(

(f)

is unique

is homogeneous

preserves types

has unit weight on the smallest type

has a level 4 equal to the determinant of a
submatrix of the incidence matrix

is an absolute majority game with an odd number
of votes, namely 2, -1 .

Proof. In the Tight of §3 it is enough to prove that a minimal

representation has to be homogeneous.

Now let (u,m) be the homogeneous candidate for the minimal representation
and {u',m') be a minimal representation. Let P be the matrix of the
elementary operations on XC with
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Let XC m''=:b and PXC mf =Pbh=":pb',

With B : = (b!

1 - bﬁ—l’ 0) we get the vector equation

(*) m' = B +m. m

1.e. we can see a representation as affine transformation of the
minimal homogeneous (iasm).

- Now, for the first i with Bi'< G from behind (consequently 7 # n)
take the Texicographicly first § e w*, Tel* with S~1iT, i¢S, igT.
Such pairs must exist.

Then 0 <m'S - m'T =m (ms-mT) + BS - BT,

Since homogeneous representations of zero-sum games are homogeneous from
below, we get

mS-n'T = my (k= (w-1)) + bS - BT ,

Taking the lexicographicly first S,T the difference IS - 1T is not
positive up to (1S - 1) (7) , that is

ms-mT = mn + bi - jiiﬁj bj ) Bj S {031}

- .
(#x) 0 <=z B; bj <mp + b,

If m. =1 this inquality implies the wanted contradiction: 51.2 0.

S0 we assume m, > 1,
from (%) and (#x) we get for all i e N

=
I

1 w ' t i
. .+ . -m. + m m.
1 b1 mn mT > n n 1

and

v

m, (mi-l) +1 .
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Our assumption mé > 1 ensures

ms
i

or as vector-inequality

m >m and m' #m

in contradiction with m'(N) < m(N) .

The contradiction shows 5_3 O, m' =1,

Consequently m' =m .

>2m-1) +1=2m -1>m,



- 13 -

§ 5 THE GENERAL HOMOGENEOUS CASE

In this paragraph we deal with homogeneous w.m.g. and we assume w.1.0.g. that
there are no dummies.

DEFINITION 5.1: If § is a sum, let S{i), T{i) be the Texicographically
first pair in W* with S(i) ~;i T(i) and i €S{i), i gT(1).

If 1 1s a step, then M (i) := {(i,...,n)~S, ieS, s €Wy -
Let h (i) := max {mM; H e H) .

For sums T(i) ~S(i) 1is a substitute for i.(cf. Lemma 3.8). For steps the
elements of H(i) are too small to be substitute, and there is no substitute at all.

Now we define recursively a suitable candidate (1,m) for the minimal
homogeneous representation of the given game:

DEFINITION 5.2: m(T(1) ~ ${(i)) i is sum
My =

1+ hm(i) i is step

W= mS(l) with S(l) the first element

of (W,. L)

(usm)  is well defined, since we can calculate it "from behind"
(mn =1 + hm(i) =1+mp=1).

First we shall'prove that (u,m) 1is a homogeneous representation of the
given game. We proceed by two steps:

LEMMA 5.3: If S ¢ W, then mS =,
LEMMA 5.4: If S € Ly then mT <,

Proof of the first Lemma: Let S'%) be the k-th coalition in the 1ist

(W, L). ms(l) = u by definition. We prove: If ms(l) = .., = mS(k) =g

then ms(k*1) . w. Let j be the first player not common to S(k) and
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S$k+1) . S0 we have S(k) ~j$5(k+1) and by L : je S(k), J € S(k+1) .
This implies that j is a sum. Let 5(1) be the lexicographically first
coalition with 5(1) ~3 S(k); similarly to Lemma 3.8 we get

get ms(1) o ps(k)

Now we can calculate ms(k+1) :
mS(k+1) = ms(]) - my + m(S(k+1) ~ 5(1))

ms(K) _ m; + m(T(j) ~ S(i}) = ms (K)

REMARK 5.5:  From the proof above we also lern rank X =1 +n - isteps] .

Proof of the second Lemma: If § ¢ L* Tet j(S) be the maximal player
for whom exist some T € W, with S ~ j(S)T .

Assume HS) €S .So J(S)E€T, but Ty {i(S)r e W. By omitting smaller
players (there are such ones)we get a T' € W, with T ~its)+1 S . (Other~
wise $ o T). This is a contradiction against the maximality of j(S}. Hence j(S) &S.

We got that j(S) is “still available", and S U j(S) € W. By Lemma 5.3
m(S U j{S)) > u. Let T be the first coalition in W, with S ~3(s) T
and T < S U j(S). It is constructed by omitting some smaller players. Let
J = j(S). To complete the proof it is enough to prove m(S~T) < ms.

Since T is lexicographically first § < {(T~3) U (S~T) holds true. If
m{S~T) < mss then mS < m({T~j) u (S~T)) = mT-mj+m(S-T) < mT, and
mT = u by the first Lemma.

If j 1s a step, so S~Tc (j,....n}~T€ H (i) and m(S~T) < h{j) < my.
Remember, n 1is a step.

Now let us assume mS < u 1is proven for all § ¢ L* with §(S) >3 . We

0
prove mS < u holds for all S el with j(s) = Jo-
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If jo is a step then there is nothing to add. So let jo be a sum,
and S € L* with j(s) = jo. Maximality of jo implies that there is
no coalition T' € W, with S "o T" and j&€7T'. S SuU {jo +1,...,n)

is loosing too, and by S € L* follows {Jg ¥+ 1s..05n) 2 S . But j
) )

is a sum, and T(jo) ~ S(jo) can be used to construct a coalition $' with
mS = m$' and Jo € 8'. Since the game is homogeneous S' is loosing too

and we can add some smaller players to reach L* . Say the constructed
coalition is S'', j(s'') > Jo and so we have mS = mS' <mS'' < .

THEOREM 5.6: Let (N,v) be a homogeneous w.m.g. The minimal homogeneous

representation

(a) is unique
{b) has a unit player
{c} preserves types

Proof of the theorem: It is enough to prove that any {u',m') € Ry (N,v)
~wWith m#m' and mN > m'N is not homogeneous.

Let j be the first player from behind with mj > m'j .
We assume Jj s a step. Let S vresp. H = {Js--.sn} ~S hold mH = hm(j).

Then
(S<jY uHegw

We get a contradiction by

m' ((S~j) u H)

m'S - m3 +mH>m'S - mj + mH

ms-1>u" -1,

S0 j is a sum. The calculation

m'S(5) - mT(5) = my - W (T(5) ~ 5(3))
<ms - m{T(j) ~S(j)) =0

J
shows (u',m'} s not homogeneous.
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REMARK 5.7: The minimal homogeneous representation can be used to
generate all homogeneous w.m.g. (by the procedure given in ROSENMOLLER
1982, theorem 1.6 and 2.1 using that the minimal weight of the players
is one).

THEOREM 5.8: The minimal hombgeneous representation is the unique minimal

representatiaon.

PROOF:  Let us denote the minimal homogeneous representation by {u.m) and
some minimal representation by (u', m'). From m, = 1 follows mé >mo.

We shall prove that for any i e N : m% >ms . Let m% >ms for i >3.

If j 1is a step, {(j # n) we take a maximal non-substitute H w.r.t. m
{i.e. mH = hm(i)) and get:

Now let j be a sum . S(j) and T{(j) are defined above. Let k be the
last player of S{j). We look at the family of a1l T ¢ W, with T ~kil T{j).
The last player appearing in this family is called 1 . P]ayer 1 dis a final
step (maybe it is equal to k+l or to n). So R := T~ Tu{i+l...ny et*
and the following four equations hold:

[ mT=p.
m =1+ £ m
i 1 v>1 v
mR = -1
m{R~S{j)) =m, - 1
\ J

for m' we have m'S(j) > m'R.

By S(3j) ~; R that inequality implies mw'(S(j) n {j...n}) > m'(R n {j...n}},
and diminishing it by the weight of {J+1,....k} :

m3 > mf(R N {k+l,...,n}) =m' (R~ S{(j)).

But m'(R~S(3}) > m(R~S(j)) = m, - 1 . So we have shown m, 5_m3 .

For being minimal m' has to be equal to m; p' =4 follows.
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'REMARK 5.89: Theorem 5.8 tells us, that if there are different minimal
representations, then the game has to be inhomogeneous. ISBELL gave the
example (99; 38, 31, 31, 28, 23, 12,11, 8, 6, §, 3, 1), (99; 37, 31, 31,
28, 23, 12, 11, 8, 7, 5, 3, 1). The example has [2| minimal winning
coalitions. My smallest example is (16; 6, 5, 4, 3, 2, 2), (165 5, 5, 4,
4, 2, 2) with five minimal representations and W, =7, |L¥] =12 .

If the smallest non-dummy gets more than one, then the game has to be in-
homogeneous too. For majority games ISBELL 1959 got n >7 for that case,.
We get n >5 for w.m.g. by (9; 5, 4, 3, 2, 2).

We are interested in the game (9; 5, 4, 3, 2, 2) by another reason too.
Let us aks for the maximal minimal representation for n-person-games.

For majority games ISBELL found a close connection with the Fibonacci-
Numbers. We conjecture that the maximal size of a house mN to represent
all w.m.g. with [N|] = n is 2"t
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