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ABSTRACT

It is well known that game-~theoretic models of economies
s externelities tend to exemplify the "comiradicZion between
etfliciency and stability®. In formalizetions and proofs of this
ratner loose statement some smoothness conditions are usually
recuired. Here a situation of this kind is studied under con-
tinuity mmmcsvnwosm only. The most interesting thing is that
there exist such (non-smooth) preferences which guarantee that
this contradiction occurs under no circumstances. Assuming some
sort of homogeneity of preferences over the set of the plavers,
the necessary and sufficient conditions for such "persistent”

existence of efficient and stable outcomes are derived.
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1. General Formulation

Consider a finite society N members of which will be cal-

led plavers. Each plaver I€N has his(her) set of strategies X,

and preferences 0(91 the set of outcomes X = X Xw. The pacu-
ien

Liarity of the models to be dealt with here lies in the struc-

ture of the preferences. Suppose that there is a function

P : X~ R and functions LN A R (fen), and that the prefe-

rences of plaver I are expressed by his(her) utility function
t,ﬁxu = ﬁmsnxu.s»nx,vv. (13

where F : 5».& R is & given increasing {(at least, non-decre-
asing) function. So we have a normal form game with arbitrary
strategy sets and specific utilities.

Models of this kind are rather usual in studying voluntary °
provision of a public good (or a public bad), see, e.g9. Berg-
strom, Blume, Varilasn (1986). UWe may suppose that each plaver
has some amount of money which hefshe) is to divide between
his{her) personal and some public needs. The strategy sets then
congist of all permissible allocations; the function P, expres-
ses the level of plaver I’s personal consumption; the function
¥ the level of public facilities; the Tunction u, describes the
“integral welfare” of plaver I. Instead of money we might con-
sider wvector resource allocation. m:1n7n13m101 the strategies
may correspond to technological decisicons, in which case e,
describes net output or profit of plaver i, and ¥ is some en-
vironmental characteristic.

In any case, trmw is essential is that each plaver has
his(her) private welfare characteristic and there is a public

welfare characteristic and every characteristic is scalar. In




accordance with the previous experience of studying this kind
of models (see, e.g., Feldman (1980), Moulin (1986)) it would
be quite natural to expect the contradiction between stability
and efficiency I@?M. .

To be more precise, denote by PO, NE, SE, respectively,
the sets of ®ll Pareto optima, s&sll Nash eaquilibria, and all
strong (coalitional) equilibria of a given normal form game
(for the exact definitions see, e.g., Moulin (1986)). We shall
never consider different games simultaneously, so shall need no
special notation for the game itself. The sald contradiction
may be expressed as the equality NE n PO = @, while its absence
is characterized by the condition

NE n PO # #, ; (2)
or, more strongly, by
SE # #. (3)

We shall call a function F weakly stable (respectively,

stable), if for any finite A, any compacts kw (IeN), any conti-

nuous ¥, 9 (1i€N) condition (2) (respectively, (3)) is satis-

i
fied. This means that (2) or (3) holds for the normal form game
defined by the sets A, X, (i€N) and the functions u, (IEN) sa-
tisfying (1).

We have a special regard for the function F 3Q7a¢.U@08Cm@
it constitutes the most “"subjective" part of the whole con-
stiruction: the functions Pys ¥ may easily be namamzan as mea-
surable in the aquantitative sense, while F represents a purely
personal assessment. Independence F of i means that the society
is homogeneous in this respect. (It is £m1ﬁ3 noting that the

presence of the same function F in Formula (1) Tor every player

implies “ordinal level comparability® (Sen (1977)), i.e. & mo-

e 1)

notonic nTﬁjMﬂO?B&nwOJ car be applied to all utilities simul-
taneously without changing anvthing, while independent trans-
formations of utilities are not allowed.)

Se the maln problem of this paper can be formulated as
follows: people of what kind could constitute a society which
may live in harmony without any compulsory mechanism for im-
plementation of public decisions (at least, decisions on pro-
vision of a public good or a public bad)? Or, interpreting the
result in negative, which exactly features of preferences make
such compulsory mechanisms indispensable in the real-world

societies?

2. Main Result

There are some trivial stable functions: constant functbi-
ons and two projections F(P,0)=9, FP,PI=y. The *First non-
trivial example of a stable function was discovered by Germeier
and Vatel (1974); it is the minimum function: mAﬁqsuu3w3A€.sT
In fact, they considered a weww general model: stirategies of
plavers meant allocations of resources among public and private
needs, and the Functions VP, s» were strictly increasing. Under
these supertTluous, as we see them now, assumptions the exister-
ce of & Pareto optimal Nash equilibrilum was shown. Further in-
vestigations summed up in Kukushkin et al. (1985]) showed sta-
Bility in the above sense of the wminimum function. Ancther
example of a stable function 1is the maximum function, see
Kukushkin (1989]).

The maln theorem of this paper shows that maximum and mi-
niimum do not exhaust the scope of the stable a:ﬁowwozww but

every such function is in a sense constructed of these two.




-6 -

To get necessary and sufficient conditions for the stabi-
lity of a functioen F, we shall restrict the scope of the func—
tions considered. Only continuous and SOJOnOEHo‘AEDQnMOSw will
pe allowed. Continuity needs no comment, and monotonicity will
be understood in the following sense: if both arguments have
increased, the value of the function must also increase. By
this restriction we exclude constant functions.

“heorem. For any continuous monotonic function £ : R » R
the following ﬁjT@@ statements are eaquivalent:

(a) F is weakly stable;
(b) F is mwmwvo“

(¢} F can be described by the formula:
Fu, 0} = min { max (X (v}, A (9}, wumsuv, (4)

where »a.ww.yw are strictly increasing GOJWHBCOCW functions,
inf fww sup ym. one of the functions wﬁym may have -® as @
value, one of the functions %u‘fu may have +® as a value.

There is & kind of geometric interpretation for Formula
(4). First of all, & function satistying (4) may only have li-

nes of constant value of the following four types:

Second, if the function has both maximum-like and.minimum-like
lines, then whether the line of constant value drawn through a
given point (P,9) of the plane is maximum-like or minimum-~like
depends on P only.

It is easy to show that the only smooth functions satisfy-

ing (4) are two projections. Furthermore, there is no strictly

increasing stable function.

The quantification on N and kw is, in fact, unessential.
As may be easily segen from the proof below, Formula (4) is
sufficient for stability w.r.t. any N, Xh and nescessary for
stability w.r.t. [w|=2, |x [=2. ..

Without pretending on seriocus applications, consider a
"fairy" example Just to clarify the mesning of Formula (4) in
the general case when both maximum—like and minimum-~like lines
of constant value are present. The playvers are dwellers of a
street by which they walk every morning te a railway station.
The utility function of each player evaluates the state of his
feet on arriving there. There is some lexicography in this
evaluation: first of all, everyone wants to §m<® his feet drvy.
If it has proved impossible, the utility function measures wet-
ness of the feet regardless of any other characteristic. If the
feet are dry then their ocutlook becomes essential, so the uti-
lity function measures somehow the quality of this outlook.
Strategies describe allocation of money, time, effort, etc. by
esch playver among enhancing the auality of street pavement and
of his personal boolts or shoes. Now we may suppose with some
plauvsibility that wetness of your feet depends on qualities of
street pavement and of your boots in a maximum-like fashion {(on
a well-paved street vou have no need for heavy boots, and with
good boots on you are indifferent, to an extent, to the quality
o? street pavement), syuwm the outlook depends on them in 2
minimum-like fashion (rough pavement spoils your fine shoes
beyond recognition).

So far our assumptions sound plausible, though not neces-

sarily auite convincing (e.g. even after a rough walk good sho-



g may still have a better outlook thanm inlitislly bad ones).
But to obtain Formula (4) we need further assumiptions. First:
there exists, in principle, such street Um<@5@3¢ that guarante-
es you dry feet even it you walk with bare feet, and the chea-
pest version of such a pavement is infinitely rough, i.e. you
would have an infinitely ugly outlook after walking on it
CITE = wcvv,Nu. Second: achieving the “"completely dry" state
of your feet relying solely on your boots 1s only vommwc.wo by
use of infinitely expensive and infinitely uwgly boots. These
additional assumptions may seem rather far-fetched.

Perhaps, the most natural u..zwa_)_uw.m&m,wwo: of the theorem is
negative: there exists no stable function except such exotic
osom. as described by Formula (4). In this case I can claim the
most general formulation of this aquite anticipated negative
result (there was no word about smoothness in the theorem). On
the other hand, though, more simple maximum or minimum func-—
tions may be quite relevant in some appropriate circumstances,
so the positive side of the theorem may eventually find its

applications.
3. Proot

It 1is oc<wocwwv~, sufficient to prove two implications:
(c) & (b}, (a) = (). ‘

1. Given a function F un«ww?\n:n (4), & finite set W,
InMl=n, compacts X, (ieM), continuous functions P : X = R and
P oX R (ien), we have to prove that SE # @ for the normal

i
form game defined by the sets Xw and the utility functions u,
satisfying (1].

In a sense, we may treat the function F as if it were ei~

ther just minimum (case 1) or just maximum (case 2). Denote

&Y
max . ’ ? .
W = max {P(x) 26X} and consider tys possibilities.

R p

Case 1. Let X, (¥ ") 2 suph,. To obtain an outcome xESE we
shall lexicographically n,.m,stwﬂ@ the wtilities in the increa-
ing order. For any XEX define enmku‘ @ 50 .asmku as the result
of ordering of the liat of ypilities Atﬁﬁkuvmmxﬁ i.e.
aaﬁim.,.hwsmxw and t,mkuuae.«:m»‘u Tor all Jen, where 0 is z
one-to-one mapping of N onto {i,., ,pl. We shall say that ar
outcome yEX lexicographically domirgtes anobher ocutcome xEX i1
there exists mel{l, ..} such that maa ) vasﬂ ) while
m_c\.wna_m».u for Isl,....m 1. Folloying o Aspremont arnd Severs
{1977} denote Leximin the set of all such ocutcomes that are
lexicographically dominated by no gutcome »eX., It is emsy te
show that every function @» is contimyous and @ # Leximin £ PO.
+ Plek an outcome x@.eximin and grow thalt xESE. Suppose o
the contrary that there exists a coglition FEN, 2 vu.,m_vm,) k€]
and an outcome »¥EX such that t_.nv.:txsku‘ tnmv\u wt»mxu for ewvery
f€r, k.,nus..
femma 1.1. :..quwwcnwm;nﬂsgakh: for evary JEN.

for every JEM I.

Otherwise any outcome z with (z)=¢""" would lexicosraphi-
cally (in faclt, even Pareto) dominate the outcome x. ‘

Lemma 1.2, :_nku;mﬁe%\u: for every JeEa,

The w:.wncm:..wv. tucxuwwmghﬁkb: for some JFEN would imply
wgmik:*ﬂmcv?m' hence Qum»\unﬁumku for every JeEN , contrary to
our presumption on .

The two lemmas show, In fact, ppet considering cutcomes x
and » we may treat the Tunction & as if it were Just
a»sﬂwamg.»m?&».

Now obtain the required contradiction. Denote  J={_J€A

C_C\::um.«z. txuawi:_mk: JEI} (J*®  because x€PO  and



twnv\:trﬁk:. Let J€F be such that tu:&ﬂtx. then JE€I, hence
X =7 hence shﬂx%uuﬁbmkhu* therefore, tbnwunwgﬂéﬁkuua
(e (¥ D)2, (x). Now we have o ()< (), (V(»))=w". By the
definition of « we have ﬁ:mxumchﬂkw for every i€N satisfying
EwﬁquEx. It follows immediately that y lexicographically domi-
nates x, contrary to cur choice of x€.eximin.

Case 2. Let wanesmxu < wzﬁyw. It means that for any x€X,
IEN the equality tnﬁxuuamxmvuneu‘wwnsuv holds. Now we may argus
quite similarly to the previous case, pilicking x€l.eximax (see
d’ Aspremont and Gevers 1977) instead of wnr@xwaw3 and changing
mvv1om1wmnmw% signs of some inequalities.

More precisely, if x€Leximax, »€X is such that txnkuvtxnxu
for some K€I, t,mkuwtﬁmxu for every I€7, kuan for every JEMT
then we denote J={jen! thn\uAthﬁxuv (it is non-empty for Just
the same resson as above), txnsmxﬁtunk: JET}. Pick JEJ for
which :_mxwatx. then J¢I, hence X =¥ hence ebmx“unshnkhv.
therefore, Qbmxuufnemxuu;wnebﬂxw:mt..mwc. Now we have
trnkvvtraxuwrnaeﬁxvuutu. By the definition of & we have
p:mxumthﬁku.ﬁc1 every I€N satisfying h:Axuvt*. It follows im-
mediately that » lexicographically (in the Leximax sense) domi-
nates x, contrary to our choice cof x@.eximax.

As wj«ywumcvwm. the two cases om<01 all possibilities
{even with some overlapping).

2. Suppose that F : sm -+ R is B weakly stable continuous
monotonic function.

Lemma 2.1. If 9 (¢, @' 0", FIV,0")=FY, 90 )=u then there
sxists YELY',¥'] such that F(Y, 9 )=F(P, ") =w.

Denote vi=sup (PIF(Y, 9 =),  Pi=inf (VIF(Y, o' )=u}; clearly,

1

. 7" 1 . - "
euwe ¥ emme . If swem then we may pick Y=Y (in fact, in this

12
case the equality ¥=p must roidl.

P By (el @ity
ymuﬁw.emh we have kﬁw.szuvr? ﬁﬁw.s~uac 3 for the rest of the
proof of the lemma fix one such @.

Denote p\nmaw.s=uvt“ and let &, be the radius of a neigh-
bourhood ow the point (¥',0') where £ is less than u', mm be
the radius of a neighbourhood of the point m@.ﬁhu where £ is
less than w . Define Dnawzmmu*mmv\m. E-WMA@,G&+>V‘ <=
=F(Y"+d, 9 +8); it is easy to see that u (wlu’<u'.

Now we may choose xmuanﬁp‘mw. and define ¥,9 as follows:

P (W)=p'+h,  p (2)=9" (i=1,2),
WL, 1)=9"+h, p(2,2)=p"
(1,2)=p(2,1)=y.

Applying Formula (1) we obtain the following bimatrix

game s
(.’ ™ (v, uh)
(', u7) (v, u)

The strategies xﬂﬁn. xmuﬁ are dominant for respective pla-
yers, so NE={(2,2)} and this unigue Nash equilibrium is Pareto
dominated by the outcome (1,1). (In fact, this game is a ver-
sion of the prisoner’'s dilemma). This contradiction with the
presumed weak stabllity of F proves Lemma 2.1.

Lemma 2.2. For every (€R the line of constant value mu_ntv

(i? not empty) follows one of the five patterns:

{11 [23 [3] (4] [5]
—_— I .
where abscissae correspond to ¥, ordinates to ¢, open erwis of

the lines should be continued to infinity.



[ Y

S | 1, .2, .3
mCﬂvoma»n?wwﬁﬁ)_@qr@ﬁxwwneaﬁ.nﬁsGveve auch that

1.3 3 1
mAefﬁJﬁwAem*emuuﬁmeﬂswuﬁ? Then ¢ ,¥9,9,9 satisfy the con-—
d4itions of Lemma 2.1, theretfore, there exlsts an appropriate
- —- - 2 L2 .
verv’, ewu . If Wt them FLY, 02y ==Flyl, 07)  contradicts monoto-

-

; = 2 2
nicity, =as ﬁwfskwu if évem then P, Y=u=F{Y",9") contradicts

ronchohicity, as ﬁwvﬁmm B0 ﬂnen. It thers exist Gvﬁzﬂ ﬁmm‘__,. such
emzt P, P)=w then we may apply Lemms 2.1 teo e-eu,sw%, obtal~
ning an appropriate Mv; As above, there must hold ?em, bt then
mmem‘suurﬂ\qg»uﬁ»w contradicts monctonicity. So Wﬁeas.&ﬂc for
avery sm__c». ouite similar reasoning shous that Mhﬁ.swuut for
every ewﬁw. We see that the line m\LT.b Ffollows the pattern
{s}.

It dig easy to show that any line which dees nobt contalin
three pointe =zituated as 1t vas supposed above must Tollow one
of the other four patterns {(regardless even of the stebility of
F). So Lemma 2.2 is proved. .

The image TASNW must be an open interval; denote it
lu gou L. For W=, ...,5 dencte R, = { weR | F YW tollows the
pattern [k]}. So we have

@
Ju o t;am = iy &

Lemma 2.3. The set & is empty.

It is easy to see that km is open. So, if not empbty, it
would consist of & finite or infinite number of open intervals.
Let lu,u'l be one of them. For every Wl , 'l the line .n.LAZu
is defined by the three parameters: P (Y9 ) and eo:&
:eoﬁtu,s*ﬁt: are the coordinates of the upper ocorner,
(%), 9 ()) the lowsr cormer):; it is easy to see that the

functions @ (-1, ¢ (), eaﬁ,u are continucus and increasing.

3 - 5 3 - % N 3 )
Pick arbitrarily o €lu . ul; wvick e, « 3w clouse znc

ugh to & to fulfill the inecualities ' (u')re ()
e (D)<' (W), and plck arbitrarily Jielut, 0, o'eldd, JOL.

Now we are able to construct our example violating the
supposed  stability of £  Let X =X,={(1,2}, s%iue‘?.mw
P (2)=07(), e (1=0"(Y),  p@=e"(uY,  wi1,1)=9"().
v, 2)=p"(u"), 92, 10=0°"), w2.2)=9°(u). so we have th
following bimatrix game:

Lo, u) Htm.tJ
() (' uh

It is easy to see that NE=@ for the game (remember, that
PG’y Lemma 2.2 1s proved.

Now list some properties of the sets 7, (k=1,...,4) omit-
ting their quite straightforward nvoowm.

(i) The sets 3 and .&N can not be non-empty simultane-
ously.

(i1} The sets &, and R, are closed in lu_,u J[.

(i11) The sets R, and R, are open.

(iv) If €R, and u'{u then w'ER,.

(v) If weR, and u'du then u'ER,.

Suppose that R, R, and R, are non-empty, so R=lu_, ul,
.&muﬁﬂ.ﬂu. .ﬂ»uuﬂ,t+am. The position of a line & '(uw) is descri-
bed by two real values 9(uw), 9(w) (the coordinates of the cor-
ner) for tmm.u. by a real value P(u) for tmhm. by two real valu-
es Pluw), u&ht/v (the coordinates of the corner) for weER,. It ie
easy to see that the function Y(') is increasing and continuous
on the whole w‘zw@_\émw uc-s.rrem. while the functions @(u),
ﬂmtu are increasing and continuous on the intervals ut,e.msm and

umu.nﬁsm. respectively, and P(L)=+®, P(L)=-%. . Now we may defime
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yﬂn.uue-»A.u‘ yma.uumgam.u« ymﬂ.unﬂyan.u, verification of For-
mula (4) is straightforward; note that mcvwmnﬂmﬂnwjﬂyQ

It only one of the sets mw or WA is non~empty, the situa-
tion is even more simple (in fact, in thess cases Formula (4)
is reduced to pure maximum or minimum).

Suppose now that R,, R, R, are non-empty,i.e. %muut-eu.bﬁ“

mwnmﬂ.ﬂuu Myuuﬂ-t+8m. m%ncMwawn3mymﬁTammuiwnnamnmﬁovwmwz
the “dual” formula:

Fu,p) = min { max myum@u. wmneww« rmneum, (5}
where y».ym“»w are contlnuous norezzing functions,
m:Uywmwsan‘ one of the functions qu»m may have -® as a value,
one of the functions w»,Vw mesy have +® as a value. Moreover, as
mwn&ﬂh.. the inequalities wﬂa?gAmcsym and mcnyngSﬁym must
hold.

Lemma Z.4. The function F can not satisfy {(5) with all the
conditions listed below it.

Supposing the contrary, let ﬁﬁkwa:.nmv. Picik fm?@m» S0

g, 9

that A (p,.) > -% e, ) ey plek @ §4 -

22 % egﬂ

2

CP,CLST P g, so that the following ineaualities be
fulfilled: .
w,mﬁmuAwumemavawgﬁemUAyuﬁea»w.
A0 ) (R CA (@) ALY, ).
assuming row 9 (1)=¢], @ (2)=p[, V(i )=y, (i, 7=1,2) wve
obtain the following bilmatrix gpame
9, 4,(9, 1)) (0,0, 2, (0))
(A, (070, 2, (9,0 (v, 0% (0)))
it is easy to see that NE=f in the game. Lemma 2.4 is proved,
and so is the theorem.

Remark. It 1is eamsy to show that demanding the functions

- 38 -

y,myw‘?u in Formula (4) to be only non-decreassing, we would ob-

tain & stable function satisfying a weaker monctonlcity comdi-
tion: if neither of the arguments has decreased, the value of
the function must not aonTQGmﬁ. It remains an open question sc
far, whether every weakly stable continuocus function satisfying
this monotonicity conditilion can be described by Formula (4)

with appropriate non-decreasing lambdas.
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