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Are Cartel Laws Bad for Rusiness ?

by

Reinhardé Selten, Bielefeld

1. Introduction. Consider a cartel law which forbids any kind of col-

lusion in oligopolistic markets and is actually enforced. In this kind
of legal environment prices can be expected to be lower than in a si-
tuation where binding agreements are permissible. Therefore, cartel

laws are in the interest of the consumer.

At first glance it may seem to be obvious that cartel laws are not in
the interest of the producer. Oligopolists lose the opportunity to in-
crease profits by collusion. However, this argument does not show that
cartel laws are bad for business. Generally, joint profit maximization
permits a greater number of competitors in a market than non-collusive
behavior. It has been pointed out in the industrial organization li-
terature that joint profit maximization may lead to overcrowded markets
where each supplier has very low profits (Scherer 1970). Cartel laws
exclude this possibility of excessive entry. It is quite possible that

under cartel laws a market has fewer competitors with higher profits.

The term "entry effect" will be used for the decreasing influence of
cartel laws on the number of competitors. The entry effect counteracts
the obvious advanfages of collusion. Is this counterinfluence sufficient-
ly strong to make cartel laws desirable for business from the point of
view of profit maximization? This guestion will be examined in the frame-

work of a theoretical model.

The results of the analysis do not support the idea that cartel laws are
bad for business. On the contrary, it will be shown +hat under reasonable
assumptions on the distribution of market parameters the expected sum

of all prefits is increased by cartel laws.
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In order to exhibit the intuitive reasons for the results it may be use-

ful to present a preliminary and necessarily incomplete sketch of the
theory.

The model will consider a great number of firms waiting for the oppor-
tunity to enter a new market. New markets are Cournot oligopolies with
linear costs and linear demand. Costs are ZzZero for those who do not

enter but those who enter have fixed costs. The cost function is the

same for each entrant.

The strategic situation resulting from the emergence of a new market de-
pends on whether cartel laws are in force or not. Both cases will be
modelled as non-cooperative extensive games. The game to be played under

cartel laws will be called the non-collusive game and the game to be

played in the absence of cartel laws will be referred to as the collusive

game.

The non-collusive game has two stages: an entry stage and a supply stage.

The collusive game has an additional stage, the bargaining stage, between

the entry stage and the supply stage.

The entry stage is common to both games. A random ranking determines in
which order the firms decide to enter or not. All rankings are equally
probable. The firms know the cost and demand parameters. After the set
of suppliers has been fixed by the entry stage, supply decisions have to
be made in the non-collusive game. In the collusive game the suppliers
first have the opportunity to reach a cartel agreement specifying supp-
ly quantities. The bargaining stage is modelled as a unanimity game.
Every supplier independently and simultaneously proposes a cartel agree-
ment. If all choose the same proposal it becomes a binding agreement.
Otherwise supplies are determined in the supply stage where each supplier
independently and simultaneously selects a supply quantity. Those who
have entered receive their profits as payoffs; those who did not enter

have zero payoffs.

The solution concept to be applied will determine a unigue subgame per-

fect equilibrium point for a limited class of extensive games. In order
to do this two selection principles of local symmetry and local effi-

ciency will be employed.

In the solution of the non-collusive game, Cournot-Nash eguilibrium is
reached for the maximal number of competitors such that eguilibrium pro-
fits are positive.In the collusive game the solution results in a sym-
metric cartel agreement for the maximal number of competitors such that

cartel profits are positive.



The framework of our theory offers an obvious way to give a precise
meaning to the question whether cartel laws are good or bad for busi-
ness. One has to look at profits in both games. The sum of all solution
profits obtained at the end is the relevant measure. It will be re-

ferred to as joint profits. Before the beginning of the game each of the

many potential entrants has the same profit expectation, namely joint
profits divided by the number of players. The profit sums for the col-

lusive and non-collusive games will be called joint cartel profits and

joint Cournot profits.

One could also compare individual cartel profits and individual Cournot
profits for one supplier. This comparison is more favorable to the non-
collusive case than the comparison of joint profits. This is due to the
entry effect. However, this comparison neglects the‘fact that not only
the profits of a firm in the market but alsc the chance to be among them
is important for the evaluation of profit opportunities. Therefore, joint

profits are compared in this paper.

For a single set of market parameters joint Cournot profits may be greater
or smaller than joint cartel profits. A meaningful comparison must consi-
der averages with respect to a distribution of market parameters. As far
as the comparison is concerned, a market can be described by two para-
meters, monopoly gross profits M (sales minus variable costs) and size
s; the size is the quotient s = M/C of monopely gross profits M over

fixed costs C.

The size is an important characteristic of a market. The joint profits
obtainable by a cartelare M - nC where n is the number of competitors.
In the collusive game solution n is the maximal integer below s. Joint
cartel profits are M(s-n)/s. It will be shown that Jjoint Cournot profits
also can be written as a product of M and a factor which depends only . on

5.

It will be convenient to introduce a function W(s), the weight of s. For
a given probability density f£(M,s) the weight W(s) is the marginal fre-
guency density of s multiplied by the conditional expectation of M. One
may think of W(s) as a measure of the economic importance of markets of

size s, since the gross profit opportunities offered by such markets are

expressed by W(s).

The answer to the gquestion whether cartel laws are good or bad for busi-

ness depends on the shape of W(s). Casual empiricism suggests that the



number of suppliers varies over a great range from product to product.
The number of suppliers is related to the size of the market. Therefore,
it seems to be plausible to expect that W(s) is quite flat over a wide

range of sizes.

For the results to be obtained it will be sufficient to assume that

the elasticity of W(s) with respect to s is smaller than 1. This is
equivalent to the assumption that W(s)/s is decreasing. Moreover, it wil
be assumed that W(s) vanishes for market sizes above an upper bound s
which is smaller than the number N of all firms. This means that the
number of firms must be sufficiently great to exclude restriction of
entrance by a lack of potential entrants. It will also be assumed that

the range of W(s) extends beyond s = 2.

It will be shown that under the conditions on the shape of W(s) describ-
ed above, cartel laws are good for business in the sense that joint Cour-

not profits are higher than joint Cartel profits.

The conclusion of the analysis depends on the assumptions on cooperative
opportunities embodied in the collusive game. Agreements which restrict
entry are excluded from consideration. It is reasonable to model the col-
lusive case in this way, since entry restricting agreements would have
to include almost all potential competitors in order to achieve their
aim. Such agreements are not practicable if new firms can be formed just

for the purpose to enter a new market.

Under plausible assumptions cartel laws are good for business in the
sense of increased profits. Economic interests do not always lie in the

naively expected direction.

2. Model description.

For the limited purpose of this paper it seems to be adequate toO avoid
a formal definition of an extensive game. The extensive games consider-
ed here will have infinitely many choices at some information sets, but
otherwise they will not be different from finite extensive games with
perfect recall. In particular, the length of a play is bounded from
above. The usual game theoretical definitions of choices, information
sets, strategies, etc. can be transferred without difficulty to such
games [see Kuhn (1953) and Selten (1973) and (1975)]. Even if the game
theoretical analysis of the game models considered here will be straight-
forward, a certain familiarity with basic definitions relating to ex-~
tensive forms will have to be presupposed. In particular, the nction of
a subgame will be used without explanation.Prec:se definitions can be

found in the references given above.



It would be guite tedious to describe the game models introduced here
in the terminology of extensive games. Instead of this, for each of
both models a set of rules will be formulated which contains all the
information necessary for the construction of the extensive game.
Apart from inessential details like the order in which simultaneous
decisions are represented in the game tree, the extensive game is ful-
ly determined by this description in an obvious way. Therefore, it
will be sufficient to relate only some of the features of the model

to the formal structure of the extensive game. This will be done after

the description of the rules of both game models.

2.1 Cost and demand.

Both game models to be introduced have N players 1,...,N to be inter-
preted as firms waiting for the opportunity to enter a market. The

play of the game determines a set Z of suppliers, a subset of the set
of all players. In the following notations and assumptions concerning

cost and demand will be introduced.

The supply of firm i € Z is denoted by X The guantity X, is a non-
negative number. (There is no capacity limit). The cost function is the

same for each firm i € 2Z:

(1) K, = C+ vxy

C and y are positive parameters. Total supply

(2) X =z X,
i€eZ

determines price p:

2lm

B—ax for 0 x x
(3) p = 8
1 O for x > o

1A

o« and B are positive parameters. We assume B > Y. (There is no loss of
generality entailed by the exclusion of the case f < ¥ since such markets
do not offer any incentive to enter.) The profit margin g is defined

as follows:

(4) g=pP-Y

In view of {(3) we have:



(5) g =

Total gross profits
(8) G = Xg
is the sum of individual gross profits of the firms i € Z. With the

help of (5) it is easy to compute the maximal value M of G, referred

to as monopoly gross profits:

2
{(9) M = max x{B-y-ax) = i%:ll-
o
x>0
We call
(10) s = —DC"‘—

the size of the market. Since both M and C are positive the size s is
positive. It is assumed that the number N of all firms is greater than

the size of the market. We have:
{(11) N> 5> 0

As has been explained already in the introduction the assumption N>s

prevents restriction of entry by a lack of potential competitors.

2.2 The entry stage.

The entry stage is common.to both game models to be introduced. It be-
gins with the random choice of a ranking r = (i1""’iN) of all players.
Mathematically r is a permutation of the numbers 1,...,N. Let R be

the set of all these permutations. It is assumed that each of these

rankings is chosen with the same probability 1/N1!

The random choice ©f r is immediately made known to all players 1,...,N.

all players 1,...,N know the market parameters o,B,y and C.

The random choice of r is followed by N substages of the entry stage.



In the k-th substage the k-th player ik in the ranking r = (11""'1N)
has to make his entry decision modelled as the selection of a zero-one
variable z(ik). He either selects z(ik) = O which means that he does
not enter or Z(ik) = 1 which indicates entry. His entry decision is
immediately made known to all players. Therefore a player is fully in-
formed about all previous entry decisions when he has to make his

entry decision.

The entry stage ends after all players 1,...,N have made their entry

decisions. The set of all players i with z(i) = 1 is denoted by Z.

In both game models the game ends after the entry stage in the special

case that Z is empty. If this happens all players receive zero payoffs.

2.3 Interpretation of the entry stage rules.

The rules of theentry stage are based on the idea that due to random
factors different firms are more or less well prepared toc enter a new-
ly emerging market. Therefore each of them has a different delay time
before the entry decision can be made. Therefore entry is modelled as
sequential rather than simultaneous. Entry is described as irreversible.
In order to justify this feature of the rules one may think of fixed
costs as sunk costs. A decision not to enter cannot be reconsidered
once it has been made. This is a simplifying assumption which can be
justified as follows: The analysis of the game models shows that it

is advantageous to be as early in the ranking as possible. Nothing can
be gained by delaying the entry decision beyond the necessary delay

time.

Profits obtained during the entry stage are neglected by the game mo-
dels presented here. The entry stage is assumed to be short relative
to the life time of the market. Only the long run profits obtained

after the entry stage matter.

It seems t0 be possible to construct much more realistic but also much
more complicated models which yield the same conclusion. One could
introduce the option of exit and model fixed costs as partially sunk.
The analysis can be expected to be much more complicated without sub-

stantially different results.

2.4 The supply stage.

Our theory compares two game models, the non-collusive and the collu-
sive game. If the entry stage has determined a non-empty set 2 of
suppliers the supply stage follows in the non-collusive game.



The collusive game may also reach a supply stage. This happens in two
cases. The first case arises if there is only one player in Z. Then
the supply stage follows the entry stage. (Cartel bargaining makes no
sense in this case.) If there are at least 2 players in 2 then the
bargaining stage follows the entry stage in the collusive game. The
second case where a supply stage is reached in the collusive game

occurs if no cartel agreement is reached in the bargaining stage.

In the supply stage each player i € Z selects his supply X., & non-
negative real number. These decisions are made simultaneously and in-

dependently of each other.

In both game models the game ends after the supply stage if it is

reached.

2.5 The bargaining stage.

The bargaining stage follows the entry stage in the collusive game
if there are at least 2 players in the set Z of those who have enter-
ed. In the bargaining stage each player i € Z proposes a supply vector

(12) Y, = (y

i3)jez

which contains a proposed supply quantity Yij > O for every J € Z as
indicated by the subscript j € Z. The supply vector Yi is called the
proposal of i. A supply vector

becomes a binding agreement,if and only if the following is true:

(14) Yi =Y for every i€Z.

The players i€Z make their proposals Yi simultanecusly and independent-

ly of each other.

After the bargaining stage the proposals Yi of all players i € Z are
made known to all players.

2.6 The non-collusive game.

In the non-collusive game the entry stage is immediately followed by
the supply stage. The game ends after the supply stage. The payoffs
for the players i€Z are the net profits Pi computed according to (5),

(6) and (7). The players i &€ Z receive zero payoffs.



2.7 The collusive game.

In the collusive game the supply stage follows the entry stage only if
exactly one player has entered in the entry stage. Otherwise the bar-
gaining stage follows the entry stage. If no binding agreement is reach-
ed in the bargaining stage then the supply stage follows the bargaining
stage. Whenever the supply stage is reached, payoffs are as in the non-

cecllusive game. If a binding agreement

(15) Y = (y.)

j'j€zZ
is reached then the game ends after the bargaining stage. The supplies

X, are fixed by the agreement:

(16) X, = Y.

i i for every i€Z.

The players i€Z receive their net profits computed on the basis of (16)

as their payoffs. The players i € Z receive zero payoffs.

2.8 Some features of the extensive game representations.

In spite of the fact that detailed formal descriptions of both game
models are not needed, it may be useful to point out some of their
features. Let us denote the extensive form representation of the non-
collusive game by T1 and the extensive form representation of the col-
lusive game by F2. (The symbol I' will be used for extensive games).

The representation of decisions follows the order of stages and within
the entry stage the order of substages. Simultaneous decisions are re-
presented in the order given by the numbering of the players, the lower
numbers coming first. The arbitrary convention about simultaneous de-
cisions is needed since the tree structure of the extensive form re-

guires a successive representation of simultaneous choices.

The entry stage begins with a random choice among N! alternatives.
After each of these branches follow information sets for all players
where the entry decisions have to be made. Since the players are in-
formed on previous entry decision, when they have to make their entry
decision, each of these information sets continues only one node of the
tree. Up to the beginning of the stage after the entry stage both games
are like games with perfect information.

|
The entry stage can end in ZN' different ways. The set Z of suppliers

1

! -
contains a given player in ZN' of these cases. Therefore in F1 each

1

' - . 3 ]
player i has 2N information sets corresponding to possible decision

situations in the supply stage.

In T2 a bargaining stage arises if the number of players in 2 is at
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1=
least 2. This happens in oN! 1—N! cases. Therefore in F2 each player i

|
has oM 1-N! information sets corresponding to decision situations in

the bargaining stage.

For every player i = 1,...,N the collusive game F2 has infinitely many
information sets corresponding to decision situations in the supply
stage. Cartel bargaining can break down in infinitely many ways.

It will be important for the game theoretical analysis of F1 and P2

that these games have subgames. These subgames will be named according
to the decisions which have to be made at the beginning of the subgame .

An entry subgame is a subgame which begins with an entry decision, a bar-

gaining subgame begins with supply vector proposals and a supply sub-

game represents supply decisions.

Fach node, where an entry decision has to be made, is the origin of an

]
entry subgame. The supply subgames of F1 have their origins at 2N‘—N£
nodes representing possible endings of the entry stage. N! of these nodes

are endpoints since they represent situations where nobody has entered.

The collusive game r2 has two kinds of supply subgames. If in the entry
stage only one player enters, then the node representing the end of the
entry stage is the origin of a supply subgame. Other supply subgames
represent situations where cartel bargaining has broken down; there are
infinitely many such supply subgames in Fz. The bargaining subgames

of r2 have their origins at nodes representing possible ends of the

entry stage, where at least 2 players have entered.

A subgame which contains at least one information set and which is
not the whole game itself is called a proper subgame. An extensive

game is called indecomposable, if it does not have any proper subgames;

otherwise it is called decomposable. Obviously, the supply decision sub-
games of F1 and F2 are indecomposable. The bargaining subgames of F2
and the entry subgames are decomposable. These subgames have supply sub-

games as proper subgames.

3. The solution concept.

A definite normative answer to the gquestion how players should behave
in a non-cooperative game must take the form of an equilibrium point
in the sense of Nash (1951). Theories which prescribe non-equilibrium
behavior are self-destroying prophecies since they create incentives

for deviations from their own prescriptions.

Equilibrium properties should hold not only in the game as a whole but

also in its subgames. This leads to the notion of a subgame perfect
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equilibrium point. Originally, the term "perfect" was used for such
equilibrium points (Selten 1965 and 1973) but later a refined notion
of perfectness has been introduced which makes it necessary to distin-

guish perfectness and subgame perfectness (Selten 1975).

The solution concept applied here will single out a unigue subgame
perfect equilibrium point in pure strategies wherever it can be suc-
cessfully applied. It is defined by two selection principles applied
to indecomposable games and by a recursive decomposition procedure
which works its way backwards from the end of the game. The procedure
serves the purpose to reduce the task of solving a decomposable game to

the task of solving indecomposable games.

Indecomposable games are solved with the help of a symmetry principle
and an efficiency principle. The symmetry principle reguires that the
solution should reflect symmetries of the game. The efficiency prin-
ciple requires that there is no other equilibrium point where all

players except those without strategic influence are better off.

The indecomposable games which have to be solved in the process of
finding the solution of decomposable games capture local features of
such games. Therefore, these indecomposable games will be called the
local games. The symmetry and efficiency principles are applied to
these local games. In this sense we speak of local symmetry and local
efficiency as selection principlesemployed by the solution concept

applied here.

A similar but much more elaborate approach to the problem of defining
a solution for a limited class of extensive games has been presented

elsewhere (Selten 1973).There it was necessary to define the solution
in a much more complicated way even if the basic ideas underlying the

construction are essentially the same as in the present approach.

The general equilibrium selection theory proposed by John C. Harsanyi
and the author (Harsanyi-Selten 1980, 1982) also embodies principles
of perfectness, local symmetry and local efficiency. An application
to the problem at hand would require an approximation of our game mo-
dels by finite games. It can be expected that the results would not
be essentially different from those obtained here but the derivation
would be burdened with a lot of technical detail. Therefore, a more

direct approach has been chosen here.

3.1 Subgame perfect equilibrium points.

In this paper we shall only consider pure strategies. For every in-
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formation set u in an extensive game I let ?u be the set of choices

at u. A pure strategy ¢; of player i in T is a function which assigns
a choice mi(u)E?u to every information set u of player i. The symbol ¢,
will be used for the set of all pure strategies of player i in T.

Assume that T has N players 1,...,N. A pure strateqgy combination ¢ is
an N-tuple

(17) 0 = (9qreneroy)

with ¢ie¢i. The set of all strategy combinations ¢ is denoted by ¢. For

every ¢€¢ a vector

(18) H(o) = (Hy(9),e.- Hy(e))

of expected payoffs Hi(m) for the players 1,...,N is computed in the

usual way. The pure strategy sets o4 together with the payoff function

H constitute the normal form (¢1,...,¢N;H) of T.

We shall always refer to pure strategies where we speak of strategies
since no other strategies are considered here. Similarily, a strategy

combination will always be a pure strategy combination.

It is convenient to introduce the following notation. If in a strate-
gy combination ¢ = (m1,...,¢N) the i-th component is replaced by ¢i’
then a new strategy combination results which is denoted by m/¢i.

A strategy n, € ¢, with

(19) H.(¢/71,) = max H.{(o/¢,)
1 1 ¢i€¢i 1 1

is called a best reglz to ¢ € ®. An equilibrium point (in pure strate-

gies) is a strategy combination = = (n1,...,nN) with the property that

for every i = 1,...,n the strategy mn; is a best reply to =.

Let T'' be a subgame of T. We say that a strategy Qi of player i for T'
is induced by a strategy o, of player i in T if ¢; and ¢: assign the
same choices to information sets of player i in the subgame T''. Ana-
logously, the strategy combination o' = (¢i,...,¢ﬁ) induced on a sub-
game T' of T by a strategy combination ¢ = (¢1,...,mN)for I contains

the strategies ¢i induced by the corresponding strategiles P

An equilibrium point = of T is called subgame perfect if an equilibrium

point ' of I'' is induced by m® on every subgame T' of r.

3.2 The symmetry principle.

Let T be an indecomposable extensive game and let (@1,...,¢N,H) be the
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normal form of I'. Intuitively, a symmetry is a renaming of players

and strategies. Formally, a symmetry is a pair (o,t) where ¢ is a one-
to-one mapping of the player set onto itself; T=(T1;---,TN) is a system
of mappings such that Ty is a one-to-one mapping of ¢i onto ¢0(i)' More-
over, the definition of a symmetry requires that (c,t)} is payoff pre-
serving in the following sense. For every ¢ = (m1,...,mN)€ $ let t(9)

be that strategy combination ¢ € ¢ which contains the strategies ¢c(i)=
Ti(mi). The pair (o,t) is payoff preserving if the following is true:

(20) Hi(w) = H (t(9))

ol i)

for every ¢ € ¢ and for i = 1,...,N. An eqguilibrium point = € ¢ is

called symmetry invariant if we have

(21) {n) = 1
for every symmetry (o,t) of G.

The symmetry principle reguires that the solution of an indecomposable

game is a symmetry invariant eguilibrium point.

3.3 The efficiency principle.

Let I be an indecomposable game and let (¢1,...,¢N,H) be the normal

form of T. A player i is called inessential if ¢y contains only one
pure strategy. Otherwise, he is called essential. An equilibrium
point z € ¢ is called efficient if there is no other equilibrium point

¢ € ¢ with Hi(¢) > Hi(@) for every essential player i.

The efficiency principle reguires that the solution of an indecompos-

able game is efficient.

3.4 The solution of indecomposable games.

An indecomposable extensive game is called solvable if it has exactly
one efficient and symmetry invariant equilibrium point in pure strate-
gies. If T is a solvable indecomposable game, then its efficient and
symmetry invariant eguilibrium point n € ¢ is called the solution of T.
The solution of TI' is denoted by L(TI). The class of all solvable inde-
composable games is denoted by &ﬁ. The function L which assigns L(T)
to every T € EiT is called the solution function for indecomposable

games.

3.5 Comment.

Features of indecomposable games which are not captured by the normal

form are neglected by our approach. However, this limitation is not
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a serious one as long as the indecomposable games to be solved have

the strategic structure of normal forms. This is the case in the appli-
cation to our game models. The indecomposable games arising there re-
present situations where each of the essential players makes just one

decision; all of them act simultaneously.

3.6 Recursive decomposition.

In the following the recursive decomposition procedure will be intro-
duced which serves the purpose to reduce the task of solving decompos-

able games to the task of solving indecomposable games.

An extensive game T is called truncatable if it is decomposable and if

in addition to this all indecomposable subgames of I are scolvable. For
every truncatable extensive game we shall define the truncation T (T).
The truncation is a new game which results from I in the following way.
The indecomposable proper subgames are cut off in the sense that the
origins of these subgames become endpoints. The payoff vectors attached
to these endpoints in T{(l) are the payoff vectors connected to the so-
lutions of the respective indecomposable subgames of I'. Outside of the

indecomposable proper subgames of T the truncation T(I) agrees with T.

The recursive decomposition procedure consists in the repeated appli-

cation of the operation of forming a truncation. Let T, be the game
T(ry. If T1 is truncatable, then F2 = T(F1) is formed, etc. In this
way, one obtains a segquence of games T,F1,...,Fk where each of the

1’...'1-'}{
guence . The seguence is continued until it terminates in a non-

games r is the truncation of the preceding one in the se-
truncatable game Fk. This may either be a decomposable game with

at least one non-solvable indecomposable proper subgame or it may be
an indecomposable game. If Fk is indecomposable and solvable, then T
is called solvable. The local games of I' are the indecomposable

proper subgames of the games T,T;,...,Ty and the game T, ., if it is
indecomposable. Obviocusly, T is solvable,if and only if all its local
games are solvable. The class of all solvable extensive games is de-
noted by EL.

3.7 Comment.

In the following sense the recursive decomposition procedure achieves
a decomposition of solvable decomposable games T into local games:
Every information set of T belongs to a uniguely determined local

game T.

The solution of a decomposable solvable game will be composed of the
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solutions of its local games. This idea is expressed by the extension

principle formulated below.

3.8 Extension principle.

The following extension principle extends the solution function L from

the class &, of solvable indecomposable games to the class R of all
solvable exten51ve games: If T € &.15 decomposable then at every in-
formation set of one of the players i = 1,...,N the choice prescribed
by L(r) is the choice prescribed by the solution of that local game

of T to which this information set belongs.

3.9 Remarks.

The extension principle completes the definition of the solution con-
cept applied here. The definition automatically yields a subgame per-
fect eguilibrium peoint. This can be proved easily by induction on the
number of truncations tobe formed in the recursive decomposition pro-
cedure. A proof shall not be given here. A thecorem which yields the
assertion as a conclusion has been proved elsewhere (theorem 1, p.152
in Selten 1973).

3.70 Further comments.

The local games capture the local interests of the players. A player
who has to make a decision at an information set should be motivated
by the features of the relevant local game if he expects that in later
local games the players will behave as prescribed by the solution con-
cept. Therefore, the efficiency principle should be applied locally
rather than globally. This is important since there may be a conflict
between local and global efficiency. A simple numerical example which

illustrates the point has been presented elsewhere (Selten 1973,p.166).

4. Solution of the game models.

The discussion of the extensive game representations F1 and r2 of the
non-collusive and the collusive game in section 2.8 has exhibited the
subgames of these games. To each of these subgames corresponds a lo-
cal game. The local game represents the decisions of the concerning
stage or substage (in the case of entry decisions). We shall speak of
local entry games, local bargaining games and local supply games
when we refer to the local games corresponding to entry subgames,
bargaining subgames and supply subgames, respectively.

1

The determination of the solution of I'" and F2 will begin with the
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analysis of the local supply games which, of course, are nothing else
than the supply subgames. Then we shall consider the local bargaining

2
games of T~ and finally the local entry games of both game models.

4.1 Solution of the supply subgames.

The structure of a supply subgame depends only on the set Z of players
who have entered the market. It does not matter after which of the NI
initial random choices Z has resulted from the entry decisions and it

1

does not matter whether one looks at T’ or r2 or in which way cartel

bargaining has broken down in the case of the ccllusive game.

Consider a supply subgame r'. Let z = {i1,...,iz} the set of players
who have entered the market in T'. Formally, the players not in Z are
also players of I'' but since they have no decisions to make each of
them has only one strategy in the normal form. Moreover, they receive

payoffs zero, no matter what the essential players in Z do.

It is well known that the symmetric Cournot oligopoly with linear costs
and demand as defined in 2.1 has exactly one equilibrium point in pure
strategies, namely the Cournot solution where each of the players i € 2

supplies the same guantity:

_ B -
(22) *1 T a(z+l)
where z is the number of suppliers in Z. Equilibfium net profits are

as follows:
2
(23) p. = B2V _ ¢

1 (z+1)?

for every i € Z. 1In view of (9) and (10) this yields:

— - 1y

(z+1) 2
for i € Z. These are the payoffs obtained by the players i € Z in the

il

(24) Py

payoff vector connected to the solution of T'. The other players re-

ceive zero payoffs.

4.2 Solution of the local bargaining games.

Let I'' be a local bargaining game of T2. For similar reasons as in the
case of supply subgames the structure of r' depends only con the set
Z = {i1,...,1 } of the z players who have entered. Moreover, z is at

least 2. Formally, the players not in 2 are also players of T' but they
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are inessential and receive zero payoffs no matter what the players in
z do.

If no binding agreement is reached then the players in Z receive the
solution payoffs (24) of the subseguent supply subgame. Obviously r'
has infinitely many eguilibrium points. Those who result in no binding
agreement are not efficient. Other equilibrium points are connected

to common supply vector proposals which yield net profits at least as
high as those in (24) for every i € Z. Among these equilibrium points

only those are efficient which yield net profits summing up to 1.

Obviously T' has many symmetries (o,1). Every permutation gof {1,...,N}
which maps Z onto Z combined with identical mappings Ty yields a sym-
metry of I''. The only pure strategy equilibrium point n of T' which
satisfies 1 = t(n) for such symmetries,specifies the following system

of proposals:

(25) Yi =Y = (yj)jEZ for every i € Z

with

(26) - Exx for every j € Z
Yj P Y

The net profits connected to this common propesal Y are the same for

every i € Z:

2
(27) p, = 48=v)  _ ¢

i daz

Since 4z is smaller than (z+1)2 for z > 2 these net profits are higher
than those in (23) which are obtained in the case of a breakdown of

cartel bargaining.

We have shown that the system of proposals (25) is an efficient equi-
librium point = of TI'' and that no other efficient equilibrium peint in
pure strategies can be symmetry invariant. However, we did not yet

show that n is symmetry invariant.

Assume that (o,1) is a symmetry of T' with n * t(n). Obviously, o must
map Z onto Z since the players not in Z have only one strategy in
the normal form of I'' and the T; are one-to-one mappings. Since the

symmetry is payoff preserving we must have

(28) Hi(“) = H (t(m))

o (i)

for every 1 € 2 where H' is the payoff function of the normal form
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of T''. We know that Hi(n) is equal to the right hand side of (27) for
every 1 € Z. Therefore, the same is true for Hi(r(n)). This means that
not only n but also t(n) maximizes joint profits and divides them
equally among the players in Z. However, the common proposal in n is
the only supply quantity vector with this property. Therefore we can-
not have = % 1(n).

It is now possible to draw the conclusion that the system of proposals
specified by (25) and (26) is the uniquely determined efficient and
symmetrv invariant eguilibrium point in pure strategies of T' or, in
other words, the solution L(T') of TI'.

4.3 Solution of the local entry games of the non-collusive game.

The payoffs at the endpoints of the truncation T(F1) of the non-col-
lusive game are zero for those who did not enter and are given by (24)
for those who have entered. Consider a local entry game T' of T1.
Assume that player ij’ the j-th in the ranking fixed by the initial

random choice, is the player who has to make his entry decision in T'.

It will be important to compare the number of entrants up to the be-
ginning of I'' with the maximal number of entrants compatible with
non-negative Cournot net profits. In order to be able to describe

this maximal number in a convenient way we shall use the notation int u
for the greatest integer not greater than i where p is a real num-

ber. Define

int 2 Vs for s > 1
(29) m =
1 for 0 < s < 1

It follows by (24) that the maximal number of entrants compatible with

non-negative Cournot net profits is m-1.

The non-collusive game F1 is not solvable in the sense of the solution
concept applied here if 2 Vg—happens to be integer. In this border
case some local entry games arise-in the recursive decomposition pro-
cedure, where entry and non-entry both yield zero payoffs. For our
purposes it is not necessary to define sclutions for such border cases
since the exceptional cases do not influencg the integral which eva-

luates average joint Cournot profits.

In the following we shall assume m F 2 Vs. Let X be the number of
players who have entered before player ij has to make his entry de-
cision in T'. It will be shown that the solution of T'' is as follows:



0 for k> m - 1
(30) z(ij) =

1 for X «m - 1
This means that player ij enters,if and only if after his entry the
number of entrants is at most the maximal number m - 1 of entrants
compatible with positive Cournot net profits. It will be shown by in-
duction on N - j that (30) correctly describes the entry decision
of player ij specified by the solution L(I'') of r'.

It is clear that for N - 3 = O the only optimal entry decision is
given by (30). Suppose that (30) correctly describes the solution of

iocal entry games for N - j = O,...,h and assume N - j = h + 1.

Consider the case k> m - 1. If player ij enters nobody will enter
after him. The number of suppliers at the end of the entry stage will
be z = k + 1 > m. Therefore player ij's payoff for z(ij) =1 in T' is

negative. z(ij) = 0 is optimal since it yields zero payoffs.

Now consider the case k «<m - 1. For h + k + 1 <m - 1 all n players
who have to make entry decisions after ij will enter and finally

there will be z = h + k + 1 < m - 1 suppliers in the market. For
h+k+1>m-1 the next m - 2 - k players in the ranking will

enter and later players will not enter. Finally, there will be z = m - 1
suppliers in the market. For z < m - 1 Cournot net profits in (24)

are positive. Therefore z(ij) = 1 is the only optimal choice of ij in
r for x «m - 1.

The difficulty in the border case m = 2 V;ﬂarises for k = m - 2. The
concerning local entry game is not solvable since both entry and non-
entry yield zero payoffs. There are two pure strategy eguilibrium points,
namely z(ij) = 0 and z(ij) = 1. Both of them fail to be symmetry in-
variant since an obvious symmetry of the local game maps cne to the

other.

4.4 Sclution of the local entry games of the collusive game.

In the case of the collusive game r2 the local entry games can be solv-
ed in a similar way as in the case of the non-collusive game. Let T' be
a local entry game of F2 and let player ij,the j-th in the ranking
fixed by the initial random choice,be the player who has to make his

entry decision in T'.

The cartel net profits obtained in the solution of a local bargaining

game with z > 2 suppliers is given by (27). In view of (9) and (10}
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equation (27) can be rewritten as follows:

- (1 _1 :
{(31) Pi = | Z 3 M for i € 7
Note that (31) also describes the Cournot net profits obtained by a

single supplier in the supply subgame reached for z = 1. Define
(32) n = int s

Equation (31) shows that n is the maximal number of suppliers compat-

ible with non-negative net profits.

The border case n = 8 has to be excluded for the same reasons as

m = 2 V;Hin section 4.3. In the border case n = s the non-collusive
game F2 is not solvable since local entry games fail to be solvable
if exactly n - 1 players have entered before the beginning of the
local entry game.

In the following we shall assume n % s. Let k be the number of players
who have entered before player ij has to make his decision in T'. The
solution of I'' is as follows:
0 for k > n
{33) z(ij) =
1 for k < n
This means that plaver ij enters,if and only if after his entry the
number of entrants is at most the maximal number n of entrants com-
patible with positive cartel net profits. The proof of the assertion
that (33) correctly describes the solution L(T') of T' will not be
given here since it is analogous to the proof of the assertion ex-

pressed by (30) in section 4.3.

4.5 Properties of the solution of the non-collusive game.

It has been shown that F1 is solvable with the exception of the bor-
der case where 2 Y;ﬁis an integer. In the following we shall assume
that 2 Vgﬂis not an integer. By definition the solution L(r1) of r1
agrees with the solutions of the local games of T1. Therefore, the sub-
game perfect equilibrium point singled out by the soclution concept
applied here is fully described by sections 4.1 and 4.3. However, we
did not yet look at the guestion which plays of I‘1 result and which
expected payoffs are obtained if L(r1) is played.

By definition we have m = 1 in the case O < s < 1. It follows by (30}
that in this case no player enters if L(T1) is played.



- 21 -

Now consider the case s > 1 (we have excluded s = 1 by m # 2V_g). It
has been assumed that N is greater than s (see (10) in section 2.1).

For s > 1 we have:
(34) (s + 1)2 - 45 = (s - 1)2 > 0

and therefore:

(35) s+1> 2Ys > m
This yields
(36) N>m-1

For s < 1 inegquality (36) holds, too. (36) has the consequence that
the number of players is sufficiently great to permit entrance by the
maximal number of suppliers compatible with non-negative Cournot net

profits.

We shall now describe what happens if L(FT) is played. First a ranking

r = (i1""’in) is fixed by the initial random choice. Then in view
of (30) the plavers i1""'im—1 enter the market. The players im,...,iN
do not enter the market. This yields Z = {i1,...,im_1}.In the supply

stage every supplier chooses his Cournot supply:

(37) x. = £=x for i = i

R |
i am 1 r

m-1
At the end of the game the players in Z receive their Cournot net pro-
fits.

1

(38) P, = (w% - DM for i =4 L4

1700 i

The other players receive payoffs zero. The sum of all payoffs obtain-

ed at the end is called joint Cournot profits and is denoted by Pc:

_ 4 1

(39) Po = (m=1) ( — f)M
m

Let us now turn our attention to the expected payoffs for the solution

L(r1) of T1. Let H1 = (H:,...,H;) be the payoff function of the normal
form of F1. All rankings r are equally probable. Therefore every
player i has the same probability (m-1)/N to be in the set 2 of suppli-

ers. This together with (38) yields:

1
(40) Hi(L(F )) =
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for i = 1,...,N. Equations (39) and (40) hold for the case 0 < s < 1,

too,since m is defined as 1 in this case.

4.6 Properties of the solution of the collusive game.

In the following it will be assumed that s is not an integer since
otherwise F2 is not solvable. The subgame perfect equilibrium point
L(Fz) singled out by the solution concept applied here is fully des-
cribed by sections 4.1, 4.2 and 4.4. In the following we shall des-
cribe what happens if L(Tz) is played.

First a ranking r = (i1,...,iN) is fixed by the initial random choice.
Then, in view of (33) the players i1""'in enter the market. (It has
been assumed that N is greater than s which is greater than n). The

n+1""’iN do not enter the market. In the case n=1
offers the monopoly supply in the supply stage and receives

remaining players i
player i1
monopoly net profits at the end of the game., In the case n > 1 the bar-
gaining stage follows the entry stage and each player in Z = {i1,...,in}

makes the same proposal:

{(41) Yi =Y = (yj)jez for 1 = i,,..-s1
with

p—t B_ i = 1 i
(42) yj ?E% for 3 11""’ln

According to (31) the net profits connected to this common proposal

are as follows:

_ J_1 . ,
(43) Pi = (H S)M for i = 11""'ln

At the end of the game players 11,...,in receive these cartel net pro-

fits as payoffs. (43) also describes the payoffs obtained by player :'L1
in the case n = 1, where the supply stage is reached after the entry

stage. The players in+1""'i receive zero payoffs.

N
In the case 0 < s < 1 nobody enters and the sum of all payoffs is O.

The sum of all payoffs obtained for s > 1 is called joint cartel pro-

fits and is denoted by PM:

n
(44) Py = (1 - 3)M for s > 1

2
Let H2 = (H2,...,H§) be the payoff function of the normal form of T .

Since all rankings are equally probable each player i has the same
probability n/N to be in the set Z of supplies. This together with (43)
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vields:
1 n
T (1 - =)M for s > 1
2 s
(45) Hi(L(F ) = <
8] for O < s < 1
for i = 1,...,N.

5. Comparison of average joint profits.

The non-collusive and the collusive games are theories on the
strategic structure of the situation arising with the emergence

of a new market. The non-collusive game applies to an institutional
environment with strictly enforced cartel laws and the collusive
game describes a situation without such restrictions of collusion.
The solutions of both games can be meaningfully compared with

each other since the same Cournot oligopoly model with linear costs

and demand underlies both games.

The way in which a precise meaning will be given to the question
whether cartel laws are good or bad has already been indicated in

the introduction. Within the theoretical framework presented here

the question boils down to a comparison of expected joint Cournot
profits and expected joint cartel profits under reasonable assumptions

on the joint distribution of market parameters.

5.1 Average joint profits.

For O < s < 1 no player enters in both game models and all players
receive zero payoffs. Obviously, this interval is without signifi-
cance for the comparison. Therefore, we cshall restrict our attention

to parameter combinations with s > 1.

Fof integer values of s the collusive game P2 is not solvable. The
non-collusive game is not solvable if 2 Ys is an integer; This
does not matter as far as the comparison is concerned. Average
joint profits will be computed as expectations under a continuous
joint probability distribution of the market parameters. Therefore,
we simply shall proceed as if the expressions derived for joint

Cournot profits and joint cartel profits were valid for all sz 1.

In the following we shall repeat those few formulas of section 4

which are needed for the comparison of joint profits.
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- (46) m=int 2 Vs
(47) n = int s
_ 4 1
(48) PC = (m-1)(—§ - E)M
m
= _n
(49) PM = (1 S)M

where int 1 denotes the greatest integer not greater than u. In (46)

we have made use of the fact that we assume:

(50) s > 1

A Cournot market with linear costs and linear demand as intro-
duced in 2.1 has four parameters «,f,y and C. The joint profits
PC and Py depend only on the two parameters M and s defined by
(9) and (10). Therefore, it is convenient to make assumptions
directly on the joint probability distribution of the pair (s,M).

It is assumed that (s,M) is continously distributed. Let f(s,M)
be the probability density of (s,M). This density is to be under-
stood as conditional on s > 1 since we are only interested in

markets which are profitable in the sense of (50). We assume

that f has a closed bounded range and is continuously different-
iable over this range. Since the range is bounded there are
constants s and M such that f(s,M) is zero outside the follow-

ing rectangle
(51) 1 <s <s
(52) 0O <M<M

Clearly, one has to assume an upper bound s < N if one wants to
stay in the framework of the two game models since otherwise the
case of entry restriction by a lack of potential competitors

could arise. An upper bound M on gross profit opportunities hard-

ly needs any justification.

We are interested in the expected values E(PC) and E(PM) of PC
and PM :
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{53) E(P Pcf(S,M)des

@]

I
Y S YT Y|
0O L3 21

(54} E(PM) = PMf(s,M)des

=31
0O 2}

In view of the assumptions on f these expectations are finite.
Both PC and PM are products of M and a factor depending only on
s. The notations Qc(s) and QM(s) are introduced for these

factors:

(55)  Qu(s) = (m=1) (—5 - 3)
m

(56) Qu(s) =1 -

0o

We shall refer to Qc(s) as the Cournot profit factor and to QM(S)

as the cartel profit factor. The profit factors express joint net

profits as a fraction of monopoly gross profits and therefore can
be looked upon as conversion factors which measure how much of
the maximal gross profits achievable is transformed into net pro-
fits.

In order to be able to rewrite (53) and (54) 1in a simpler way
we introduce a function W(s) called the weight of s:

(57) W(s) = Mf (s ,M)dM

(o) P 34 |

The weight W(s) can be interpreted as the conditional expectation
of M given s multiplied with the marginal density of s. One can
also think of W(s) as the contribution of markets of size s to
the expectation of M. Therefore W(s) is a measure of the im-
portance of the gross profit opportunities offered by markets

of size s. The assumptions on f have the conseguence that W(s) is
defined for all s with 1 < s < s and is bounded and continuous
over this range.
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With the help of (55), (56) and (57) the expectations of PC and PM

can be expressed as an integral over a function of s alone:

s

(58) E(P,) = g 0 (s)W(s)ds
Q
s

(59) E(Py) = & Qy ()W (s)ds
Q

E(PC) and E(PM) are the average joint profits to be compared.
There are intervals for s where Qc(s) is greater than QM(s) and
there are other intervals where the opposite is true. Therefore,

the shape of W(s) is important for the comparison.

5.2 Assumption on the shape of the weight function.

As has been pointed out before, W(s) can be looked upon as a measure
of the gross profit opportunities offered by markets of size s.
There is no reason to suppose that W(s) grows very fast in some
parts of the interval 1 < s 2 s. In both game models the number

of suppliers, namely m - 1 and n, respectively, is closely relat-

ed to the market size s. Casual empiricism suggests that the
number of suppliers varies over a great range. It does not seem

to be the case that gross profit opportunities are concentrated

in a small part of this range.It is more plausible to suppose

that W(s) is quite flat over the interval 1 < s < s.

Consider the elasticity of W(s) with respect to s. Since £ is as-
sumed to be continuously differentiable this eleasticity exists.
The idea that W(s) does not increase too fast with increasing s

can be given a more precise form by the assumption that the elasti-
city of W(s) with respect to s is smaller than 1=

dw(s) s
(60) ds *wWisy !

The comparison of average joint profits will rely on this assumption
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on the shape of the weight function. Condition (60) can be re-
stated in an equivalent and more convenient form. For this pur-
pose we introduce the average weight function w(s)

W{s)

(61) w(s) = =

Differentiation of the right hand side shows that w(s) is decreas-
ing over the range 1 < s < s , if and only if condition (60) is

satisfied.

An additional assumption on W(s} concerns the upper bound s.
The range where W(s) is positive should be sufficiently wide. The
following assumption will be made:

(62) s > 2

In the interval 1 < s < 2 the joint profits PC and PM are equal

since only one player enters in both game models.

5.3 First intermediary result.

It is our final aim to prove that under assumption (60) on the shape
of the weight function, average joint Cournot profits E(PC) are
greater than average Jjoint cartel profits E(PM) for s > 2. 1In this
section,we shall derive an intermediary result which shows that it

is sufficient to examine the special case w(s) = 1.

With the help of (61) the difference between both average joint pro-

fits can be expressed as follows:

(63) E(P,) - E(PM) = (QC(S) - QM(S))SW(S)ds

- L0l

It is convenient to introduce the notation D(s) for the intergral
in (63):

(64) D(s) = (Q.(s) - Quis))s

In view of (55) and (56) we have:

(65)  D(s) = (m=1)( —=5 = 1) = (s-n)

m
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The integral on the right hand side of (63) can be rewritten as a
double integral:

w(s)

(66) & D(s)dtds
0

D(s)w(s)ds =

The right hand side of (66) can be interpreted as an area integral
of D(s). In order to see this imagine a rectanxmlar coordinate system
which shows s horizontally and t vertically. Let F be the area be-
low t = w(s), right of s = 1 and above t = O. The right hand side
of (66) is the integral of D(s) over F. The same area integral will
now be evaluated in a different way. Let v(u) be the inverse of w(s)
over the interval O < u < w(1). Since w(s) is monotonically decreas-
ing this inverse v(u)} exists. v(u) is monotonically decreasing, too.
The area integral of D(s) over F permits the following alternative
evaluation:
w(1) v (u)

(67) D(s)w(s)ds = g S D(s)dsdu

o

1

3 G2 1} |

The right hand side of (67) is positive for s > 2 if we have:

s
{(68) g D{s)ds > O for every 8 > 2
1
For 1€8=<2 the integral assumes the value zero since D(s) is zero 1in the

interval 1 < s < 2. This is due to the fact that in this interval

P, and P, are both equal to monopoly net profits. In view of (63)

inequality (68) is equivalent to the assertion that E(PC) is greater
than E(PM) for 5 » 2 in the special case w(s) = 1 for 1 < s 2 s.

Result: Under assumption (60) on the shape of the weight function

we have:
(69) E(PC) > E(PM)

for s > 2 if (68) is satisfied.
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5.4 Second intermediary result.

In this section, it will be shown that inequality (68) holds for
every § > 2 if it holds for integer values of S with 8§ > 2.

The right hand side of (65) can be transformed as follows:

(70) D{s) = - (E%Z)ZS -m+ n + 1

Let k be an integer with k > 2 and consider the interval k < s < k+1.
In this interval we have n = k. The number m may not be constant in
this interval since m changes its value from h to h+1 at points of
the form

71y s = (2?2

where h is an integer. There may be a point of this kind at k+.25.
This happens e.g. in the case k = 2. However, whether a point of
this kind is in the interval or not,the function D(s) is non-in-
creasing in the whole interval since (m-2)/m is increased if m is
increased. In fact for k = 3,4,... the function D(s) is decreasing

in the whole interval. The case k = 2 merits special attention.

We have.

(72) Dis) =1 for 2 < s < 2.25

and

(73) D(s) = =~ % s for 2.25 < s < 3

It will be convenient to use the following notation:
S

(74) A(S) = g D(s)ds
1

It does not matter whether one integrates from 1 to S or 2 to S

since D(s) is zero for 1 < s < 2.

Suppose that A(S) is not positive for some S with k < 8 < k+1
where k is an integer. Consider the case D(S) > O. In view of
(72) and (73) we must have k > 2 in this case. D{s) is decreas-
ing in the interval k < s < k+1. Therefore D(s) is positive

for k < s < S and we must have A(k) < A(S).
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Now consider the case D(S) < O. In this case D(s) is decreas-
ing for S < s < k+i and we must have A(k+1) < A(S). We have
seen that either A(k) or A{k+1) must be negative if A(S) is not
positive for some S with k < 8 < k+1.

Result: Under the assumption (60) on the shape of the weight

function we have:
(75) E(PL) > E(Py)

for s > 2 if we have:

{76) A(S) » O for s = 3,4,...

where A is defined by (74).

5.5 Derivation of the final result.

In order to derive the final result it is sufficient to show (76).
‘In view of (65) the function A(S) can be split into two parts:

] )
(77) A(S) = K (m=-1} ( E% -~ 1)ds =~ S (s=-n)ds

m
1 1

If S is integer then the second integral is nothing else than
(s-1)/2. The first part will be evaluated in subintervals where
m is constant. For this purpose we introduce the auxiliary

variable Qh

1 2
E(h+1)
(78) oy = g (m-1) ( 25 - N)ds
2
1,2
Zh

for every h = 2,3,... we have m = h in the interval of integration.

The evaluation of the integral yields:

h-1 ,2h+1,2

79 oy = 5E

For every h = 3,4,... we obtain:

h2 2 h=-1
{80} A(z") = - i(z—

lapn?
J

+
Ll

j=2
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One receives a lower bound of A(h2/4) if one inserts 1 instead
of (23+1)%/43% in (80). This yields:

2

2
81y adpb) > - 34

1
_Z-(T - 1) + Z(h—'l)(h—Z)

consider an integer S with

2
(82) boos < (22

In view of (77) and (81) we have:

S
(83) A(S) > - 2(S-1) + g(h=1) (h-2) + 251 S(4s-h2)ds
h
n?
z

Let B{S) denote the right hand side of (84). We shall look at B(S)

as continuously depending on S, even if we are interested in
integer values of S only. Consider the derivative B'(5) of B(S)

with respect to S:

h-1
12

(84) B'(S) = - % + (48-h?)

Obviously, this derivative is increasing with S. The function B(S)
assumes its minimum in the interval (82) where this derivative
vanishes. Let glbe the value of S where this is the case:

2 2
_h 1 . h
(85) g = —*3

Evaluation of B(g) vields:

2 2
1
86) B = - 2@+ 3 E5 - 1) + 7(0=1) (B-2)
R T A I
2 2 b7 7R
1.2 1 hn® 3
(87) B(g) = -g-h - '8- l'—lj - zh + 1

In view of h/(h-1) 5 2 we have:
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(88) B(D) > %hz- h o+ 1

This shows that B(S) is positive for h > 8. Consequently, B(3)

is positive for §’3 16. It follows that A(S) is positive for all
integers S with S > 16. Numerical computation shows that A(S) is
positive for § = 3, ...,15,too. A table for the values of A(S)

up to S = 30 has been prepared in order to give an impression

of the way in which the sequence develops with increasing S.

The following theorem states the main result of this paper.

Theorem: Under assumption (60) on the shape of the weight
function we have:

(89) E(PC) > E(PM)

for s > 2.

S A(S) s A(S) S A(S)

11 2.57 21 6.90

2 .00 12 3.46 22 6.89

3 .03 13 3.53 _ 23 7.28

4 .64 14 3.64 24 8.07

5 .51 15 4.25 25 9.25

€ 1.14 i6 5.34 26 : 8.93

7 1.22 17 5.06 27 8.97

8 1.52 i8 5.21 28 9,37

9 2.46 19 5.81 29 10.13

10 2.24 20 6.84 30 11.25

Table: values of A(S) for § = 2,...,30.

5.6 Concluding remark

Tt has been shown that under plausible assumptions the theoreti-
cal framework presented here yields the conclusion that cartel
laws are good for business in the sense of greater average

joint profits. The assumptions are sufficient conditions for the
result but they are far from necessary. However, it is not ob-
vious what kind of weaker assumptions could lead to the same
result.



- 33 -

References

Cournot, A. (1838) Recherches sur les principes mathéma-
tiques de la théorie des richesses,
Paris 1838.

Harsanyi, John-C. and R.Selten (1980) A General Theory of Equi-
librium Selection in Games, Chapter 2,
Working Paper No. 105, Institute of
Mathematical Economics, University of
Bielefeld.

Harsanyi, John-C. and R.Selten (1982) A General Theory of Equi-
librium Selection in Games, Chapter 3,
Working Paper No. 114, Institute of
Mathematical Ecronomics,University of
Bielefeld.

Kuhn, B.W. (1953) Extensive Games and the Problem of In—
formation. In H.W. Kuhn and A.W. Tucker
(eds.) Contributions to the Theory of
Games, Vol.II, Annals of Mathematics
Studies 28, p.193-2176.

Nash, J.F. (1951) Non-Cooperative Games, Annals of Mathe-
matics 54, p.155-162.
Scherer, F.M. (1970) Industrial Market Structure and Econo-

mic Performance, Chicago 1970.

Selten, R. (1965) Spieltheoretische Behandlung eines Oli-
gopolmodells mit Nachfragetrdgheit,
zeitschrift fiir die gesamte Staatswis-
senschaft 121, p.301-324, 667-689.

Selten, R. (1973) A Simple Model of Imperfect Competition,
where 4 are Few and 6 are Many, Inter-
national Journal of Game Theory. vVol.2,
3, p.141-201.

Selten, R. (1975) Reexamination of the Perfectness Concept
for Equilibrium Points of Extensive
Games, International Journal of Game

Theory, p.25-55




' “WIRTSCHAFTSTHEORETISCHE ENTSCHEIDUNGSFORSCHUNG"

A series of books published by the Institute of Mathematical Econamics, University
of Bielefeld.

Wolfgang Rohde
Ein spieltheoretisches Modell eines Terminmarktes (A Game Theoretical Model of a
Futureg Market) .
The model takes the form of a multistage game with imperfect information and stra-
tegic price formation by a specialist. The analysis throws light on theoretically
difficult empirical phencmena.

vol. 1 176 pages price: DM 24,80

Klaus Binder

Cligopolistische Preisbildung und Markteintritte (Oligopolistic Pricing and Market
Entry). o

The bock investigates special subgame perfect equilibrium points of a three—$tage
game model of oligopoly with decisions on entry, on expenditures for market po-
tential and on prices.

Vol. 2 132 pages price: DM 22,80

Karin Wagner
Ein Modell der Preisbildung in der Zementindustrie (A Model of Pricing in the
Cement Industry).
A location theory model is applied in order to explain observed prices and quanti-
ties in the cement industry of the Federal Republic of Germany.

Vol, 3 170 pages price: DM 24,80

Rolf Stoecker
Experimentelle Untersuchung des Entscheidungsverhaltens im Bertrand-Oligopol (Ex-
perimental Investigation of Decision~Behavior in Bertrand-Oligopoly Games).
The book contains laboratory experiments on repeated supergames with two, three
and five bargainers. Special emphasis is put on the end-effect behavior or experi-
mental subjects and the influence of altruism on cooperation.

Vol. 4 197 pages price: M 28,80

Angela Klopstech
Eingeschrénkt rationale Marktprozesse (Market processes with Bounded Rationality).
The book investigates two stochastic market models with bounded rationality, one
model describes an evolutionary campetitive market and the other an adaptive oli-
gopoly market with Markovian interaction.

vol. 5 104 pages price: M 29,80

Hansjorg Haas
Optimale Steuerung unter Beriicksichtiqung mehrerer Entscheidungstrédger (Optimal
Cantrol with Several Policy Makers).
The analysis of macrroeconamic systems with several policy makers as noncooperative
and cooperative dynamic games is extensively discussed and illustrated empirically
by econametric models of Pyndick for the US and Tintner for Austria.

Vol. 6 213 pages - price: DM 42,

Ulrike Leopold-Wildburger
Gleichgewichtsauswahl in einem Verhandlungsspiel mit Opportunititskosten (Equilibrium
Selection in a Bargaining Game with Opportunity Costs).
After a detailed introduction to the relevant parts of the Harsanyi-Selten equili-
brium selection theory, this theory is applied to a noncooperative game model of a
bargaining problem with opportunity costs of participating in negotiations.

Vol., 7 155 pages price: IM 38,80

Orders should be sent to: ,
Pfeffersche Buchhandlung, Alter Markt 7, 4800 Bielefeld 1, West Germany.



