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End Behavior in Sequences of Finite Prisoner's Dilemma-

Supergames +~ A Learning Theory Approach

by
Reinhard Selten and Rolf Stoecker

1. Intreduction

In a finite Prisoner's Dilemma Supergame the same game

is repeated for a fixed number of times known to both
players in advance. It is well-known that such games have
a definite game theoretical solution which prescribes
noncooperative behavior in all periods of the supergame.
However, experimental behavior does not conform to this
theoretical prediction. Early experiments with finite
Prisoner's Dilemma supercames [Rapoport-Dale, 1966; More-
hous, 1966: Lave 1965] already have shown that subjects
sufficiently often choose the cooperative alternative.

At first glance, the situation seems to be similar as in
comparable‘experiments where the number of periods is not
known to the players in advance. However, such games are more

akin to the infinite Prisoner's Dilemma supergames which per-

mits equilibrium points resulting in cooperative behavior.

More recently, experiments have been performed where sub-
jects played the same finite Bertmnd-Duopoly or Prisoner's
Dilemma supergames many times against changing anonymous
opponents [Stoecker 1980, Stoecker 1983]. The results

show that subjects develop a pattern of behavior which may
be described as tacit cooperation until shortly before the
end of the supergame followed by noncooperative choices
until the end. As soon as one of the players deviates to
noncooperative behavior the other reacts with noncooperative
choices and cooperation is not established any more. This
pattern of cooperation followed by an end-effect is observ-
ed in almost all supergames between experienced players.
Obviously, straightforward game theoretical reasoning can-
not explain experienced behavior in finite Prisoner's Di-
lemma supergames. One could try to account for this by the

assumption that the players'utility is different from the



monetary rewards. Players may for example value cooperation
as such and therefore refrain from noncooperative behavior
in spite of monetary incentives. Such explanations fail to
be convincing in view of the end-effect which indicates
that monetary incentives are stronger than the desire to
be cooperative for those who deviate to noncooperative be-
havior. A more detailed discussion of this point can be
found elsewhere [Selten 1978].

In this paper we shall present a learning theory approach
to the explanation of end behavior in finite Prisoner's
Dilemmz supergames. We assume that players are motivated
by monetary rewards. However, we do not assume optimizing
behavior. Our theory is based on a Markov learning model
where subjectschange their intention to deviate from co-
operation in a certain period with transition probabilities

depending on experience in the last supergame.

We shall also present the result of an experiment where

each of 35 subjects participated in 25 Prisoner's Dilemma
supergames of 10 periods each. The data exhibit remarkable in-
dividual differences between subjects. Therefore, the para-
meters of the learning model are fitted separately for

each subject.

If one allows for random perturbences which occasionally
result in reactions which are excluded by the model, the
learning theory could be viewed as roughly in agreement with
the behavior of 34 of the 35 subjects (one subject behaves
in a rather chaotic way). The intention to deviate from co-
operation can be moved forward or backwards in time or re-
main constant from one supergame to the next. The learning
model always excludes either the forward shift or the back-
wards shift. Only in 21 out of 585 cases a reaction in the

excluded direction could be observed in the data.

A careful look at the data suggests a distinction between
different groups of subjects which differ with respect to
the degree of conformance between the learning model and
observed behavior. In the last 13 supergames where all of the

subjects already had some experience with the end-effect,

34



18 subjects never showed any response excluded by the
model. However, four of these subjects had constant inten-
tions to deviate in these supergames and therefore could
be explained in a simpler way. A slightly more general
model would be compatible with all responses of 9 further
subjects in the last 13 supergames. Each of the remaining
7 subjects exhibits only one response in the direction ex-

cluded by the model in these supergames.

Statistical computations support the impression that the
general ideas underlying our learning model provide a
reasonable picture of observed behavior. Computer simula-
tion based on individually estimated parameters produces
results which tend to agree with the experimental obser-

vations.

2. Experimental procedure

The experiments are based on the Prisoner's Dilemma game

shown. in figure'1.

Player 2
HP NP
60 -50
HP
60 145
Player 1 145 10
NP
-50 10

Figure 1: The game used in the experiment - payoffs for
player 1 are shown in the upper left corner
and payoffs for player 2 are shown in the
lower right corner. The strategies were intro-
duced as high price (HP, hoher Preis) and low

price (NP, niedriger Preis).

The payoffs shown in figure 1 are in German Pfennigs ( 1 Ger-
man Mark equals 100 Pfennig Y. In each supergame the game

of figure 1 was repeated 10 times. Each subject played 25
supergames. They were told that they played against the



same opponént within one supergame but against different

opponents in different gupergames.

Subjects were placed in separate rooms. They did not
communicate with each other. The experimenters asked

for each decision by intercom and announced the opponent's
decision at the end of each period. Subjects kept records
of previous decisions and gains.

The experimenters did not only ask for the subjects' de-
cisions but also for expectations on opponents' decisions.
Moreover, the subjects were required to write down reasons

for each period-decision.

Subjects came to the laboratory for two afternoon sessions
of four hours each. Part of the time was used for intro-
ductory explanations and for tests on altruism and risk-
taking. These test are not described here since thei; re-
sults will not be used in the evaluation of the experiments.
The actual playing of the 25 supergames took about 4 hours.
After some experience one period took less than a minute.

It is important to point 6ut that pavoff incentives are
quite high relative to such a short time span (see fi-
gure 1).

The experimenters tried to create the impression that 26
subjects participated in each session. Actually, in each
session there were only 12 subjects. Unknown to the subjects
the experimental design separated the 12 subjects into

two groups of six. Each subject played only against chang-
ing opponents among the other five subjects in his group
(see Appendix A).

4

It was intended to have six groups of six subjects. However,
in one of the second sessions one of the subjects did not
come and was substituted by a fixed strategy administrated
by the experimenter. This strategy prescribes cooperation
until a noncooperative choice of the opponent is observed
and noncooperative behavior from then on. This means co-
operation up to the end if the opponent does not deviate

in the first nine periods. There were actually three sub-



jects who followed this policy and explicity explained it

in their written reasons.

The subjects were male and female economics and business
administration students of the University of Bielefeld

in their first vear.

3. Experimental results

In the course of the experiment subjects learned a pattern
of behavior involving cooperation followed by a noncoope-

rative end-effect. In order to make this statement precise
we introduce the following definitions. The play of a

supergame is called cooperative if the following three

conditions are satisfied:

(a) In the first m periods,where m is at least 4, both
players choose the cooperative alternative HP.

(b) In periocd m+1 (for m<10) at least one player chooses
the noncocoperative alternative NP.

{(c) In all periods m+2,...,10 (if there are any) both

players choose the noncooperative alternative.

Note that this definition does not exclude the case m=10
where both players cooperate from the beginning to the end.
Admittedly, the reguirement m>4 1is to some extent arbitra-
ry. However, it is necessary to have some criterion in
order to distinguish plays with an end-effect from plays
where no cooperation has been reached at all. Moreover,

in the experiment no additional case would have to be
classified as cooperative if in (a) the condition m>4 is

weakened to m>1.

An end-effect may also occur in plays where cooperation
has been reached only after initial noncooperation. In
order to capture this possibility we adopt the following

defintion of an end-effect play:

an end-effect play is characterized by three conditions
(a'), (b) and {(c).

{a') bhoth 6lavers choose the cooperative alternative in

at least 4 consecutive periods k,...,m.

The conditions (b) and (¢) are the same as in the defini-

tion of a cooperative play.



We say that a supergame belongs to round n if it was play-

ed as the n-th supergame by the subjects. Since there

were 36 plavers (including one simulated player for rounds

9 to 25) each round has 18 plays. Table 1 shows for every
round how many plays were end-effect plays and how many

of those were cooperative ones. This is indicated for each of

the six groups of interacting subjects separately.

Table 1 shows that for experienced subjects most plays
tend to be cooperative; however, there are some subjects
who sometimes tried to gain an advantage by choosing the
noncooperative alternative in the first period hoping that
the other player would not retaliate. Such behavior results
mostly in end-effect plays which fail to be cooperative
in the sense of the definition given above.

Group 1 contains one subject who seemed to have great
difficulties to understand the situation until round 21.
In the first 20 rounds his behavior was highly irregular.
In the last five rounds 99 % of the plays are end-effect
plays and 96% are cooperative plays.

Appendix B gives a detailed account of the observed end-
effect behavior for all subjects separately.

The learning model to be explained later contains an in-
tended period of deviation as an internal state of the
subject. In all cases where a subject deviated before

the opponent or simultaneously with the opponent the in-
tended deviation period is nothing else than the observed
deviation period. However, if the opponent deviated be-
fore the subject the intended deviation period is not
unigquely determined by the decisions observed in the play.
This situation occurs in 198 out of 6271 cases. In 84 of
these cases the reasons written down by the subjects in-
dicated the intended deviation period. In the remaining
114 cases an estimate of the intended deviation period
was based on reported expectations together with ocbserv-

ed behavior and reasons from previous rounds.



GROUP TOTAL
I IT* IIT v v VI
"Round EEP CP EEP CP EEF CP EEP (P EEP CP EEP CP FEEP CP
1 2 2 1 3 2
2 1 1 1 1
3 1 1 1 1 1 2 2 1 6 4
4 1 1 2 2 3 1 2 2 8 6
5 1 1 1 1 2 1 1 5 3
6 1 1 2 2 3 1 1 1 7 5
7 1 1 1 2 2 2 1 11 7 5
8 1 1 2 2 2 2 3 1 2 2 11 7
9 3 3 - 3 2 1 1 2 2 2 1 2 2 13 1
10 2 2 3 3 1 1 1 1 2 1 2 2 11 10
Mmoo2 2 3 03 1 1 2 2 1 2> 2| 11 10
12 2 2 3 2 2 2 2 2 2 2 2 13 10
13 2 2 2 2 3 3 3 3 3 3 3 3 16 16
14 2 2 2 1 3 3 3 3 3 3 3 3 16 15
15 2 2 3 1 3 3 3 3 3 3 3 3 17 15
16 2 2 3 2 3 3 3 3 3 3 3 3 17 16
17 2 2 3 2 3 3 3 3 3 3 3 03 17 16
18 2 2 3 2 3 3 3 3 3 3 3 3 17 16
19 2 2 3 2 3 3 3 3 3 3 3 3 17 16
20 2 2 3 2 3 3 3 3 3 3 3 3 17 16
21 - 3 3 3 1 3 3 3 3 3 3 3 3 18 16
22 3 3 3 2 3 3 3 3 3 3 3 3 i8 17
23 3 3 3 3 3 3 3 3 3 3 3 3 18 18
24 3 3 3 3 3 3 3 3 3 3 3 3 18 18
25 3 3 2 2 3 3 3 3 3 3 3 3 17 17
Table 1: Number of ena—effect plays (FEP) and cooperative plays (CP) by rounds and

subject groups.

% This group contains the simulated player for rounds 9 to 25.



, 1)
Spearmarn ,
ROUND rank corre-
lation co—
group 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25  efficient
mean 7.8 7.8 7.5 7 6.8 7 6.5 6.5 6.2 6 5.7 5.7 5.5 - .9
1. stand.
e 9% .5 .58 O .5.82 .58 .58 .41 O .52 .82 .55
2an 9.2 8.7 8.5 8.5 8.3 8.5 8.2 8 7.7 7.8 8 7.7 7.5 ~ P
2. getfrnd' 1.3 1.5 1.2 1.2 1.4 1.2 1.5 1.6 1.6 1.6 1.6 1.9 2.4
mean 10.2 10 10 9.8 10 9.8 9.8 9.8 9.7 9.7 9.7 9.7 9.0 - .95
3. stand. 2
iy 98 1.3 1.3 1.8 1.6 1.8 1.8 1.8 2.1 2.1 2.1 2.1 2.3
mean 2.3 7.8 7.7 7.3 7.7 6.8 6.8 7 6.7 6.5 6.2 5.8 6 - .93
4. g?d' 1 119 .8 .8 .9 .5 .6 .8 1 .6
mean 1 10 10 9.3 9.5 9.2 9.3 9.3 9 8.8 9 8.5 83 - ,95
s.stand. 43 4.3 1.3 1.4 1.2 1.2 1 1 1.1 1.2 .6 .6 .5
dev.
mean 10.3 10.2 10.2 10.2 9.8 9.8 9.7 9 8.8 8.8 8.8 8.3 8.2 - .99
5-3;3“‘1' 8 .8 1 1 1 8 .8 .6 .4 .4 .8 .5 .8
‘mean 9.2 9.1 9 8.7 8.7 8.7 8.5 8.3 7.9 7.9 7.8 7.5 7.4 - 1.0
to- tand
tal S 45 106 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.8 1.8 1.8

1) values are rounded but rank correlations are camputed for exact means.
2) This group contains the simulated player.

Table 2: Means and standard deviation of intended deviation
period in end-effect plays for rounds and groups,
separately.
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Table 2 shows the means and standard deviation of intended
deviation periods in end-effect plays for all 35 subjects
who participated in round 13 to 25 for rounds and groups
separately. In the last 12 rounds all subjects can be
described as experienced in the sense that each of them
had been in at least one end-effect play in an earlier round.
In the computations deviation period 11 was assigned to
those cases where the subject did not intend to deviate at
all.

It can be seen that the end-effect has a clear tendency

to shift to earlier periods in the last 13 supergames.
For each of the six groups the Spearman rank correlation
coefficient between the mean of the intended deviation pe-
riod and the number of the supergame is negative and sig-
nificant at the .1 percent level (two sided) for the last

13 supergames.

Even if it is very clear from the data that there is a ten-
dency of the end-effect to shift to earlier periods, it is
not clear whether in a much longer sequence of supergames
this trend would continue until finally cooperation is com-
pletely eliminated. It is also possible that the mean of

the intended deviation period would have a tendency to de-
crease in such a way that it finally converges to a stable
limit. The learning model to be explained later permits

both possibilities. It depends on the parameters and the
initial conditions whether the distribution of intended
deviation period stabilizes near the end or the beginning

of the supergame. It is interesting to note that some groups
show a very strong shift to earlier periods. In round 25

the means of groups I and IV are at 5.5 and 6, respectively,

whereas this mean is at 9.0 for group III.

4., A learning theory of end-effect behavior.

Our learning model contains the intended deviation period
k as the internal state of the subject. A subject is as-
sumed to change his internal state from round t to round

t+1 according to constant_ﬁransition probabilities.

Each subject is characterized by three parameters o, 8 and Y.
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If the subject observes that in.round t his opponent deviat-

ed earlier than he intended to deviate,then with probability o
he will shift his intended deviation period k to k~1. The
probability that the subjects' internal state remains k in this

case is 1=-a.

If the subject observes that in round t his opponent deviated
at the same period k as he did,then with probability 8 the sub-
jects' intended deviation period will be shifted to k-1 and

with probability 1-8 it will stay where it is.

If the subject observes that in round t he deviated before

the opponent, then with probability y he will shift the intended
deviation period to k+1 provided we have k<10, With probabi-
lity 1-y he will not change his internal state. There is no
change for k=10. The assumptions of the learning model are sum-
marized by table 3.

intended deviation perlod in round ¢ + 1
subject's intended de- one period . one pericd
viation pericd in round t sooner unchanged later
later than his opponent o 1-a
together with his oppo- B 1-8
nent

. 1-v for k<10 v for k<10
sooner than his oppo~ 1 for k=10 | O for k=10

Table 3: Transition probabilities from round to round for
the intended deviation period of a subject.

k is the intended deviation period in round t.



In the explanations given above it was assumed that in
round t the subject experienced an end-effect play. It is
assumed that no change of intention takes place after a
round which did not result in an end-effect play. This
convention is unimportant for our theoretical derivations
and simulations but it has some minor significance for

the interpretation of our data.

We now procede to discuss our motivations behind the
assumption of transition probabilities.

A subject who has observed that his opponent deviated
ecarlier than he himself intended to do will think that it
might have been better to deviate earlier. The same is
true to a lesser degree if the opponent deviated in the
same period as he did. Therefore, it is reasonable to
assume a > B > O. In both caszes there is no reason to

shift the intention to deviate to later periods.

Now consider a subject who in round t deviated in a pe-
riod k < 10 and observed that his opponent did not deviate
from cooperation up to period k. He does not know exact--
1y in which period the opponent intended to deviate. There-
fore, it could have been better to deviate in a later
period. We may for example look at k = 8. The sub-

ject does not know whether the opponent intended to deviate
in period 9, 10 or not at all. In the latter two cases a
deviation in period 9 would have been more advantageous.

It is plausible to assume that this kind of uncertainty pro-
duces a tendency to shift the deviation periods towards the
end of the supergame. Of course, for k = 10 there is no ‘
guch uncertainty and the subject must conclude that it was
right to deviate in the last period if he observed that the

opponent cooperated up to the end.

In the mathematical learning models considered in the
literature [see for example Restle-Greeno 1970,Bush-Mosteller
1955) it is generally clear whether reinforcement of behavior

has taken place or not. However, in a situation where a subject
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deviated earlier than his opponent in a period k < 10 he

does not know whether his decision was right or wrong.

Unobserved features of the opponent's behavior prevent
him from having a clear experience of success or failure.
However, he knows that here is a possibility that his de-

cision was wrong.

Our specification of the general ideas explained above con-
tain certain simplifying assumptions. We exclude the possibi-
ity that the intended deviation period shifts by more than

1 period. It is, of course, easy to construct a more gene-
ral learning model where shifts of two or three periods

are permited. However, the scarcity of data forces us to
restrict our attention to models with as few parameters as

possible.

In a situation where a subject deviated earlier than his
opponent his uncertainty on the nature of his
experience is the greater the earlier his deviation was.
The more periods there are until the end of the super-

game after the deviation, the more chances there are that
the deviation was too early. Therefore, one could think

of making v dependent on k in such a way that y increases
with decreasing k. This would be a theoretically attractive
modification of the model but also here the necessary in-
crease of the number of parameters prevents us from com-

paring such models with the data.

5. Theoretical Considerations

In the application of the learning model to our data the
parameters a, B and vy will be estimated separately for each
subject. These estimates will be used in Monte—-Carlo-simu-
lations in order to obtain sequences of intended deviations
for each subject and each round. The Monte—-Carlo~sSimulations
will follow the sequence of pairings of subject which ac-
tually has been used by the experimental design (see Appen-
dix A).

In the following we shall not vet describe the Monte~Carlo-
simulations. Instead of this we shall look at the conse-
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guences of our theory in an idealized situation which is not
that of the experiment.

Consider a very large population of subjects where the pa-
rameters o, B and y are the same for all subjects. With
this population we imagine a fictitious experiment over a
very long sequence of supergames. At each round the sub-
jects are paired randomly.

We may ask the Question how in this system the probabilities
of intended deviation periods evolve. In order to describe
the process which governs the evolution of these proba-
bilities we introduce the following notations:
pE probability that in round t a randomly chosen |
subject has the intention to deviate in period k,
where k = 11 stands for the intention not to
deviate at all (k = 1,...,11).
k

Sk = L pt probability that in round t a randomly
=1 m
m=1 chosen subject has the intention to deviate
in periods 1,...,k.

a,B and y the parameters of table 3.

It is useful to look at the situation in a way which is
similar to that of a Markov chain. We may ask the follow-
ing question: what are the probabilities that a subject
will intend to deviate in period k-1, k or k+1 in round
t+1 if he intended to deviate in period k in round t.
These "transition probabilities" can be arranged in a
matrix where columns correspond to intended deviation pe-
riods in round t and rows correspond to intended deviation
periods in round t+1. A part of this matrix is shown in

figure 2.
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round t
(1-a)SE +
10 oSt +8pt (1-8) e (1-85) 0 0
10" P14 P1o N Y™
(1-7) (1=87)
(1-a)Sg+
£t t
9 0 a59+8p10 (‘I-B)p9+ . Y(‘I—SB) 0
(1-y) (1-Sg)
(1—u)St+
8 0 0 st+5 - (1-8) %+ (1-St)
_ a>g+hPg Pg . Yiimes
(1-y) (1-s§)
(1-a) ST+
7 0 0 0 R S R )
| a7 T PPg BT
(1=y) (1-53)

Fiqure 2: Transition probabilities for a subject between rounds t and t+1
(explanation in the text).

With the help of table 3 it can be seen easily that the tran-
sition probabilities are in fact those shown in figure 2. From

what has been said up to now it is clear that the probabilities

p§+1 are determined by the following eguation system:
t t
P = t(-esT, + (-9)pTilen
t t t t t
pEET = tastorep] del 1 (1me) SgH (1-8) pyg* (1) (1-850) IPyo*

t. _t
+Y(1-39)P9
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t+1 _ t t t t £ t.. .t
Pg = [389+Bp1o]p10+[(1-a)88+(1—8)p9+(1-y)(1—89)199+
+Y(1-Sg)p§
t+1 t t, t t t t t t
Ps = [052+Bp3]p3+[(1-a)p1+(1—8)p2+(1-v)(1—82)]p2+v(1-p1)
t
P
t+1 t t, t t t t
Py = [up1+8p2]p2+[p1+(1-—v)(1—p1)]p1

Starting from an 1n1t1a1 dlstrlbutlon (p1,...,p11) the pro-
bability vector (p1,...,p11) can be computed for every round
t. We may ask the question whether this probability vector

converges to a stable equilibriﬁm distribution.

We shall not try to give a rigorous theoretical answer to
the question of convergence. However, we have run a large
number of simulations whose results show a definite pat-
tern which will be described in the following.

It must first be pointed out that the difference equations
have the following property: If p; = O holds for k=m,...,11
for some t = t, then the same conditions will be satis-
fied for every t > to. For this reason alone, the re-
sult of the simulation cannot be completely independent

of the initial conditions.

However, if p}o and plT are sufficiently high, the results
of our simulation do not depend on the exact initial
conditions. The results obtained for p11 = 1 do not change
as long as the initial conditions remain in a neighbour-
hood of this extreme case. The size of this neighbour-
hood depends on the parameters but for most cases it

seems to be gquite large.
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Table 4 shows simulation results for selected parameter
combinations. All these simulations have been run starting
from the initial condition p11 = 1.

Our experimental results suggest that subjects learn to
cooperate before they learn to show any end-effect. There-

fore, the assumption p11 = 1 is quite reasonable.

All the simulations with p11 = 1 converged to a stationary
distribution which was always either concentrated at the
end or at the beginning of the supergame. In table 4 either
the first 3 or the last 3 periods obtained at least 97%

of the total mass of the probability.

The parameter combinations of table 4 are arranged in
groups with constant B and y and increasing a. If o is
small in comparison to y - B the distribution is concentrat-
ed near the end of the supergame. With increasing o this
concentration becomes less pronounced until a critical
value of o is reached beyond which the stationary distri-
bution is concentrated at £he beginning of the supergame.
As can be seen in table 4 the critical value for o 1is a
little below y-8. It can be checked analytically without
much difficulty that for o+B = y the distribution p1=p2=.5
is stationary. In fact, in cases with o + B = y the pro-

cess converges to this distribution.

The results of these simulations suggest an abrupt

change of the stationary distribution at the critical va-
lue of a. In table 4 the critical values of o are en-
closed by intervals of the length of 10_3. It can be

seen that within this small interval the stationary distri-
bution reached by the process changes drastically. The
change is somewhat less pronounced if the interval is nar-
rowed down to the length of 1077

are practicallv O before and after the change from a con-

but even there p; and pg

centration at the end to a concentration at the beginning.

In the experiments a group of interacting subjects had only
six members and the parameter values varied considerably
from subject to subject. A theoretical investigation of

this experimental situation would be much more difficult.
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® B Y Pq Py P3 -1 Pg Py
. FHBE 1.000 - = = =
1 1| .4 - - - .017 250
.2 1| .4 - - - .038 .346
.264 1| . - - - 135 .520
.265 1| .4 .119 .509 371 - -
.3 ] .a 500 .500 - - -
3 1.5 = - = .034 .356
.355 A4 .5 - - - .105 .520
.356 1| .5 .098 .512 390 - -
.4 A . .500 .500 - - -
.5 1| .5 .990 .010 - - -
2 2 | .5 - - = 086 a0
.3 21 .5 .500 .500 - - -
.4 2| .5 667 | .333 - - -
i .1 .6 - - - L005 .167
.2 R Y - - - .007 .201
.3 Al .6 - - - .013 .256
.4 A1 .6 - - - .030 .364
.449 1l .6 - - - .095 .533
.450 1| .6 .087 .522 391 - -
) R G = - - ~044 333
.3 21 .6 - - - .083 .417
.353 21 .6 - - - .188 .516
.354 21 .6 .151 .500 349 - -
.4 21 .6 .500 .500 - - -
.5 2| .6 .667 .333 - - -
.6 2| .6 .993 .007 - - -
1 T Y - - = 003 43
.2 Al .7 - - - .004 167
.3 Al .7 - - - .006 .203
.4 RN - - - .011 .259
.5 Al .7 - - - .028 .370
.543 Al .7 - - - .073 .517
.544 Al .7 .072 .515 413 - -
.6 Al .7 .500 .500 - - -
.7 Al .7 .990 .010 - - -
) 2 .7 - - = 164 535
441 21 .7 .133 .506 .361 - -
.529 21 .8 = - - 143 530
.530 2| .8 .119 .509 371 - -
445 3 .8 = = = 313 570
. 446 3| .8 .165 .495 .340 - -
538 7 po - - vy 504
.539 4l Lo .173 .492 .335 - -
1 AT 7.0 - - — T - 100

Table 4: Stable probability-distributions over intended deviation periods
for selected parameter cambinations.
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However, it can be expected that the results obtained for
the large group case with egual parameters are indicative
for what can be expected to happen in the experimental si-

tuation if the model is correct.

6. Subject differences

After the theoretical considerations of the last section

we shall now turn our attention to some important features

of our experiemental results. The behavioral assumptions

of our model do not fit all subjects equally well.

There are several deviations from the theoretical behavior
which may occur. Some subjects occasionally change the in-
tended deviation period by more than one step from one

round to the next. Even if this is not a deviation from the
spirit of our model, it is a deviation from the specification
which had to be used in view of the scarcity of observations.
A more serious deviation which occurred only rarely is a
shift of the intended deviation period in the wrong direction.
Some subjects do not show any reaction excluded by the model
but they have a constant intended deviation period. An in-
tended deviation period which does not change over time can
be explained in simpler and possibly more adequate ways than by

our model,

Table 5 distinguishes several groups of subjects according
to the conformance of their behavior to the model in the
last 13 rounds. We restricted this evaluation to the second
half of the experiment since there almost all subjects had
learned to cooperate. Only a subject who has learned to co-

operate can experience an end-effect play.

It can be seen that only 20% of all subjects show a shift
in the wrong direction. For each of these 7 subjects such

a shift occurs only once.

Three subjects always had the intention to cooperate until
the last period. The protocols written by these subjects show
that they did this on principle. Obviouslv, the learning mo-

del does not adequatly describe the motivations of these
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subjects even if it formally fits their behavior. One sub-

ject always intended to deviate in period 8. He thought

that this is the optimal deviation period. Since this opinion

was based on experience rather than theoretical reasoning

his behavior may be adequatly explained by the model.

ghifts in the wrong direction

edt)

. number number total num-
§ Subject category of of de- ber of
: subjects viations | cases
no deviations fram the model and
varying indented deviation pe- 14 - 158
riod
constant intended deviation

. rA 4 - 4 8
period %)
shifts of more than one step but
no ¢other deviations from the mo— 9 14 108
del
7 7 81

failure to learn cooperation

fetet)

Table 5:

Grouping of subjects by conformance of behavior to the model

in the last 13 rounds. Each subject is listed only once.

%) Three of these subjects never intended to deviate as a matter

of principle.

%%) Two of these subjects also showed jumes of more than one step.

***)

Unlike all other subjects this subject did not learn to co-

operate in the first half of the experiment. He began to expe-

rience end-effect plavs only in the last five rounds.
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Up to occasional deviations, a learning theory approach like
that of our model seems to offer a plausible explanation for
the behavior of the vast majority of subjects. A fundamental-
.ly different theory mav be required for those three subjects
who never intended to deviate in rounds 13-25 as a matter of
principle. The learning model cannot be compared with the
behavior of the subject who failed to learn to cooperate

in rounds 1 to 20. With these exceptions the learning model
can be proposed as an idealized picture of observed behavior.
The next section will try to throw further light on the

extent to which the data agree with the learning model.

7. Parameter estimates

The observations for rounds 1 to 20 have been used in order

to obtain parameter estimates 3, E and ; of o, B and vy, re-
spectively, for all subjects with the exception of subject 1
who failed to learn to cooperate in rounds 1 to 20. On the
basis of these parameter estimates Monte-Carlo-simulations

have been run in order to generate predictions for rounds 21 to
25 which can be compared with the data. The Monte-Carlo-simu-

lations will be discussed in section 9.

As far as possible relative freguencies of transitions have
been taken as parameter estimates. In the determination of
relative frequencies shifts of more than one step in the
right direction have been counted as if they were shifts

of one step. Shifts in the wrong direction have been counted

as if they were cases of unchanged deviation periods.

The parameter estimates are shown in table 6. In the three
cases indicated by an asterisk relative frequencies were not
available due to lack of observations and estimates had to

be obtained in another way.

It is plausible to assume ¢ > B since there is more reason
for a shift to an earlier deviation if the opponent has de-
viated earlier than in the case that he has deviated at the
same time. In fact, in 26 of the 31 cases where relative fre—
guencies estimates o and B are available, the inequality a 2 B



subject a B Y
2 1 L .67 .5
3 1 (o .17
6 .5 .3 .25
7 1 .33 .2
9 .6 £ .0 .0

11 .33 0 .4 .5
12 .5 I .0 .0
13 1 LA .0
18 .22 .0 .5
22 .67 1 .4 .5
28 .25 | .0 .0
30 .25 .0 .5
31 .57 .33 .57
34 1 [ .5 .5
15 .0 T .0 .0
17 .0 l .0 .0
21 0 L .2 .5
25 1 { .0 .0
16 .43 .0 .67
19 o) ¢ .0 .67
20 75 .5 .14
24 .0 .5 .09
27 .0 .13 .0
29 .0 .14 1
32 .38 i .0 .0
33 .14 .0 .33
35 1 1 .75
Z .33 .2 .0
5 .5 .0 .0
8 1 .75 .33
14 .17 .08% 1
23 1 .5 % .18
26 .5 .5 .33
36 1 .5 .5

Table 6: Parameter estimates based on rounds 1 to 20.
Subjects are grouped according to the categories of table 5, in
the same order.

3
" no relative frequency estimate available;

auxiliary estimate according to
a= (B + 1Y/2 or B = o/2, respectively.
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is satisfied. Therefore, it seems to be reasonable to

take the following inequality as a point of departure:

Accordingly, an auxiliary estimate g = 3/2 is formed

at the midpoint of the relevant interval delineated by
this inequality if a relative frequency estimate is
available for o but not for 8. Analogously, an auxiliary
estimate a = (E + 1)/2 is formed if a relative frequency

estimate is available for B but not for a.

I+ can be seen that the estimates in table 6 vary con-
siderably from subject to subject. This is also true for
the 14 subjects whose behavior completely conforms to
the model. For these 14 subjects a second set of para-
meter estimates has been obtained in the same way on

the basis of the data from rounds 1 to 25. These esti-
mates will be used for a comparison of the learning mo-
del with a simple alternative hypothesis to be expiained

in the next section.

8. Comparison with a simple alternative hypothesis

Tn the following we want to look at the guestion whether
our model provides a better explanation of the data than

a simple alternative hypothesis based on the assumption
that no learning takes place at all. We compare the learn-
ing model with the simplest alternative theory of this
kind. In the alternative hypothesis each subject is assumed
to have a probability distribution over his intended de-
viation period which does not vary over time. The intended
deviation period of each round is assumed to be stochasti-

cally independent from those of other rounds.

The comparison will be restricted to those 14 subjects
which never showed a reaction excluded by the learning mo-

del in the last 13 rounds and also had varying intended
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deviation periods in these rounds. For each of these sub-
jects the probabilities for the actually observed intended
deviation periods have been computed under the assumption

of the model and under the alternative hypothesis. The para-
meters o, B and vy have been estimated on the basis of all 25
rounds. In the computation of the probabilities for the learn-
ing model the behavior of the other subjects in the same
group has been taken as given. The probabilities therefore
are conditional on the behavior of the other players. For
each of the 14 subjects a conditional likelihood-ratic has
been formed as the guotient of the probability generated by
the model divided by the probability generated by the alter-
native hypothesis. The conditional likelihood-ratios are

shown in table 7.

It can be seen that all 14 of the conditional likelihood-

ratios are greater than 1; most of them are gquite high.

The results of table 7 support the assumption that learning
is an important factor in - -the choice of the intended de-
viation period. It would not make much sense to extend the
method to the other subjects. Of course, a subject with

a constant intended deviation period is better explained

by the alternative hypothesis. The probabilities generated
by the learning model for subjects who do not conform to it,

are always O, even in cases where there is only one iso-
lated deviation.

It would have been desirable to compute likelihood ratiocs
for whole groups of interacting subjects rather than for
individuals. Unfortunately, every group had at least one
member not among those subjects to which the comparison

was restricted.

Even if it must be admitted that our method of comparison
is not entirely satisfactory the results confirm the im-
pression that the learning model captures important aspects

of the dynamics of end-effect-behavior.



Subject No. Ratio Subject No. Ratio
2 5.2 13 8830
3 131 18 540
6 23796 22 g 1628
7 2421 28 g 4.5
9 34 30 \ 41086
11 660 31 ‘ 2
12 1077 34 ! 13

Table 7: Conditional likelihood-ratios for the 14 subjects in
the first group of Table 5.

9. Monte-Carlo-simulations

The Monte-Carlo-simulations which already have been mention-
ed in the section on theoretical considerations serve the
purpose toc examine the predictive potential of the learning
model. Therefore, in table 6 the parameters a, B and ¥y

have been estimated individually for the subjects on the
basis of observed behavior in the first 20 rounds. With.
these parameters the last 5 rounds have been simulated
starting from the observed values of intended deviation
periods in round 20 as initial conditions. The pairing

of the subjects followed the schedule of Appendix A. The
simulations only cover 5 of the 6 groups. The first group
had one member who did not learn to cooperate before the
last five rounds (see table 5). Therefore, for this subject
no parameter estimates could be computed on the basis of

the first 20 rounds.
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The size of the end-effect is best described by the "intended

deviation time" which is defined as 11 minus the intended de-
viation period.

For each of the five groups figure 3 shows the means of
the intended deviation times over the six subjects for
each of the last five rounds. These means are indicated

both for the actual experiment and for the 8 Monte-Carlo-
simulations.

I+ can be seen that the actual observed means are not too
dissimilar from those generated by the Monte-Carlo-Simu-
lations. It must be pointed out, however, that some shifts
of more than one period occurred in the last 5 rounds.
There was for example one subject in group 3 who shifted
his intended deviation period from 11 to 6 from round 24

to round 25. 0Of courée, the Monte-Carle-simulations cannot
reproduce the effects of such jumps. This explains the spe-

cial features in the drawing for groups 3 and 5.

A meaningful statistical comparison of the simulations and
the observations must be based on some features of the si-
mulations which do not véry too much from realization to
realization. It is plausible to conjecture that the rank
order of the cumulative shifts of intended deviation periods
over the last 5 rounds satisfies this criterion. The cumu-
lative shift is the difference of the intended deviation pe-
riods in round 25 and in round 20. For each simulation run

we obtain a rank order of these shifts over the six subjects
of the group. In this way, the 8 simulation runs for each
group yield 8 rank orders. Kendall's concordance coefficient W
has been computed for the 8 rankings in each of the 5 groups,
separatelv. All 5 concordance coefficients are significant
on the .01 level. This supports the conjecture that the rank
order of cumulative shifts is a variable which can be pre-
dicted with some realibility if the model is correct. The
predicted mean rank order has been computed by the sum of
ranks following Kendall's proposal [Siegel 1957, Kendall
1948].
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For each of the five groups we have correlated the mean
rank order of cumulative shifts derived from the 8 simu-
-lation runs with the rank order of cumulative shifts ob-
served in the experiment. The Spearman Rank correlation
coefficients are .880 (p<.05), .548, .956(p<.01), .462 and
.926 (p<.05) for groups 2,...,6,respectively.

The cumulative shift between round 20 and round 25 rather
than the intended deviation period of round 25 has been
chosen as the basis of the comparison between simulations
and observations since the latter variable could reflect
the initial conditions of round 20 more than the effects
of the parameter values. On the other hand, the cumulative
shift is a measure which can be expected to be more close-

ly connected to the dynamics of the learning process.

If the learning model had no predictive value one would ex-
pect positive and negative rank correlation coefficients bet-
ween predicted and observed rank orders of cumulative shifts
with equal probability. The binomial test rejects this null
hypothesis on the .05 level (one-sided) . Moreover, three of
the 5 rank correlation coefficients are significant at the
.05 level.

The result of the comparison of predicted and observed rank
orders of cumulative shifts support the learning model as an
idealized picture of end-effect behavior in repeated Priso-

ners' Dilemma supergames.



REFERENCES

E.R. Bush and S tochastic Mopdels for Learning, New York

F.Mosteller 1955.

M.G. Kendall, Rank Correlation Metheds, Griffin, London
1948.

L.B. Lave, Factors Affecting Cooperation in the

Prisoner's Dilemma, Behavioral Science 10
{1965), 26-38.

L.G. Morehous, One-play, Two-play, Five-play and Ten-play
runs of Prisoner's Dilemma, Journal of Con-
flict Resolution 11 (1967), 354-362.

Anatol Rapoport The "End" and "Start" Effects in interated
and Ph.S., Dale Prisoner's Dilemma, Journal of Conflict Re-
solution 11 (1967), 354-462.

F. Restle and Introduction to Mathematical Psychology,

J.G. Greeno, Addison Wesley Publishing Company, 1970.

R. Selten, The Chain Store Paradox, Theory and Decision
g (1978), 127-158.

S. Siegel, Nonparametric Statistics for the Behavioral

Sciences, McCraw Hill, New York-Toronto-
London 1956.

R. Stoecker, Experimentelle Untersuchung des Entschei-
dungsverhaltens im Fertrand-Oligopol, Pfeffer,
Fielefeld, 1980.

R. Stoecker, Das erlernte SchluBverhalten - eine expe-
rimentelle Untersuchung, Zeitschrift fir
die gesamte Staatswissenschaft 1983, im
Druck.



APPENDIX A

The six groups of interacting subjects were composed as

shown in table 8.

group

Subjects

1, 3, 5,
2, 4, 6,
13, 15, 17,
14, 16, 18,
25, 27, 29,
26, 28, 30,

Fo2 T 4 B “NUN U R\ B

7, 9, 11
8, 10, 12
19, 21, 23
20, 22, 24
31, 33, 35
32, 34, 36

Table B: Composition

Within each group of

of groups 1 to.6

6 interacting subjects the pairings

were determined according to the following scheme. The

same pattern was repeated in rounds 6 to 10, 11 to 15,
16 to 20 and 21 to 25.
For group 2 the numbers 1, 3, 5, 7, 9, 11 have to be re-

placed by 2, 4, 6, 8, 10, 12 in that order. The parings

within the other groups are obtained analogously.

round pair 1 pair 2 pair 3
1 1, 3 5, 7 9, 11
2 1, 5 3, 11 7, 9
3 1, 7 3, 5, 11
4 1, 9 3, 7, 11
5 1, 11 3, 5, 9

Table 9: Pairings in group 1 for rounds 1 to 5
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