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Evolutionary Stability in Extensive 2-Person Games

by Reinhard Selten
University of Bielefeld

1. Introduction

The concept of an evolutionarily stable strategy intro-

duced by J. Maynard Smith and G.R. Price has become the
cornerstone of evolutionary game theory, a new branch of game
theory concerned with apnlications ta sociobiology (Maynard
Smith and Price 1973). The famous book by von Neumann and
Morgenstern has laid the foundation of both non-cooperative
and cooperative game theory (von Neumann and Morgenstern 1944).
John F. Nash proposed the notion of an equilibrium point

and proved existence for finite games (Nash 1951). Modern
non-cooperative game theory is almost exclusively devoted

to the study of various kinds of equilibrium points and

their properties. Evolutionarily stable strategies can be
described as strategies in special equilibrium points. From
the mathematical point of view, evolutionary game theory

is a part of non-cooperative game theory.

Game theory has been developed as a theory of rational be-
havior in interpersonal conflict situations. Economics and
other social sciences were the intended fields of application.
It is surprising that a mathematical tool which has been
tailored for the needs of the social sciences now finds its
way into the natural sciences. Since game theory has been
based on an idealized picture of human rationality, applica-
bility to animal behavior is by no means obvious.

Evolutionary game theory does not suppose that animals are
rational. Mindless forces of natural selection are assumed
to exert pressure towards optimization. This creates the
appearance . of rationality.

Up to now, evolutionary game theory has been developed in the
framework of normal form games. However, an adequate descrip-
tion of sequential features of animal conflicts requires ex-
tensive game models, It is the main purpose of this paper

to generalize the concept of an evolutionarily stable strategy
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to extensive 2-person games. Unfortunately, this is not a
straightforward task.

The remainder of the introduction presupposes some familiarity
with game theoretical concepts. However, later everything will
be explained in detail. In principle no prior knowledge of
game theory is necessary in order to be able to read the paper,
even if it will be of great help to be at least superficially
acquainted with the field. The condensed and somewhat imprecise
preview in the remainder of the introduction cannot complete-
ly avoid the use of unexplained terms,

For a long time it was a cbmmon1y held view among game theorists
that an extensive game is- adequately represented by its normal
form. However, it turned out that important distinctions bet-
ween different kinds of equilibrium points for extensive games
cannot be based on the normal form. This has lead to the notion
of a perfect equilibrium point (Selten 1965, 1973, 1975).

The perfectness requirement excludes unreasonable decisions

at unreached parts of the extensive game. Related but different
difficulties are faced by the generalization of evolutionary
game theory to the framework of extensive games. '

Section 2 will introduce the definition of an evolutionarily
stable strategy for a symmetric bimatrix game and its biologi-
cal interpretation. The customary abbreviation ESS will be used
for "evolutionarily stable strategy". The notion of an extensive
2-person game with perfect recall will be explained in section
3; these are the extensive games to be investigated here. It

will be arqued that the assumption of perfect recall is justi-
fied in the biological context. The relationship between mixed
and behavior strategies will be discussed in section 4.

Biological game models are endowed with natural symmetries. There-
fore, evolutionary game theory always deals with symmetric games.
It is not immediately clear what should be understood under

a symmetric extensive 2-person game. This probiem is discussed

in section 5. The notion of a symmetry will be introduced as

a mapping from choices to choices. Since an extensive game may



have several symmetries, one of them must be specified as
the natural one. This leads to the definition of a symmetric
extensive Z2-person game.

A symmetric extensive 2-person game has a symmetric normal
form, The symmetric normal from is an ordinary symmetric bima-
trix game. The usual definition of an ESS can be applied to
the symmetric normal form. However, it will be shown in
section 6 why this way of generalizing evolutionary game the-
ory is unsatisfactory. It turns out that a definition in terms
of behavior strategies is preferable. This will yield the
concept of a "direct ESS". The word "direct" indicates

that the notion is the result of a direct translation of

the usual definition to the space of behavior strategies.

Unfortunately, the direct ESS notion cannot be proposed

as the final answer to the problem of defining a satisfactory
ESS concept for symmetric extensive 2-person games. Many
biological game models with intuitively plausible solutions
do not have a direct ESS. Therefore, a more liberal ESS con-
cept will be proposed in section 7.

The restrictivé nature of the direct ESS concept is due
to the fact that essentially all parts of the game must be
reached with positive probability by a direct ESS. Unreached
parts of the game cause instabilities since no selective
presure is exerted there. It will be argued that this diffi-
culty is due to an inherent overprecision of biological ex-
tensive game models. Actually, a non-optimal choice may be
taken occasionally by mistake. Thereby, a part of the game
can be reached which would remain unreached otherwise. This’
"trembling hand" approach leads to the definition of a per-
turbed game where some choices have to be taken with small
- minimum probabilities due to the possibility of mistakes.
A "limit ESS" is then defined as a limit of direct ESS's for
- perturbed games whose minimum probabilities vanish in the
1imit. The 1imit ESS is the proposed generalization of the
ESS concept to symmetric extensive 2-person games.

The trembling hand approach is essentially the same as in
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the refined perfectness definition (Selten 1975). However,
there is one important difference: zero minimum probabili-
ties in perturbed games are not excluded. This has the con-
sequence that a direct ESS of an unperturbed game is always
a limit ESS.

Curiously enough, the same tools which have been used to
exclude unreasonable equilibrium points by the perfectness
requirement also yield a less restrictive ESS definition.

In order to obtain {nsight into the nature of a limit ESS
it is necessary to explore the properties of a direct ESS
for a perturbed game. This is done in section 8. The pro-
perty that, roughly speaking, essentially all parts of the
game must be reached is called "pervasiveness". The per-
vasiveness of a direct ESS permits the derivation of use-
ful local optimality properties.

A distinction between image confronted and image separated
information sets has important consequences for a direct ESS
of a perturbed game and for a limit ESS of an unperturbed
game. This will be the subject matter of section 9. If

at least one play intersects an information set and its
symmetric image under the natural symmetry, then this in-
formation set is called "image confronted"; otherwise it

is called "image detached". It will be shown that a direct
ESS of a perturbed game prescribes strong local best replies
at image detached information sets and that, therefore, a
limit ESS prescribes pure local strategies at image de-
tached information sets.

The necessary conditions obtained in sections 8 and 9 for

a direct ESS of a perturbed game are summarized by the
notion of a "locally stable strategy". A counterexample
shows that these necessary conditions are not sufficient.
This seems to exclude a convenient decentralized characteri-
zation of a direct ESS for a perturbed game.

Complex extensive games often permit a decomposition into
subgames and truncations.In a truncation some subgames are



replaced by payoff vectors derived from subgame solutions.
Subgames and truncations may themselves be further decompos-
ed in this way until finally some indecomposable "elementa-
ry games" are obtained. An elementary game is called sym-
metric if it is its own symmetric image under the natural
symmetry; otherwise it is called asymmetric. Decomposition
will be the subject matter of section 10. It will be shown
that a direct ESS of a perturbed game induces direct ESSs

on symmetric elementary games and gives rise to strong equi-
librium points of asymmetric elementary games. A set of neces-
sary conditions for a 1imit ESS concerning strategies induced
on subgames and truncations will be summarized by theorem 10.

The necessary conditions of theorem 10 are a powerful instru-
ment of analysis for an important special class of games,
called “"simultaneity games". In these games imperfect infor-
mation may result from the fact that at some points in time
both players have to make simultaneocus decisions but they

are always fully informed about each other's past choices.
One can expect that many potentially interesting models of
animal conflicts are of this type. It will be shown in
section 11 that the necessary conditions for a direct ESS

of a perturbed game which characterize a locally stable
strategy are actually sufficient in the case of a simultaneity
game. In order to derive sufficient local conditions for a
1imit ESS the notion of a regular ESS for symmetric bimatrix
games will be introduced. Regularity excludes the possibility
of alternative pure best replies which are not used with po-
sitive probability by the ESS.Theorem 12 contains the suf-
ficient conditions for a limit ESS of a simultaneity game.

A regular ESS must be induced on a symmetric elementary game
and a strong equilibrium point must be induced by the limit
ESS and its symmetric image on an asymmetrib elementary game.

In section 12 the results on necessary and on sufficient con-
ditions for a limit £SS will be applied to a many period mo-
del of animal conflicts with ritual fights and escalated con-

flicts. The model has the form of a simultaneity game. Apart
from degenerate border cases the gap between necessary and




sufficient conditions is insignificant. Probably this is ty-
pical for models of this kind. For non-degenerate parameter
combinations the analysis achieves a complete overview over
the important features of behavioral patterns corresponding
to a Timit ESS. It will be shown that a limit ESS is of one
of two types. If the risk faced in one round of serious fight
is not too high, one of both types completely avoids serious
fights, whereas the other type has a positive probability of
escalation. The role of ritual fights can be seen in the
creation of asymmetries which lead to peaceful settlement.

Further introductary remarks can be found at the beginning
of sections. Conceptual arguments behind definitions and the
significance of results will often be discussed in special
subsections. A reader who concentrates attention on the con-
ceptual parts of the paper may gain considerable insight
into the subject matter without bothering to look too close-
1y at formal definitions and results.

Unfortunately, a precise exposition requires much more tech-
nical detail than one might think. Without such detail one
may easily be mislead to wrong conclusions.

In the biological literature game theory is not only applied

to abstract models of animal conflicts, but also in the con-
text of empirical investigations of social interactions of spe-
cific animals 1ike dung flies (Parker 1974} speckled wood butter-
flies (Davies 1978) and digger wasps (Dawkins and Brockmann
1980). Many examples of game theoretical interpretations of na-
tural phenomena can be found in Dawkins' illuminating "Selfish
Gene" and in the fascinating new book by Maynard Smith on
"Fvolution and the Theory of Games" (Dawkins 1976, Maynard
Smith 1982). Applications to specific animal species will not
be discussed in this‘paper.




2. Evolutionary stability in bimatrix games

Evolutionarily stable strategies have been defined by

Maynard Smith and Price in the framework of bimatrix games
(Maynard Smith and Price 1973). It will be convenient to
desribe bimatrix games with the help of a notation which per-
mits an easy extension to symmetric extensive Z-person games.

2.1 Bimatrix games: A bimatrix game G = (N,I',E,E') consists

of two finite non-empty pure strategy sets I and &' for

players 1 and 2, respectively and two payoff functions E and E'

for players 1 and 2. Both E and E'are real functions defined
on the set of all pure strétegy pairs {(=z,r') with =€l and
1'€0'. The numbers E{(x,t') and E'(r,x') are the payoffs for
(r,t') of players 1 and 2, respectively.

2.2 Interpretation: A bimatrix game G = (I,I'; EL,E') is play-
ed as follows: Each of both players selects one of his pure A
strategies. The strategy choices are simultaneous and inde-
pendent of each other. Let (n,n') be the pair of pure strate-
gies selected by the players.Then ptayer 1 receives E(n,z')
as his payoff and player 2 receives E'(n,z') as his payoff.

One can think of the payoff vectors (E(z,n'), E'(n,n')) as
arranged in a bimatrix whose rows correspond to the pure stra-
tegies of player 1 and whose columns correspond to the pure
strategies of player 2. This explains the name "bimatrix
game".

In biological applications the players are thought of as par-
ticipants in an animal conflict between two members of the
same species. Payoffs are in terms of incremental Darwinian
fitness (up to positive Tinear transformations). Darwinian
fitness may be thoucht of as the expected number of off-

sprinas in the next generation, even if this is not always
the correct interpretation. The application of game theoreti-
cal concepts is based on the idea that evolutionary processes
have the tendency to optimize fitness and, therefore, produce
results which look 1ike rational behavior.
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2.3 Mixed strategies: A mixed strategy g for player 1 in

G = (mn,n'; E,E') is a probability distribution over I; ana-

“logously a mixed strategy q' of player 2 is a probability

distribution over m'. The probability assigned to =€n or ='€nm'
is denoted by q(r) or q'(z'}, respectivé1y. The symbol Q 1is
used for the set of all mixed strategies of player 1. Analo-
gously Q' is the set of all mixed strategies of player 2.
Wherever this can be done without any danger of confusionQ

no distinction will be made between a pure strategy and that
mixed strategy which assigns 1 to this pure strategy and zero
to all others.

2.4 Payoffs for mixed strategies: The payoff functions E and
E' are extended to pairs of mixed strategies (g,q') with q€Q

and g'€Q' in the usual way:

(1)  E(g,q') = = I qg(x)q'(x") E(n,t’)
g€l 71 €1

(2) E'(a,q') = % I q(r)a'(x') E*{m,n")
n€N n' €N’

The payoffs E{(q,q') and E'(q,q') are the expected values of
E(n,z') and E'(n,n'), respectively,if the mixed strategies q
and q' are played.

2.5 Best reply: r € Q is a best reply to q'€Q' in G=(n,I';E,E')
if the following is true:

(3) E(r,q') = max E(g,q9")
qeQ

Analogously r'€Q' is a best reply to q€Q if we have

(4) E'(q,r') = max E'(g9,q")
qleol

2.6 Equilibrium point: The mixed strategy pair (ror') with
reQ and r'eQ' is an equilibrium point of G=(m,n'; E,E') if r
and r' are best replies to each other.
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2.7 Remark: John F. Nash has proved a fundamental existence

theorem which implies that every bimatrix game has at least
one equilibrium point (Nash 1951).

2.8 Symmetry: A bimatrix game G = (n,n', E,E') is called

symmetric if-we have I=I' and
(5) E(n,n') = E'(n",1)

for every pair of pure strategies = and ='. In view of (5)

it is sufficient to specify the common pure strategy set I

and player 1's payoff function E in order to characterize a
symmetric bimatrix game. Accordingly, a symmetric bimatrix game

can be described as a pair (I,E) where I is the common pure
strategy set of both players and E is player 1l's payoff function.

2.9 Comment: Models of animal conflicts in evolutionary game

theory usually take the form of symmetric games. Note that the
definition of symmetry is not invariant with respect to a re-
naming of one of the player's pure strategies. In biological
applications the pure strategies have meanings like "attack"

or "flee" and it is important that the same strategy = describes
the same behavior for both players. Payoffs must be symmetric

in the sense of (5) with respect to this natural mapping bet-
ween both players' strategic possibilities.

Animal conflicts may involve asymmetries like differences of
weight and strength. Such asymmetries are not excluded by
symmetric game models. The positions in which a player may
find himself can be assigned randomly to both players in a
symmetric fashion. Pure strategies describe behavior condi-
tional on the position.

2.10 Example: Figure 1 represents a version of the famous
hawk-dove-game (Maynard Smith and Price 1973). The terms hawk
and dove refer to the character of the two strategies rather
than to the animal contestants and have political rather than
biological connotations. "e" for "escalate” is the hawkish
strategy which means serious attack whereas "d" stands for




g d
F(V-¥) v
e
1
z{(V-H) 0
1
0 > v
d
' 1
v » v
e : escalate V: value of victory
d : display W: damage of wound
W>V>0

Figure 1: The'hawk-dove—game. Rows correspond to player 1l's
pure strategies and columns to player 2's pure strategies.
Player 1's payoffs are shown in the upper left corner and
player 2's payoffs are shown in the lower right corner.

a threatening “"display"of weapons like horns and teeth. If both
contestants escalate the fight will go on until one of them

is seriously wounded; the wounded animal flees and the other
animal gains a valuable resource (e.g. a territory). Both
contestants have the same probability to win the fight. The
damage W caused by a serious wound 1is assumed to be higher

than the value V of the resource. If only one of the animals
escalates then the other one will flee and the resource will

be won by the escalating player. If both choose to display, then
some kind of unspecified random mechanism (e.g. ritual fight)
will decide who gains the resource, Again, both players have
the same chance to win.
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The game has two equilibrium points in pure strategies,

namely (d,e) and (e,d) and one equilibrium point in mixed
strategies, namely (r,r'} with

(6) r(e) =r'(e) =

(7)) r(d) =r'(d) =1-y

2.11 Evolutionarily stable strategies: Let G (n,E)

be a symmetric bimatrix game. The common set of mixed strate-
gies is denoted by Q. A mixed strategy q¥ is cailed an evolu-
tionarily stable strategy or shortly an ESS for G, if the fol-

Towing two conditions (a) and (b) are satisfied:

(a) Equilibrium condition: (g*,g#) is an equilibrium point of G.

(b) Stability condition: If r is an alternative best reply

to g%, i.e. a best reply with r # g¥*, then

(8) E(g*,r) > E(r,r)

2.12 Interpretation: The equilibrium condition (a) requires

that q* should be the equilibrium strategy of a symmetric
equilibrium point where "symmetric" is understood in the
sense that both players use the same strategy. Since the
numbering of the animal contestants is arbitrary, evolution
cannot produce a behavioral pattern which depends on this
numbering.

An evolutionarily stable strategy is meant to describe an
equilibrium of a population which is monomorphic in the sense
that all animals use the same strategy q*. Imagine that in

a very large population of this kind suddenly a mutant appears
who uses r instead of q*; this mutant has a very small re-
lative frequency £>0. Thereby, a slightiy perturbed situation
arises where an opponent in a conflict will play q* with
probability 1l-e and the mutant strategy r with probability e.
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The mutant will be selected against if the following inequa-
1ity is satisfied: .

(9) E(g®,(l-e)}q®* + er) > E{r,(l-e)g* + er)

The left hand side and the right hand side show the fitness
payoffs obtained by playing g% and r, respectively in the
perturbed situation. Due to the bilinearity of the payoff
function (9) can be rewritten as follows:

(10)  (l-e)E{g*,q*) + eE(q%,r) > (l-e)E(r,q%) + eE(r,r)

Inequality (10) cannot be satisfied for all r and for suf-
ficiently small e unless (g%,gq%) s an equilibrium point;
otherwise we would have E{(qg%,q%) < E(r,q%) for a best reply r
and the first terms on both sides would reverse the inegua-
lity for sufficiently small e. Now suppose that {q#%,q¥%) is

an equilibrium point; if r is not a best reply to g# then (10)
will be satisfied for sufficiently small ¢ in view of

E(q®,q*) > E{(r,q*), If r is an alternative best reply to g%,
then the first terms on both sides of (10) are equal and (10)
is satisfied if and only if (8) holds.

The hawk-dove-game example has only one symmetric equilibrium
point, namely the equilibrium point in mixed strategies describ-
ed by (6) and (7). It can be shown that the equilibrium stra-
tegy r = r' is evolutionarily stable.

Not every symmetric bimatrix game has an evolutionarily stable
strategy. It is known that the number of evolutionarily stable
strategies is always finite (Haigh 1975). The notion of evolu-
tionary stability is much more restrictive than that of an
equilibrium point.
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3. Extensive 2-person games

- In this section the notion of an extensive 2-person game
will be introduced. It will be useful to prepare the fogmal
definition by an explanation of the graphical conventions
used for the representation of extensive games. This will
be done with the help of a simple example. With this
example in mind the notational complications of the formal
definition will be easier to understand.

3.1 A hawk-dove~-game with incomplete information: The game

situation to be explained in the following is similar to
that of figure 1. Both players have the choice either to
"escalate” or to "display" with the same interpretation

as in figure 1. However, we now assume that one of the
players is the "possessor” of a territory and the other one
is an "intruder" who wants to conquer the territory; the
territory can be either "good" or "bad". The payoffs are
similar to those of figure 1 except that the value of a
territory depends on whether it is good or bad.

e d e d
-4 8 -6 4
e
-4 0 -6 0
) 0 4 0 a
d
8 4 4 2
V = 8 V = 4
W =16 W =16
good territory bad territory

probability .4 probability .6

Figure 2: A hawk-dove-game with incomplete information. V i$
known to the possessor but not to the intruder. For the con~
ventions of graphical representation and the meaning of syméf
bols see figure 1.
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The possessor knows the value of the territory but this
value is unknown to the intruder. The numerical assumptions
are shown in figure 2. A good territory has a value of 8
and a bad territory has a value of 4. If these values to-
gether with W = 16 are inserted in figure 1, one obtains
the payoffs shown in figure 2. It is assumed that the ter-
ritory is good with probability .4 and bad with probabili~
ty .6. The intruder does not know whether the territory
is good or bad but he "knows" these probabilities or, in
less antropomorphic terms, evolution has adapted his be-
havior to these relative frequences of good and bad
territories.

An initial random choice assigns the roles of possessor
and intruder to the two players. Both players have the

same chance to become the possessor.

3.2 Graphical representation: The hawk-dove-game with in-

complete information described above will serve to illu-
cstrate the notion of an extensive game and the conventions
of graphical representation used for such games. The
structure of an extensive game specifies which decisions
have to be made by whom in what order and under which
information on the past history of the game; it also spe-
cifies the probabilities of random choices and the final
payoffs at the end of the game.

Figure 3 represents the hawk-dove-game with incomplete 1in-
formation as an extensive game. The drawing shows a tree
structure which grows from below to above. The vertices

of the tree correspond to situations which may arise in

the game. The edges show the possibilities of continuation.

The "origin" o at the bottom of the drawing represents the
beginning of the game. The number 0 left of vertex o indi-
cates that a random decision has to be taken there. The
random decision determines which player will be the pos-
sessor of the territory; the other is the intruder. The

two possible random choices correspond to the edges oxp and
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-4 8 0 & -6 4 0 2 -4 0 8 4 -B 0 4 2
-4 0 8 i -b 0 4 2 -4 8 0 4 -6 4 0 2
z Z, 23 /74 Zg 6 Z7 Zg 29 21 V1 /12 213 /%14 V15 /%16
e d e\ d e d e d e d e d e d e d
Lot S - - memmm s AT e = II/./ \.\II- A il S - msmmEImEr T - -~ ul./
. X3 Xg 2 Xg X100 _ X11 X1 1 X13 14 )
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‘ X y U 1 X pou / X P U ’ A
cm./ IH| l{wl.l\ 4 ,rl ~ ..ml\\ [ ..f 2 ) Y 6 —r 2 Xg K Uy
N N ] 6
e /f ST TN > llf—
(0 X ‘u, ¢ O 2 "
||||| — - N, e o - —— —a
.5 .5
T T T T T Lo = T~
. 0 0 Y
\ \_- 1

Figure 3: The extensive form of the hawk-dove-game with incomplete information described in 3.1 -
Information sets are represented by dashed lines. Choices are indicated by the letters e and d.
The numbers 0, 1, and 2 show where a random decision or a decision of player 1 or player 2 has to

be made. Payoff vectors are indicated by column vectors above the corresponding endpoints. Proba-
bilities of random choices are shown left of the edge representing the alternative,
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0%, The probability .5 of these choices is indicated left
of 0Xq and 0Xy-

At xy the role of possessor has been assigned to player 1.

Now a second random decision decides whether the territory

is good (edge xlxs) or bad {edge x1x4). At X4 and X0 player 1
has to decide whether he wants to escalate or to display. This
is indicated by the number 1 left of X3 and Xg and by the
letters e and d left of the edges from xq and x, to xy, Xg,

Xg and X1q-

At X7 Xgs Xg and X190 nlayer 2 has to decide whether he wants
to escalate or to display. He has to do this without knowing
which of the vertices X7, Xgs Xg and X10 has been reached or,
in other words, without knowing whether the territory is good
or bad and whether player 1 escalates or displays. This state
of his information is expressed by saying that x5, Xg., Xg and
X10 belong to the same "information set". This information
set ug = {x5, Xgs Xg» xlo} is graphically indicated by a
dashed line encircling X725 Xgs Xg and X110 Player 1 knows

the result of the previous random decisions when he has to
act at x4 and Xg - Therefore u, = {x3} and ug = {x4} are se-
parate information sets. This is shown by the dashed lines
around Xq and Xg -

Vertices where a random choice is made are called random de-
cision points. Formally, also random decision points are as-
signed to information sets. Each random decision point always
forms a separate information set. Therefore o, X, and X, are
enclosed by separate dashed lines.

The right hand side of the drawing is analogous to the left
hand side; the roles of players 1 and 2 are reversed. Here
player 2 is the possessor who knows the value of the terri-
tory and player 1 is the intruder who does not know this value.

The endpoints z1,...,275 correspond to the possible outcomes
of the game. The payoffs associated with each of the 12 pos-
sible outcomes are shown as column vectors between vertical
bars above the corresponding endpoints. The upper entry is
player 1's payoff and the lower entry is player 2fs payoff.

ez A ST TR et e T = et ~ - - A T = = v e ey s — ke TR T T
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At ug = {x7,x8,x9,x10} player 2 has two choices, e and d. If
he selects e he does not know which of the edges x;2,,Xq24,
xgzs'and X1027 will be the continuation” of the play. There-
fore, his choice e is formally defined as the set of these
four edges. In the mathematical description of extensive
forms choices will always be sets of edges.

Actually the decisions of players 1 and 2 for e and d are
simultaneous, even if figure 3 suggests a sequential structure
where the possessor acts first. However, the fact that player 1
and 2 act simultaneously rather than one after the other does
not have any strategic significance in itself. The only aspect
of this simultaneity which does have strategic importance is
the informational one. Neither player 1 nor player Z knows

the decision of the other player when he has to make his de-
cision. This is correctly expressed by the drawing of the ex-
tensive form.

In cases where simultaneous decisions are made an extensive
game model must impose an arbitrary sequential order which
is without any significance. The information structure is
the feature which counts.

3.3 Perfect recall: Perfect recall is a property of extensive

games which has been introduced by H.W. Kuhn as the forma-
lization of the idea that a player does not forget his own
previous decisions (Kuhn 1953). The extensive games consider-
ed in this paper will always be games with perfect recail.

Obviously, it is reasonable to assume perfect recall, if a
player is thought of as a fully rational decision maker. In
the context of evolutionary game theory perfect recall has

a different interpretation. The assumption of perfect recall
does not impute any intellectual capabilities to animals, but
simply asserts that naturally evolved behavior may depend

on individual past experience in any conceivable way which
proves to be advantageous in terms of Darwinian fitness.
Obviously, this is nothing more than a simple consequence

of the general principle of fitness optimization. Therefore,
it is reasonable to construct extensive game models of ani-
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mal conflicts as games with perfect recall. Any deviation
from perfect recall would need special justification as a
restriction of the general principle of fitness optimization.

3.4 Formal definition of an extensive 2-person game: The no-

tational conventions adopted here are essentially the same
as in an earlier paper by the author (Selten 1975). The words
extensive game will always refer to a finite Z2-person game

in extensive form with perfect recall. A game of this kind
is described by a septuple

(11) r = (K, P, U, C, p, h, h')

where the constituents K, P, U, C, p, h and h' of T are as

foillows:

(a) The game tree: The game tree K is a finite tree with a

distinguished vertex o, the origin of K. The seguence of
vertices and edges connecting o0 to a vertex x is called the
path to x. We say that y comes before x or that x comes after
y if y is different from x and on the path te x. An endpoint

is a vertex z such that no vertex comes after z. A decision
point is a vertex which is not an endpoint. The set of all end-
points is denoted by Z.The set of all decision points is de-
noted by X. A path to an endpoint is called a play. The edges
are also called alternatives. An alternative at x is an edge
which connects x with a vertex after x.

{b) The player partition: The player partition P = (PO’Pl’p2)

partitions X into a random decision set PO’ a decision set P1
of player 1 and a decision set P2 of player 2.

(c) The information partition: For i = 1, 2 a subset u of P_i
is called eligible (as an information set), if u is not empty,
if every play intersects u at most once and if the number

of alternatives at x is the same for every x € u. A subset

u € Pyp is eligible, if it contains exactly one vertex.

The information partition U is a refinement of the player par-
tition into eligible subsets of PO’ Pl and P2' These subsets

u are called information sets. For i = 0, 1, 2 the set of all

e e T e et R I R e D
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information sets u c P, is denoted by U.. The elements of Uy
and U2 are called information sets of player 1 and player 2,
respectively.

(d) The choice partition: For u € U the set of all alternatives

at vertices x € u is denoted by Au' A subset ¢ of Au is called
egligible {(as a choice), if it contains exactly one alterna-
tive at every x € u. The choice partition C partitions the set
of all edges of K into eligible subsets ¢ of the Au. These
sets are called choices. The choices ¢ = A are called choices
at u. The set of all choices at u is denoted by C . The union
of all Cu with u Pi is denoted by Ci' The choices 1in Cl’ C2
and C0 are called choiceslgj player 1, of player 2 and random
choices, respectively. We say that the vertex x comes after
the choice ¢ if one of the edges in ¢ is on the path to x.
In this case we also say that c¢ is on the path to x. The
choice ¢ precedes an information set u if ¢ is on the path

to at Teast one x € u. The information set v precedes an
information set u if a choice at v precedes u. The choice ¢
necessarily precedes an information set uvu if ¢ is on every
path to a vertex x € u. The information set v necessarily
precedes u 1if a choice at v necessarily precedes u.

(e} The probability assignment: A probability distribution Py

over Cu is completely mixed, if it assigns a positive pro-~
bability pu(c) to every c € Cu' The probability assignment
p is a function which assigns a completely mixed probability

distribution Pu ober Cu to every u € Uo'

(f) The payoff functions: The payoff functions h and h' of
players 1 and 2, respectively assign real numbers h(z) and
h'(z),respectively to every z € Z. The numbers h(z) and h'(z)
are called payoffs of player 1 and player 2 at z, respective-

ly.

(g) Perfect recall: The extensive games considered here are
games with perfect recall which means that the following
condition must be satisfied for every information set u of
player 1 or 2: If u is player i's information set then every
choice ¢ of player i which precedes u, necessarily preceds u.

i e TR RS T T S RS T R T T T
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3.5 Subgames: Let T = (K,P,U,C,p,h,h') be an extensive game
and let y be a decision point in I which is different from the

origin o. The subtree Ky at y consists of y and all vertices
of K after ¥ together with all edges of K connecting such ver-
tices. We say that y is a decomposition point of T, if y is a

decision point different from the origin and in addition to
this the subtree Ky at y has the following property: If an
information set u of T contains vertices in Ky, then all ver-
ti i K.. Let s, U, C, R and h' be th
| ices in u belong to y e Py y y py hy n y the
restictions of P, U, C, p, h and h' to Ky. If v is a decom-
sUs h,h'
y» Pyr Uys Cpup )
t

position point, then the game ry = (K y* Ny
is a subgame of T, referred to as the subgame

‘yS
at y.
The notational conventions introduced in 3.4 are transferred

to subgames in the following way: the lower indices 1, 2 and 0
pointing to players 1 and 2 and to random events, respective-
ly, are used as second lower indices, e.g. Py = (PyO’Pyl’ Pyz).
It is clear that a subgame Fy of T has all the properties re-
quired in (a) to (g) including perfect recall. The origin o of
r is not a decomposition point and T itself is not a subgame

of T.

3.6 Comment: A subgame is a part of an extensive game which

can be looked upon as a game in itself. Not every subtree be-
longs to a subgame. It is important that each player must

know for sure that he is in the subgame when he has to make

a decision there. For this reason the definition of a decom-
position point requires non-overlapping information sets in
the subtree at the decomposition point. The game of fiqure 3
has two subgames at X1 and Xy There is no subgame at X3 since
g contains the vertices Xg and X190 which do not belong to

the subtree at Xq- At g player 2 does not know whether he

is in that subtree or not.

Subgames are important substructures of extensive games. Once
a subgame has been reached everything outside the subgame
becomes irrelevant as far as the strategic situation is con-
cerned.
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4. Strategies

The definitions introduced in the following refer to a fixed
extensive 2-person game T = (K, P, U, C, p,h,h').

4.1 Pure strategies: A pure strategy = of player 1 is a

function which assigns a choice ¢ at u to every u € Ul; ana-
lTogously a pure strategy =' of player 2 assigns a choice ¢

at u to every u € UZ' The symbols 1 and I' are used for the
set of all pure strategies of player 1 and player 2, re-
spectively.

4.2 Interpretation: A pure strategy is a complete plan of

behavior for a player. In the game of figure 3 each pure
strategy of player 1 can be characterized by a string of
three letters like "ede" where the letters stand for the
decisions at Ugs Ug and Ugs respectively. Since there are
two choices e and d at each of the three information sets,
there are altogether 8 such strings. Each of both players
has 8 pure strategies.

It may happen that a choice at an earlier information set
excludes the possibility that a later information set of
the same player is reached. It is important that also in
this case a choice has to be specified at the later infor-
mation set. The completeness requirement for the behavior
plan expressed by a pure strategy covers all situations
which may arise in the géme, regardless of whether they
can occur or not if the strategy is actually used.

Mixed strategies have been defined already in subsection 2.3.
The definitions and notations introduced there are also
applied to extensive games.

In extensive games a player may also randomize locally over
the choices at his information sets instead of randomizing
globally over his pure strategies. The possibility of local
randomization leads to the notion of behavior strategies
which will be defined below. In this paper, behavior strate-
gies will be much more important than mixed strategies.
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4.3 Local strategies: A local strategy bu at the information
set u € Ui js a probability distribution over the set Cu of
choices at u; the probability assigned to a choice ¢ at u is
denoted by bu(c). A local strategy is called pure if it assigns
1 to one choice ¢ and 0 to all other choices. Wherever this

can be done without danger of confusion no distinction will

be made between a choice ¢ and the pure local strategy with
probability 1 for c. The set of all local strategies at u is
denoted by Bu'

4.4 Behavior strategies: A behavior strategy b for player 1

is a function which assigns a local strategy bu € Bu to every
u € Ul' Analogously a behavior strategy b' for player 2
assigns a local strategy bu € Bu to every u € UZ' The set

of all behavior strategies of player 1 is denoted by B and

the set of all behavior strategies of player 2 is denoted

by B'. Since choices are special local strategies,pure strate-
gies are special behavior strategies.

4.5 Expected payoffs: For every endpoint z the set of all

choices which contain alternatives on the play to z is denot-
ed by C(z). Consider a behavior strategy pair (b,b'), i.e.

a pair with b € B and b' € B'. The probability that a vertex X
is reached,if (b,b') is played, is denoted by y{x,b,b'). This
probability, called the realization probability of x under
(b,b'), is the product of all pu(c), alil b (c) and all b&(c)
assigned by p, b and b' to choices ¢ on the path to x. Player

1's payoff is computed as follows:
(12) E(b,b') = £ v(z,b,b")h(z)
z€Z
Player 2's payoff E'(b,b') is defined analogously:
(13) E'(b,b') = £ y(z,b,b")h'(z)
z€Z

Since pure strategies are special behavior strategies, these
formulas apply to pure strategy pairs (=n,n') as well.

4.6 Normal form: The pure strategy sets I and n' of r together
with the payoff functions E and E' restricted to pure strate-
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gy pairs {n,n') with = €1n and n'€r' form a bimatrix game
G = (nm,n';E,E'}. This bimatrix game is called the normal
form of T.

4.7 Comment: It has been mentioned already in the intro-

duction that the normal form cannot replace the extensive
game. It will be necessary to make a sharp distinction
between evolutionarily stable strategies of the normal form
and of the extensive game. The latter will be defined in
terms of behavior strategies rather than mixed strategies.
It will turn out that the difference between mixed strate-
gies and behavior strategies becomes very important as

soon as one deals with evolutionarily stable strategies.

Equilibrium points of the extensive game will be defined
in terms of behavior strategies, too. In order to avoid
any risk of confusion we shall always sharply distinguish
between equilibrium points of the extensive game and equi-
1ibrium points of the normal form.

4.8 Best replies: A behavior strategy r of player 1 1is

called a best reply to a behavior strategy b' of player 2

if we have:

(14) E(r,b') = max E(b,b')
bes

Analogously r' is a best reply to b if we have:

(15) E'(b,r') = max E'(b,b")

4.9 Equilibrium point: A pair of behavior strategies (r,r')
with reB and r'€B' is an equilibrium point of the extensive

game T if r and r' are best replies to each other,

4.10 Relationship between mixed and behavior strategies:
There is a natural way to assign a unique mixed strategy
to every behavior strategy. Consider a behavior strategy
b for player 1; for every =€l let q(n) be the product of
all probabilities b,(c) assigned by b to choices ¢ with
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¢ = n{u). In this fashion a mixed strategy g is defined
which is called the mixed representative of b, The mixed

representative of a behavior strategy b'€B' is defined

analogously.

A behavior strategy and its mixed representative are reali-
zation equivalent in the sense that for any fixed behavior

of the other player the probability that a vertex x is
reached is the same for both strategies. A more precise
definition of realization equivalence can be found else-
where (Selten 1975). For the purposes of this paper it is
sufficient to rely on the informal explanation given above.

H.W. Kuhn has proved a theorem which shows that in extensive
games with perfect recall not only a realization equivalent
mixed strateqy can be found for every behavior strategy, but
also a realization equivalent behavior strategy can be found
for every mixed strategy (Kuhn 1953). This shows that a
player's strategic possibilities in an extensive game with
perfect recall are fully represented by his behavior strate-
gies.

Since different behavior strategies have different mixed
representatives the set of all behavior strategies of a
player can be identified with a subset of his mixed strate-
gies. In many cases, the number of dimensions of the set

of all behavior strategies is much lower than that of the
set of all mixed strategies. For example, in the game of
figure 3 a behavior strategy of player 1 can be characteriz-
ed by 3 -parameters, namely the probabilities to choose e

at the information sets u;, Ug and ug. In order to characterize
a mixed strategy of player ! one needs 7 parameters, since
there are 8 pure stratégies (see 5.2)..

Already here it can be seen why the description of a player's
strategic possibilities by his mixed strategies involves much
spurious duplication which is avoided by a conceptualization
in terms of behavior strategies. Later it will become clear
why this spurious dupliication has desastrous consequences

for a definition of evolutionarily stable strategies in terms
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of mixed strategies if it is applied to extensive games.

4. 11 Existence of equilibrium points: The existence of at

least one equilibrium point for every extensive Z-person
game with perfect recall is an immediate consequence of
Kuhn's theorem mentioned above and Nash's existence
theorem for finite games in normal form {(Nash 1951, Kuhn
1953).

PR ——————_ P S S r e
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5. The symmetry problem

The definition of an evolutionarily stable strategy in
section 2 refers to a symmetric bimatrix game G = (m,E).

In a game of this kind the pure strategy sets of both

players coincide. It is clear what it means that both players
use the same strategy.

Consider an extensive 2-person game T; here the pure stra-
tegy sets of both players never coincide even if the game

is obviously symmetric in any reasonable sense. The game

of figure 3 may serve as an example. A pure strategy of
player 1 assigns choices to the information sets of player 1
and a pure strategy of player 2 assigns choices to infor-
mation sets of player 2. Both must be different, simply
because both players have different information sets.

Nevertheless, it is clear that in figure 3 the information
sets Ug» Ug and Ug of player 1 correspond to the infor-
mation sets ug, uUg and Ug of player 2, respectively and that
both players "use the same strategy" in an intuitive in-
formal sense if the probabilities for e and d agree at
corresponding information sets of both players.

The example of figure 3 suggests that a formal definition
of symmetry in an extensive Z-person game should involve
mappings of one player's information sets onto those of
the other and of one player's choices onto those of the
other. The definition of a symmetry given below will take
the form of a mapping f from the choice set C onto itself
with certain special properties.

An extensive 2-person game may be symmetric in several
different ways or,in other words, it may have several
symmetries in the sense to be made precise below. In such
cases one must specify which of the symmetries is the
natural one which connects biologically equal behaviors
of both players. Therefore, a symmetric extensive game
will not be defined as an extensive game in the usual
sense, but as an extensive game together with one of its
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symmetries.

The questions raised by the meaning of symmetry must be
clarified by formal definitions. This is a necessary first
step in any attempt to transfer the concept of an evolutiona-
rily stable strategy to the framework of the extensive game.

5.1 Definition of a symmetry: Consider an extensive Z-person
game T = (K,P,U,C,p,h,h"'). A symmetry f of T is a mapping
from the choice set C onto itself with the following pro-
perties (a) to (f) -

(a) If cECO then f(c)EC0 and p(f(c)) = p{c)
(b) If cecl then f(c)€C,

(c} f{f(c)) = ¢ for every ceC

(d)

For every u€lU there is a u'€U such that for every
choice ¢ at u, the image f(c) is a choice at u'. - The
notation f{u) is used for this information set u'.

d

(e) For every endpoint z€Z there is a z'€Z with f(C{z)) =
C(z'), where f(C(z)) is the set of all images of choices
in €(z), - The notation f(z) is used for this endpoint

(F) h(f(z)) = h'(z) and h'(f(z)) = h{z)

5.2 The example of figure 4: This game has the following

symmetry f:
(16) fley) = e,
(17) f(dy) = d,
(18)  flep) = e
(19) f(dy) = dy

It can be seen easily that f satisfies the properties (a) to
(c). The choices at u; have images at u, and vice versa. (d)

is satisfied, too. The basic mapping f is defined for choices.

2 A
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Figure 4: The hawk-dove~game of figure 1 with V = 4
and W = 16 as an extensive game

Figure 5: An example with two symmetries
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Mappings for information sets and endpoints are induced
by the basic mapping. For the sake of simplicity the sym-
bol f is also used for the induced mappings.

Note that no one to one mapping is induced on the set X
of all decision points. The image Un of the one element
set Uy has two elements.

The enqboints 215 Zp, Zg4 and z, have the images z;, 24,
zZ, and Zgs respectively. It can be seen immediately that
(e) is satisfied. For example, Z, is mapped to Zg and

we have C(zz) = {el,dz} and C(z3) = {EZ’dl}' Property (f)
requires that both payoffs at an endpoint are exchanged
by the mapping. This is the case in figure 4.

5.3 The example of figure 3: The natural symmetry f of
this came maps the choice e and d at Ugs Ugs> Ugs Uy, Ug

and Ug to e and d, respectively at Ugs Uss Ugs Ugs Ug and
Ug> respectively. The Teft random choice at u, is mapped
to the right one and vice versa and the left and right
choices at u, are mapped to the left and right choices at
Usg and vice versa. It can be seen here, too, that (a) to
(f) are satisfied.

In the case of figure 3 one could describe the symmetry
by a mapping from vertices to vertices, but as we have
seen with the help of figure 4, this is not always possible.

5.4 An example with two symmetries: Consider the game of
figure 5. This game has two symmetries fl and f2. Symmetry
f
moreover, fl(ul) = u, and fl(u3) = Ug. The images of choices,
information sets and endpoints on the left hand side of the
figure remain on the left and those on the right remain on
the right.

maps each of both initial random choices to itself;

The second symmetry f2 maps the left initial random choice
to the right one and vice versa, uj and U, are mapped to
us and Uy s respectively. The choices, information sets
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and endpoints on the left hand side are moved to the
right and vice versa.

It is important to know which of the two symmetries is
the natural one. The answer cannot be deduced from the
structure of figure 5. It depends on the interpretation
of the game.

The initial random decision can be distinguishing or neutral

in the following sense: Suppose that the left random choice
determines player 1 as the possessor of the territory and
the right random choice determines player 2 as the posses-
sor. Afterwards both players know who is the possessor and
who is the intruder. In this case, the random decision is
distinguishing. The roles of possessor and intruder can be

distinguished. A player cannot make his behavior dependent
on whether he is player 1 or player 2, but he can make

his behavior dependent on his role, Information set u,
where player 1 is the possessor must be mapped to u, where
player 2 is the possessor. Clearly, this interpretation of
figure 2 leads to f2 as the natural symmetry.

Now consider another interpretation of the random choices in
Figure 5. Suppose that the left choice means rain and the
right one means sunshine. Since rain and sun are impartial
to both animals, player 1's information set u, after rain
must now be mapped to player 2's information set u, after
rain and similarly the information sets u, and u, are
mapped onto each other. In this case, the random decision

is neutral and fl is the natural symmetry of the game.

In figure 5 payoffs are determined by the players' decisions
for e and d. The random choice at the beginning has no in-
fluence on the payoff. The role distinction in the first
interpretation is payoff irrelevant in this sense (Hammer-
stein 1981). As we shall see later a payoff irrelevant role
distinction may have important strategic consequences.
Maynard Smith and Parker were the first to observe this

fact (Maynard Smith and Parker 1976 ).
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5.5 Definition of a symmetric game: A symmetric extensive

2-person game, also shortly called a symmetric game s a

pair (r,f) where r= (K,P,U,C,p,h,h'} is an extensive 2-per-
son game with at least one symmetry and f is one of these
symmetries. f is called the natural symmetry of (r,f).

5.6 Symmetric images of strategies: Let (r,f) be a symme-
tric game as defined in 5.5 and let b be a local strate-

gy at an information set u. Let v be the symmetric image
f(u) of u. The local strategy b, at v with

(20) b, (F(c)) = by(c) for all c€C,

is called the symmetric image of bu. The notation f(bu) is

used for the symmetric image of bu. In view of properties
(c) and (d) in the definition of a symmetry the following
is true for every information set u:

(21) f{(f{u)} = u
Therefore for every 1ocai strategy bu we have
(22) fF(f(by)) = b,

Consider~a pair of behavior strategies b and b' for plaver 1
and 2, respectively. Let bu and ba-be the local strategies
assigned by b and b' to information sets u of players 1

and 2, respectively. We say that b' is the symmetric image
of b and b' is the symmetric image of b and we write

b' = f(b) and b = f(b') if for every information set u of
player 1 the local strategy b; at v = f(u) is the symmetric
image f(bu) of b,. In view of (21) and (22) we have:

(23) f(f(b)) = b
for every beB and
(24) f(f(b')} = b’

for every b'€B'.
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5.7 Symmetry and expected payoff: Consider a behavior

strategy pair (b,b'). The realization probability y(z.bsb')
of an endpoint z (see 4.5) does not change if z, b and b'
are replaced by their images under f:

(25) v(f(z), f(b'), f(b)) = v(z,b,b")

This can be seen 1mmédiate1y with the help of property (e)
of a symmetry. In view of property (f) this yields the
following conclusions:

(26) E(f(b'), f(b))= E'(b,b")
(27) E'(f(b'), f(b)) = E(b,b")

for every beB and every b'e€B'. Eguations (26) and (27)
show that the payoffs of both players are interchanged if
the behavior strategy of each player is replaced by the
symmetric image of the other player's strategy. This pro-
perty is analogous to the symmetry property {(5) of sym-
metric bimatrix games (see 2.8).

5.8 The symmetric normal form: Consider a symmetric ex-

tensive 2-person game (Tr,f). The normal form G = (m,m',E,E")
of T is not a symmetric bimatrix in the sense of 2.8 since

m and 1' are different from each other. However, it is easy
to construct a symmetric bimatrix game which has essentially
the same relationship to (T,f) as the normal form to the
extensive form. In this bimatrix game both piayers have the
same pure strategy set I. Player 1l's payoff E{n,0) 1f

player 1 selects €N and player-2 selects g€l is defined

as follows:
(28) E(t,9) = E(n,f(9))

For the sake of notational parsimony no new symbol is in-
troduced for the new payoff function on the left hand side.
No confusion can arise from this convention since the new
payoff function is defined on a region which has no inter-
cection with that of the old one. The common pure strategy




set n1 for both players together with the payoff function E
for pairs (n,¢) with n,p€l form a symmetric bimatrix game
(T,E). This symmetric bimatrix game is called the sym-
metric normal form of (r,f).

Definition 2.11 of an evolutionarily stable strategy for

a symmetric bimatrix game can be applied to the symme-

tric normal form of (r,f}. This is maybe the most obvious
way in which one may try to generalize the notion of an
evolutionarily stable strategy to extensive games. However,
as we shall see in section 7, it is better to take a dif-
ferent approach based on behavior strategies rather than
mixed strategies.

5.9 Subgame preservation: A symmetry f for T is called

subgame preserving, if in addition to the properties (a)

to (f) the following condition (g) is satisfied:

(g) For every subgame T of T there is a subgame ry of T
such that every information set u of Ty has its image
f(u) in Fy and every information set u of ry has its
image f(u) in Ty - (The subgames Ty and Ty may or may

not be different from each other.)

We write ry = f(rx)
dition (g). Obviously, in this case we also have rx=f(r

if Fy and r, are related as in con-
y)'
Figure 6 shows an example of a symmetry which fails to be
subgame preserving. The subgame at x is not mapped into

a subgame. v' = f(v) belongs to a subgame but this subgame
contains u' as well. However, figure 6 has the peculiar
feature that there is only one choice at some information
sets. As we shall see this special property is crucial

for the example,

5.10 Theorem 1 (subgame preservation): Let f be a symmetry
of an extensive 2-person game I', If in I there are at least
two choices at every information set, then f is subgame pre-

serving.
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Proof: Let y be a decomposition point of T and let ry be
the subgame at y. For the purposes of this proof we shall
introduce the following notations: Uy ijs the set of all in-
~formation sets in T . The set of all information sets '
which intersect the path to y but do not beiong to Uy is de-
noted by Vy.The cet of all information sets of I not in Uyorvy
is denoted by V_y. The sets of all choices at information
y and V_y,
and D_y, respectively.

sets 1in Uy, v respectively,are denoted by Cy, Dy

Figure 6: A symmetry which fails to be subgame preserving.
DoubTe arrows show which information set is mapped to which.
Choices L, R and M are mapped to L, R and M, respectively.
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Since ry is a subgame all choice in D necessarily precede
all information sets in U We are go1ng to show that all
choices in the image set f(Dy) of Dy necessarily precede
all information sets in the image set f(Uy) of Uy

Consider a choice cEDy and an information set uEUy. Assume
that f(c) does not necessarily precede f{u). Then there

must be a vertex x in f{u) such that the path to X does

not contain an edge of f(c). Nevertheless, it follows by

(e) that an edge of f(c) must be on every play through X.
Therefore,f(c) is a choice at an information set v which
contains at least one vertex x' after x. Since there are

at least two choices at v, there must be a play through X
which does not contain an edge on f(c). This cannot be true,
since all plays through x contain an edge of f(c). Conse-
quently, the choices in f(Dy) necessarily precede the in-
formation sets in f(Uy).

Plays through information sets in D_y do not intersect in-
formation sets in U_,. Therefore, plays through information.
sets in the image set f(\Ly) of V_y do not intersect in-
formation sets in the image set f(Uy) of Uy

Let z be an endpoint of ry' From what has been said before
it follows that the choices on the play to f(z) belong to
f(Dy) and f(C )s moreover, all choices in f(D } are on the
play to f{z) and these choices precede the 1nformat1on sets
in f(Uy) Therefore, the play to f(z) contains a vertex y
such that the choices in f(D ) are on the path to y and

the rema1n1ng ones are on the connection from y to f(z).

This vertex y is independent of the choice of the endpoint 2z
of T since the same choices in f(Dy) are made in all cases
before the first information set in f(Uy) is reached. This
shows that y is the origin of a subgame Ty whose information
sets are those in f(Uy). It is now clear that f js subgame
preserving.
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6. Towards an ESS definition for extensive games

The treatment of the symmetry problem in the previous section
has prepared the ground for a generalization of the concept
of an evolutionarily stable strategy to the framwork of the
extensive game. A first step in this direction will be the
introduction of the notion of a "direct ESS". Even if the
direct ESS is not yet a final concept it will be useful

to discuss the difference between a direct ESS which is
defined in terms of behavior strategies and a mixed stra-
tegy ESS for the symmetric normal form. It will become
clear why a definition in terms of behavior strategies

is preferable to a definition in terms of mixed strategies.
Later it will be shown that the direct ESS definition is
unduly restrictive and the more 1iberal concept of a limit
ESS will be prepared by the discussion of an instructive
example.

6.1 Definition of a direct ESS: Let (r,f) be a symmetric
extensive 2-person game. A direct evolutionarily stable

strategy or shortly a direct ESS for (r,f) is a behavior

strategy b for player 1 in T with the following two pro-
perties (a) and (b).

(a) Equilibrium condition: (b,f(b)) is an equilibrium

point of T.

(b) Stability condition: If r is an alternative best reply
to f(b), i.e. a best reply with r % b, then

(29)  E(b,f(r)) > E(r,f(r))

A behavior strategy b which satisfies (a) but not necessa-
rily (b) is called a symmetric equilibrium strategy. An
equilibrium point of the form (b,f(b)) is called a symmetric

equilibrium point.

6.2 Comment: It can be seen immediately that the conditions
(a) and (b) in 6.1 are direct translations of conditions (a)
and (b) in the definition 2.11 of an evolutionarily stable

strategy for a bimatrix game. The biological interpretation

e e Tl b i L ik it i e




remains the same as before.

6.3 Direct ESS versus ESS of the symmetric normal form:

As has been pointed out in 5.8, at least at first glance

it may seem to be a natural idea to define an ESS of a sym-
metric extensive game (r,f) as an ESS of its symmetric
normal form (I,E). It is important to point out that this
definition in terms of mixed strategies is different from
the definition in terms of behavioral strategies given

in 6.1. This will be shown with the help of the example of
of figure 7. The discussion will also illustrate the ad-
vantages of a definition in terms of behavior strategies.

The game of figure 7 is similar to the subgame after
the left initial random choice in figure 3. Here, too,
one may think of a fight over a territory which may be
good or bad, but now with equal probabilities, contrary
to figure 3; moreover, now both players know whether
the territory is good or bad.

The subgame at X, and x, in figure 6 are hawk-dove-games
with W = 16 and with V = 8 and V = 4, respectively (see
figure 2). With the help of (6) and (7) evolutionarily
stable strategies can be computed for these hawk-dove-
games. If this is done we actually obtain a direct ESS
for the game of figure 7, namely the following behavior
strategy b* for player 1l:

It
[$3]

(30)  bi(e)

.25

(31)  bg(e)

Since the probabilities for e and d sum up to 1, a be-
havior strategy for player 1 is fully described by the
probabilities assigned to e at u and v.

1t can be shown easily that the game of figure 7 has
exactly one direct ESS as defined in 6.1, namely the
behavior strategy b* with (30) and (31). For the sake
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of brevity no proof will be given here.

—_—— e — e - ———

Figure 7: A hawk-dove-game with complete information on a re-
source value with random variation. The natural symmetry is
indicated by double arrows.

Figure 8 contains the symmetric normal form of the game
of figure 7. It can be shown without much difficulty that.
this bimatrix game has no evolutionarily stable strategy.
It will be illuminating to discuss the main reasons for
this phenomenon without giving a detailed proof.

It can be shown without difficulty that all symmetric
equilibrium points of the game of figure 8, i.e. all equi-
librium points of the form (q*,q*) are characterized by
the following equations:

(31) q%(ee) + q*(ed)

1]
o

(32) q*(ee) + q*(de)

.25
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ee ed de dd
-5 0 1 6
ee
-5 -2 -3 0
-2 -1 4 5
ed
0 -1 2 1
-3 -2 -1 4
de
1 4 -1 2
0 1 2 3
dd
6 5 4 3

Figure 8: The symmetric normal form of the symmetric exten-
' ' sive game of figure 7. The first and second letter
- in the two letter symbols for pure strategies stand
for player 1's choice at u and v, respectively.
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Equations (32) and {33) permit the interpretation that g%
must result in the same probabilities for e and d at u and

v as the direct ESS in behavior strategies described by (30)
and (31).

It can be seen easily that there are infinitely many stra-
tegies gq* which satisfy (32) and (33). In the range

0 < q*(ee) < .5 the probability for ee can be selected ar-
bitrarily; then the other probabilities are determined by
(32) and (33).

It can be shown that all mixed strategies gq* which satisfy
(32) and (33) are payoff equivalent in the sense that regard-
less of which r is used by player 2 the payoffs E(g#,r) and
E(r,q*) do not change if one mixed strategy g% 1is replaced

by another.

Suppose that q* satisfies the equilibrium condition {a) in
the ESS definition of 2.11. Then (32) and (33) are satis-
fied. Let r* be a different strategy such that (32) and (33)
are satisfied with r* instead of g#, too. Since g* and r*
are payoff equivalent we must have

(34) E(q#,r#) = E(r#,r#)

Consequently, the stability condition (b) in the ESS defi-
nition of 2.11 cannot be satisfied by g*. Therefore, the
symmetric bimatrix game of figure 8 has no evolutionarily
stable strategy.

The fact that there are infinitely many strategies g* which
satisfy (32) and (33) is due to the spurious duplication

in the description of strategic possibilities by mixed stra-
tegies (see 4.10). This spurious duplication results in a
multitude of payoff equivalent alternative best replies to
any symmetric equiTibrium strategy and, thereby, destroys
the chance to satisfy the stability condition (b) in the

ESS definition of 2.11.



e A R ST it ) Tib g s R A Tl e i s S b 0 sl e N 52 2 TR T R I P T P S R 2 N PR 0 P DG T IR BN

- 41 -

The example shows that the direct ESS defined in 6.1 is
different from an ESS of the symmetric normal form. It also
shows why an ESS definition in terms of behavior strategies
is preferable. The payoff equivalent alternative best replies
to a symmetric equilibrium strategy of the bimatrix game in
figure 8 do not really describe different forms of behavior.
Since differences between two mixed strategies satisfying
(32) and (33) are unobservable, it seems to be inadequate

to think of them as destabilizing sources of genetic drift.

Since the stability condition in the ESS definition breaks
down in the presence of payoff equivalent alternative best
replies,it is important to avoid spurious duplication in
the description of strategic possibilities,.

6.4 Towards a less restrictive ESS definition: The concept
of a direct ESS introduced in section 6.1 it not yet com-

pletely satisfactory. Many potentially interesting biolo-
gical extensive game models must be expected to have no
direct ESS.

A simple example called the "male desertion game" will
serve to illustrate the source of the difficulty. It will
be arqued that the non-existence problem is due to the
overexactness of the game model. The difficulty can be
overcome if one permits the possibility that choices which
are never taken intentionally are nevertheless taken with
a very small probability by mistake.

The basic ideas underlying the less restrictive notion

of an ESS to be proposed in this paper will be discussed
informally with the help of the male desertion game example.
Formal definitions will follow in section 7.

6.5 A male desertion game: An admittedly not very realistic
model suggested by the literature (Dawkins 1976, chapter 9)
may serve to illustrate the non-existence problem faced

by the direct ESS definition,
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0 < a < 1
0 < s

Fiaure 9: A male desertion game. - The meaning of sym-
bols- is explained in the text.:The natural symmetry f.
maps u to u' and v to v'. B R

The game model is shown in figure 9. The initial random
choice assigns the roles of “male bird" and "female bird"
to players 1 and 2.If chance moves to the left, player 1

is the male bird and player 2 is the female bird. The roles
are interchanged on the right hand side of the figure,

After the role assignment the male bird has to choose bet-
ween L and R where L stands for "leave" and R stands for
neaise". If he selects R, he decides to help to raise his
young, if he chooses L he Teaves the female and abandons
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his young in order to look for a second chance to find a

female in the same season.

1f the male bird has chosen L, a further decision has to
be made by the female bird. R means that she decides to

raise her young without the help of the male bird and L

means that she abandons her young, too.

The incremental fitness obtained, if both cooperate in
raising their young is normalized to 1. The incremental
fitness obtained, if the female alone raises her young,is
denoted by a. The fitness value of a second chance to find
a male is expressed by s. Of course, we must have s > 0 and
0< a< 1.

6.6 Analysis of the male desertion game: It is important

to distinguish two cases:

{35) a +5s >1
and
(36) a +s< 1

The limiting case a+s=1 will not be considered here.

The first case (35) raises no difficulties. In this case,
the game has a uniquely determined direct ESS which pre-
scribes L at u and R at v. It is advantageous for the male
bird to leave, and after the male bird has Teft, it pays
for the female to raise her young alone. '

From a theoretical point of view the case (36) is the more
interesting one. No direct ESS exists in this case. There

are infiniteTy many symmetric equilibrium strategies of

the following form: At u player 1 chooses R and at v player 1
chooses an arbitrary local strategy bv' If player 2 plays R
at u' it does not matter what player 1 does at v.

tet b and r be two different symmetric equilibrium strate-
giess i.e. two different behavior strategies of piayer 1
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which prescribe R at u. Cleariy, b and r are best replies to
each other. Obviously, we have:

(37) E(b,r) = E{r,r) =1

This shows that b fails to be a direct ESS. No direct ESS
exists.

6.7 Interpretation of the non-existence phenomenon: If one

looks at the case a+s<l of the male desertion game in an un-
prejudiced way, one immediately finds the -intuitively obvious
solution: R should be chosen everywhere. Clearly, R is better
than L at u and u'. Once v or v' has been reached R is bet-
ter than L there, too. Nevertheless, this obvious solution

is not evolutionarily stable. It is instructive to examine
this fact in the Tight of its biological interpretation.

Since the female never has to make a decision,if the male
always decides to cooperate in child rearing, no selective
pressure is éxerted on the choice the female would have to
make in case of male desertion. Therefore, at Teast at first
glance nothing seems to prevent genetic drift with respect
to the female decision.

Is it really justified to accept the idea that no selective
pressure is exerted on the choice of the female, if the

male always decides to choose R? Suppose for example that
the male bird does not come back to the nest because it

has become the victim of a bird of prey. From the point

of view of the female an event of this kind is indistinguish-
able from male desertion. Even if such events may be rare
they can exert sufficient selective pressure towards the
intuitive solution where the female raises her children
alone, should this become necessary.

6.8 Small mistake probabilities: Since physiological me-
chanisms are not absolutely precise and subject to malfunction

caused by outside disturbances, it must be expected that on
rare occasions an animal will "make a mistake"” and take a
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choice which is not the one prescribed by its fitness
optimizing genetically fixed behavioral program.

In the male desertion game it may for example happen that
the male bird accidentally hits a hard object (e.g. a
window pane) and, thereby, receives a shock which erases
the memory of his mate and induces him to lTook for a new
one,

Biological models are always slightly misspecified since
they ignore all kinds of very rare events which may cause
deviations from the genetically fixed behavioral program
described by an evolutionarily stable strategy. It would
be futile to try to construct very complicated games
which explicitely model these events. Instead of this

it shall be assumed that wherever a choice has to be made
there may be a small probability of mistake. The nature
of the mistakes and the exact size of the mistake proba-
bilities need not be specified.

In the case of the male desertion game with a+s<l, it is
sufficient to assume that the male cannot avoid a small
minimum probability e for his wrong choice L. Even if R
is his optimal choice, at rare occasions he will select L
by mistake. The unavoidable mistake probability of e per-
turbs the game situation; the original game is slightly
changed to a "perturbed game" where at u and u' local
strategies must be played which assign a probability of
at least ¢ to L.

Unlike the original game, the perturbed game does have

a direct ESS; this ESS selects R with the maximum pro-
bability of l-e in the male role and with probability 1
in the female role. (One may also assume a minimum proba-
bility of L for the female, too, but it is not necessary
to do so.) As e goes to zero, this ESS approaches the
intuitive solution where R is always chosen everywhere.
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1f one thinks of the unperturbed game as an approximation
of an unknown perturbed game it makes sense to define an
ESS as a 1imit of direct ESS's for perturbed games in a se-
quence approaching the unperturbed game. In this sense

the strategy to choose R everywhere is an ESS of the

male desertion game.

The approach outiined above will be used in order to de-
Fine a "limit ESS". The limit ESS is the less restrictive
ESS notion proposed in this paper.
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7. The concept of a limit ESS

The idea to look at sequences of perturbed games with
small mistake probabilities has been used as the basis
of a perfectness definition for equilibrium points of
extensive games (Selten 1975). Perfectness excludes un-
reasonable choices in unreached parts of the game. The
set of equilibrium points is considerably reduced by

the perfectness requirement. Following a suggestion by
R.J. Aumann the use of perturbed game sequences is often
referred to as the "trembling hand approach".

In the following the trembling hand approach is used

in order to arrive at a less restrictive ESS definition,
It is somewhat surprising that essentially the same ap-
proach on the one hand makes the equilibrium point notion
more restrictive and on the other hand makes the ESS
notion less restrictive.

7.1. Perturbed games: Let (T,f) be a symmetric extensive

2-person game. A perturbance of (r,f) is a function n which

assigns a minimum probability n to each choice c601U02 in

r, such that the following conditions are satisfied.

(38) n, 2 0 for every c€C,UC,
(39) Ine <1 for every uEUIUU2
c€C
Laoou
(40) ner = n, for ¢’ = f(c)

A perturbed game of (r,f) is a triple ro= (r,f,n} where
n is a perturbance of (r,f).

A local strategy bu at an information set u of player 1 or
o is called a local strategy for T = (T,f,n) if it satis-
fies the condition:

(41) bu(c) > M. for every c€C
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The set of all local strategies at u for r is denoted
by B For i =1, 2 a behav1or strateqgy b for T is a
behav1or strategy for T if it assigns 10ca1 strategies

for ¥ to all information sets of p]ayer i. The set of all

behavior strateg1es of player 1 for T is denoted by B
and the symbol B'is used for the set of all behavior stra-

tegies of player 2 for T.

7 9 Comment: For the purposes of defining a perfect equi-

lTibrium point it has been important to require positive
minimum probabilities n, everywhere (Selten 1975). .In the
present context it is convenient to relax this condition
and to permit Ne © 0 for some choices or even everywhere.
In this way, the unperturbed game (r,f) can be looked
upon as a special perturbed game.

Condition (39) is introduced in order to make sure that
the set of local strategies Eu will be non-empty. Condi-
tion (40) is imposed in order to preserve the natural
symmetry in the perturbed game.

In the perturbed game the behavior strategies of players 1
and ? are restricted by the minimum probability condition
(41). This has to be taken into account in the definition
of best replies and equilibrium points for perturbed
games. A direct ESS for the perturbed game will be de-
fined in the same way as in 6.1 for the unperturbed game.

In the following all definitions will refer to an arbi-
trarily fixed perturbed game T = (r,f,n) of a symmetric

extensive 2-person game (r,f).

7.3 Best replijes: r € B is called a best reply to b' € B'

in T if we have:
(43) E(r,b') = max E{b,b")
beB

Analogously r' € B' is a best reply to beB in T if we

have:
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(44) E'(b,r') = maxﬁE(b,b')
b'EBI

A best reply r € B to b' € B' in T is called strong if
player 1 does not have another best reply to b' or,in other
words, if any other strategy of player 1 yields a lower
payoff against b'. A strong best reply of player 2 is de-
fined analogously.

The unperturbed game (Tr,f) is identified with the special
perturbed game where all minimum probabilities are zero.
For this special case the definition of a best reply given
above is the same as in 4.8,

It is an immediate consequence of the symmetry properties (26)
and (27) of expected payoffs (see 5.7) that r is a best reply

to b' in T if and only if f{(r) is a best reply to f(b) in T.

7.4 Equilibrium point: A pair of behavior strategies (ror'}

with r € B is an equilibrium point of T if r and r' are best

replies to each other in T. An equilibrium point (r,r') of
T is called strong if r and r' are strong best replties to
each other in . It is called symmetric if the following
condition is satisfied:

(45) r' = f{r}

If (r,r') is a symmetric equilibrium point of T then r is
called a symmetric equilibrium strategy for T.

7.5 Perturbed game direct ESS: A direct evolutionarily stable

strategy or shortly a direct ESS for T is a behavior strategy
b € B for player 1 with the following two properties (a) and

(b).

(a) Equilibrium condition: b is a symmetric equilibrium

strategy for r

(b) Stability condition: If r is an alternative best reply
to f(b) in T, i.e. a best reply with r # b, then we have:
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(48) E(b,f(r)) > E(r,f(r}))

7.6 Test sequences: Let (T,f) be a symmetric extensive 2-

person game, A sequence ;1, PZ,... where for k = 1, 2,
the game rk = (r,f,nk) is a perturbed game of (r,f), is called

a test sequence for (Tr,f) if for every choice c of player 1

or player 2 the sequence of the minimum probabilities nt as-
signed to ¢ by nk converges to 0 for k » «.

Let T{:Tps... be a test sequence for (r,f). A pair (r,r')
of behavior strategies for r is called a limit equilibrium

point of this test sequence, if for k = 1,2,... an equili-

brium point (rk,rL) of ;k can be found such that for k » =
the sequence of the (rk,ré) converges. Similarily a behavior
strategy b is called a 1imit ESS for the test seauence

P ufp,... if for k = 1,2,... a direct ESS b, of T can be
found such that for k = = the sequence of the bk converges

to b

7.7 Remark: It can be shown that a limit equilibrium point

of a test sequence for (T,f) is an equilibrium point of (r,f).
Essentially,the same fact has been proved elsewhere (Selten
1975, lemma 3, p. 37). Contrary to this, a limit ESS of a
test sequence for (r,f) need not be a direct ESS of (r,f).
The male desertion game of figure 9 with a+s<l provides an
obvious example. Consider a monotonically decreasing se-
quence of positive numbers eq,e55... with e, > 0 for

k -~ = and define nk as that perturbance which assigns the
minimum probability €y to the choices L at u and uf and 0

to all other choices in figure 8. In the test seguence
fl,fz, ... obtained in this way, each perturbed game has a
direct ESS, namely that behavior strategy bk of player 1
which assigns l-ék to R at u and 1 to R at v. The limit ESS
of this test sequence is the pure strategy which selects R
at u and v. As has been shown in 6.6 this 1imit ESS fails to

be a direct ESS of the game of figure 9.

7.8 Definition of a 1imit ESS: A behavior strategy b of
player 1 in a symmetric extensive 2-person game (r,f) is a
limit ESS of (r,f) if b is a 1imit ESS of at Teast one test




sequence of (r,f).

In order to be able to describe a limit ESS in a slightly.
different way we introduce some auxiliary definitions. For
every pair of two behavior strategies b and r of player 1
let |b-r| be the maximum of the absolute difference between
the probabilities assigned by b and r to the same choice.
Similarily.for every perturbance n let Inl be the maximum

of all minimum probabilities assigned by n to a choice in T.

"7.9 Lemma 1 (alternative limit ESS description): A behavior

strategy b for a symmetric extensive Z2-person game (r,f) is
2 1Timit ESS of (r,f) if and only if for every e>0 at least
one perturbed game T = (r,f,n) with Inl<e has a direct ESS B
with |b-bl<e.

Proof: Assume that fl,fz,... is a test sequence which has

b as a 1imit ESS. Obviously,for every ¢ a member of the se-
quence can be found which satisfies the conditions of the
lemma. It is also clear that under these conditions a test

sequence with b as a limit ESS can be constructed.

7.10 Interpretation and comment: A 1imit ESS of an extensive
game can be interpreted as an approximation of a direct ESS

of a perturbed game whose otherwise unspecified perturbance
is assumed to be small. This is made precise by Temma 1.

The words "at least one" are of special significance in this
description as well as in7.8. It is possible that a

test seauence whose existence is reauired by 7.8

must be selected with care., It may happen that the perturb-
ances nk must have very special properties in order to ge-
_nerate a test sequence which has a specific ESS as one of
its 1imit ESS. This is a desirable feature of the definition.
Since generally very little is known about the relative size
of various small mistake probabilities it seems to be advis-
able not to exclude any special structure.

It may be of interest to distinguish different kinds of ESS
which differ with respect to implied assumptions on small
mistake probabf1it1es. 1f plausible assumptions on the re-
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Tative size of mistake probabilities can be made they may
sometimes serve as a basis for the selection among several
ESS of the same game.

7.11 Remark: A direct ESS of an uﬁperturbed symmetric ex-
tensive game (T,f) is also a 1imit ESS. This is due to the
fact that the definition of a perturbance does not exclude

the trivial case of zero minimum probabilities everywhere.
Obviously, a direct ESS of I is also a direct ESS of T=(r,f,n)
with ne = 0 everywhere.‘Moreover, with this game T one can
form the test sequence I',T,... which yields a direct ESS of

I as a limit ESS.

7.12 Remark: If b is a limit ESS of (r,f) then b is a symmetric
equilibrium strategy of (r,f). This follows by definition 7.8
~together with the fact that a 1imit equilibrium point of.a

test sequence is an equilibrium point (see remark 7.7).
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8. Local optimality and pervasiveness

The definition of an ESS as a limit ESS of at least one
test sequence has the consequence that one has to look at
the perturbed games of an extensive game in order to find
its evolutionariily stable strategies} Therefore, it is im-
portant to investigate the properties of a direct ESS of a
perturbed game. For this purpose it will be useful to de-
fine local payoffs at information sets and local best re-
plies,

Local payoffs cannot be defined in a meaningful way in cases
where an information set of a player cannot be reached no
matter what he does, since his opponent uses a strategy
which excludes the possibility of reaching this informa-
tion set. It is a remarkable fact that this difficulty

does not arise if the players play a direct ESS and its
symmetric image. Of course, it is not necessary to define
Yocal payoffs for information sets with only one choice.

It will be shown that all other information sets of player 1
and 2 are reached with positive probability if the players
play a direct ESS and its symmetric image. The name "per-
~vasiveness will be introduced for this property of a direct
ESS of a perturbed or unperturbed aame.

The pervasiveness of a direct ESS has the consequence that
the first condition in the ESS definition can be reduced to
a 1pocal optimality condition. This local optimality condi-
tion requires that local best replies to the symmetric

image are prescribed everywhere.

Since local conditions can be checked more easily than
global ones, it is desirable to reduce global definitions
to local characterizations. Unfortunately, this goal can-
not be fully attained for the direct ESS definition. This
will become clear in section 9.

A1l definitions will refer to a fixed symmetric extensive
2-person game (r,f) and to its perturbed games T = (F,f,n).
In view of the fact that for nc=0 everywhere, there is no
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difference between a direct ESS for (r,f) and for (r,f,n),
the identification of both games does not pose any diffi-
culties (see 7.3). '

8.1 Realization probabilities of information sets: For every

information set u define

(47) vy{(u,b,b'} = I «v(x,b,b")

XEu
(see 4.5 for the definition of the realization probability
y{x,b,b') of a vertex).We cail y(u,b,b) the realization
probability of u under b and b'. An endpoint which comes
after a vertex in an information set u is called an endpoint
after u. The set of all endpoints after u is denoted by Z(u).
The realization probability y(u,b,b') can be interpreted as

the probability that an endpoint after u is reached:

(48)  y(u,b,b') = £ y(z,b,b")

zeZ(u)
Equation (25) in 5.7 shows that the realization probability
of an endpoint z under b and b' is equal to the realization
probability of f{z) under f(b') and f(b). Therefore, we have:

(49) y(usb,b') = y(f(u),f(b"),f(b))

for every information set u and for every pair (b,b') of
behavior strategies for players 1 and 2.

We say that an information set u is blocked by a behavior
strategy b of player 1 if y(u,b,b') vanishes for every b'eB'.
Similarly, we say that u is blocked by a behavior stra-

tegy b' of player 2 if y(u,b,b') vanishes for every beB.

8.2 Posterior strategies: Let b be a behavior strategy of

player.1l and let ry be a local strategy at an information
set u of player 1. The notation b/ru is used for that be-
havior strategy s of player 1 which agrees with b at in-

formation sets v with v # u and with r, 3t u. Analogously,

for a behavior strategy b' of player 2 and a local strategy




- 55 -

r& at one of his information sets b'/r& denotes that
behavior strategy s' of player 2 which agrees with b'
at information sets v with v # u and with r& at u.

Suppose that u has been reached and player 1 intends to

play b in the future. Since the game has perfect recall

he knows that he already has taken those of his choices
which precede u. In order to describe his intention and

his knowledae of his own past choices at this point we
introduce the notion of a posterior strategy. The prosterior
strategy of b at u is that behavior strategy t of player 1
whose local strategies tV satisfy the following conditions
(i) and (ii):

(i) If player 1's choice c at v necessarily precedes u, then
we have tv(c) =1

(ii) For information sets v without a choice which necessari-
1y precedes u, the local strategy tV agrees with the
lTocal strategy b, assigned by b to v.

The posterior strategy of b at u is denoted by v//u. Instead
of b/ru//u we use the shorter notation b//ru. The same no-
tations are used analogously for behavior strategies of
player 2.

8.3 Local payoffs: Consider an information set u of pltayer 1.
The local payoffs at u to be defined below can be interpreted
as conditional payoff expectations of player 1 under the con-
dition that u has been reached. Suppose that b and b' are
behavior strategies of players 1 and 2, respectively, such
that the realization probability y(u,b,b') of u is positive.
For every local strategy s, at u the local payoff Eu(su,b,b')

u
for Sy under b and b' is defined as follows:

1
(50) E,(s,-Dsb") = ?TUTETBTTzeﬁ(Ug(z,b/su,b')h(z)

A11 realization probabilities in (50) are changed by the
same factor if b is replaced by b//u and b/su by b//su;
this factor is reciprocal to the product of all probabili-
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ties assigned by b to choices which necessarily precede u.
Consequently, we have:

(51) E (s,sbsb") = E (s,,b//u,b")

This equation is used to extend the 1oca1‘payof? definition
to cases where y{(u,b,b') vanishes,but y(u,b//u,b"'} is posi-
tive. It can be seen immediately that y(u,b//u,b') vanishes
if and only if u is blocked by b'., For every SUEBU, every

beB and every b'€B' such that b' does not block u, the lo-
cal payoff Eu(su,b,b') for Su under b and b' is as follows:

s ,b,b') 1 D y(z,b//s,,b")h(z)

(52) EU( u = ?IU,D//U,D') zEZ(u)

At information sets u of player 2 local payoffs are de-
fined analogously as conditional payoff expectations of
player 2; if b does not block u we have:

1 1 - 1 . . . ] 1 ¥
(53) Ey(sy:0:0") = B E77u) ZE§(U)Y(Z’b’b.//Su)h(Z)

for information sets u of player 2.
It follows by (25) in 5.7 together with (49) and by (e)

in 5.1 that the following symmetry property holds wherever
local payoffs are well defined:

(54)  E (5,,b,b") = Egpyy(F(s,).F(b'), (b))

8.4 Local and global payoffs: The expected payoffs defined

in 4.5 will sometimes be called global payoffs in order to

be able to make a clear distinction between both kinds of
payoffs. Let u be an information set of player 1 and et b
and b' be behavior strategies of players 1 and 2, respective-
ly.

Assume that u is not blocked by b'. Let Sy and tu be two
local strategies at u. As we shall see, the following state-
ments (a) to {d) on the connection between local and gliobal
payoffs hold:
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(a) E(b/s,.b') = E(b/t,,b') if y(u,b,b') = 0

[} : 1
E(b/t,,b') if E (s sb,b")

I
m
=
——
ot

(b)  E(b/s.b")

(¢) E(b/s,.b")

v

E(b/t,,b') if E (s, .b,b")

v
m
=
-
ot
=
o
o
L

(d) E(b/su,b')
and y{u,b,b') > 0

v

E(b/t,sb") if E (s sbsb%) > E (t,,b,b")

A Yocal strategy change from Su to t, does not influence

the realization probabilities of u and of the endpoints
which do not come after u. Therefore, an influence on global
payoffs, if it is exerted at all, must be exerted in the
same direction as on the local payoffs. For y(u,b,b') > O

an improvement -of local payoffs results in an improvement
of global payoffs. Obviously, global payoffs do not change
for y{u,b,b') = 0. From what has been said it is clear

that (a) to (d) hold. In view of (54) analogious statements
for player 2's local and global payoffs can be derived.

8.5 Local best replies: Let u be an information set of
player 1 and let b and b' be behavior strategies of players
1 and 2, respectively. Assume that u is not blocked by b'.
at u is a local best reply to b and

The local strategy ru
b' in T =(r,f,n) if we have:

(55) E (r ,b,b') = max Eu(su,b,b‘)

SUEBU '
A local best reply at an information set of player 2 is
defined analogously.

If there is only one choice c at an information set u of
player 1 or 2, then this choice ¢ is always called a
local best reply to b and b', regardless of whether lo-
cal payoffs at u are well defined or not.

A local best reply is called strong if it is the only best
reply at the concerning information set or, in other words,
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if every other local strategy at this information set
(if there is one) yields a lower local payoff.

It follows by (54) that "y is a local best reply to b
and b' in T if and only if f(r,) is a local best reply
to f(b') and f{b) in T.

A local strategy rueﬁu is called extreme in Bu if there
is one choice d at u, such that for every choice ¢ at u
with ¢ # d we have ru(c) = Ne- We call this choice d

the intended choice of the extreme local strategy ry

It can be seen immediately that ry is a strong best re-
ply to b and b' in T = (r,f,n) if and only if the follow-
ing condition is satisfied: *u is extreme in Bu and the
intended choice d of r, is a strong local best reply to

u
b and b' in T = (r,f).

8.6 Pervasiveness: An information set u is called essential

if it is an information set of either player 1 or player 2
and if there are at least two choices at u. A behavior
strategy b of player 1 is called dispersed if none of his
own essential information sets is blocked by b and
permeable, if none of the other player's essential in-
formation sets is blocked by b, In the same sense we

speak also of dispersed and permeable behavior strategies
of player 2. A behavior strategy is called pervasive, if
it is both dispersed and permeable.

It follows by (49) that u is blocked by a behavior strate-
gy b of player 1,if and only if f(u) is blocked by f(b).
Therefore, the following is true for every behavior stra-
tegy b of player 1:

(i) : b is dispersed, if and only if f(b) is dispersed
(ii): b is permeable, if and only if f(b} is permeable
(iii): b is pervasive, if and only if f(b) is pervasive

8.7 Lemma 2 (pervasiveness lemma): A behavior strategy b of

player 1 is pervasive,if and only if for every essential
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information set u of player 1 we have:

{56) vy(u,b,f(b)) > 0

Proof: Suppose that b is pervasive. Consider an essential

information set u of player 1. Those choices of player 1
which necessarily precede u must be selected with positive
probabijlities by b. Otherwise u would be blocked by b

and b could not be dispersed. For at least one vertex X

in u player 2's choices on the path to x must be selected
with positive probabilities by f(b). Otherwise u would

be blocked by f(b) and f(b} would not be permeable, con-
trary to (ii) in 8.6. Therefore v(u,b,f(b)) is positive. (56)
holds for every essential information set of play 1, if b

is pervasive.

Now suppose that (56) holds for every essential infor-
mation set u of player 1. Then no such information set
is blocked by b or by f(b). Consequentiy, b is dispersed
and f(b) is permeable. It follows by (ii) in 8.6 that b
is pervasive.

8.8 Theorem 2 (pervasiveness theorem): Let ro= (r,f,n) be
a perturbed game of a symmetric extensive 2-person game (r,f)
and let b be a direct ESS for T.Then b is pervasive.

Proof: Assume that b is a symmetric equilibrium strategy
for T. It is sufficient to show that b cannot be a direct
ESS for T unless b is pervasive.

Suppose that b is not pervasive. In view of lemma 2 an es-
sential information set u of player 1 with'y(u,b,f(b)) =0
can be found. Let u be an information set of this kind.

In view of (49) the realization probability v(f(u),b,f(b))
vanishes, too.

Since u is essential.a local strategy r at u can be found
which is different from the local strateay b, assigned

to u by b. Let r, be a local strategy of this kind. Con-
sider the behavior strategy r = b/r . MWe shall show that
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r is an alternative best reply which does not satisfy the
second condition in the direct ESS definition.

Both u and f(u) are not reached by b and f(b). Moreover, u
and f(u) remain unreached if b or f(b) or both are locally
changed at u or f{u). Therefore, global payoffs are

not influenced by such changes (see (a) in 8.4). It fol-

lTows that r is an alternative best reply to f(b) and that

the following is true:

(57) E(b,f(b)) = E(b,f(r}} = E(r,f(r))

This is a contradiction to the second condition in the de-
finition of a direct ESS.

8.9 Comment: Since the special case of zero minimum pro-

babilities everywhere is not excluded, the .theorem also
covers the case of a direct ESS of an unperturbed game (r,f).
In view of the pervasiveness property it must be expected
that many extensive game models of animal fights will not
have a direct ESS for the unperturbed game. The male de-
sertion game with a+s<l is not an isolated case. Imagine a
model where two animals can fight for up to 20 periods;

as long as fighting goes on decisions have to be made and,
therefore, some essential information sets will represent
situations in period 20. These information sets must be
reached with positive probability by a direct ESS. There
cannot be a direct ESS which always results in a shorter
fight or in no fight at all.

A direct ESS for a perturbed game must be pervasive, too,
but there pervasiveness may be due to positive minimum
probabilities. A 1imit ESS of a test sequence need not be
pervasive.

A direct ESS generates a symmetric equilibrium point in per-
vasive strategies. The pervasiveness property has the con-
sequence that,at equilibrium,local payoffs are defined

at every essential information set. As we shall see, it

is necessary and sufficient for the equilibrium properties
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of a pervasive symmetric equilibrium strategy that local
best replies are prescribed everywhere.

8.10 Lemma 3 (necessary local optimality conditions): Let

T = (r,f,n) be a perturbed game of a symmetric extensive
2-person game (Tr,f). Let b' be a behavior strategy of
player 2 in I'. Let r be a behavior strategy of player 1 in
T. If r is a best reply to b' in T, then for every infor-
mation set u of player 1 with y(u,r,b') > 0 the local

strategy r  assigned by r to u is a local best reply to

u
r and b' in T.

Proof: Assume that r is a best reply to b' inlf and that
nevertheless for some information set u of player 1 with
y{u,r,b*) > 0 the Tocal strategy r assigned to u by r
is not a local best reply to r and b' in T Let y be an in-
formation set of this kind. Since the local payoff at u is
continous function of the local strategy at u and since Bu
is compact a local best reply at u always exists. Let Sy be
a local best reply to r and b' at u.

Consider the strategy s = r/su. The local change from r
to s, improves the local payoff at u. Moreover, v(u,r,b")
is positive. Therefore, player 1's global payoff is im=-
proved by this local change (see (d) in 8.4). Consequently,

we have:
(58) E(s,b') > E(r,b')

This shows that r cannot be a best reply to b'. It foliows
that the assertion of the lemma is true.

8.11 Lemma 4 (sufficient local optimality conditions): Let

T = (r,f,n) be a perturbed game of a symmetric extensive
2-person game (r,f). Let b' be a permeable behavior strate-
gy of player 2 in T. Let r be a behavior strategy of player 1
in ;. If for every information set u of player 1 the local
strategy r, assigned to u by r is a local besE reply to r

and b' in T, then r is a best reply to b' in T.



- 62 -

Proof: Assume that every local strategy‘ru prescribed by

r is a local best reply to r and b' in I and that neverthe-
less r is not a best reply to b' in T. A behavior strategy
s€B with

(59) E(s,b') > E(r,b")

can be found. Let S be the set of all strategies s€B with
(58). For every s€S let k{s) be the number of information
sets u of player 1 for which "y is different from the local
strategy Su asigned to u by s. Assume that s is minimally
different from r in the sense that k(t) < k(s) holds for
no tes.

For the purposes of this proof an information set u will
be called critical, if it is an essential information set
of player 1 with su#ru such that u does not precede any .
other essential information set v of player 1 with sv#rv.
Since in view of (59) we have k{s) > 1 it is clear that
a critical information set can be found. Let u be a cri-
tical information set.

Since u does not precede information sets of player 1
where r and s prescribe different local strategies, {51)
has the follwing conseguence '

(60) Eu(tu,s,b ) = Eu(tu,r,b )

for every local strategy tu at u. Since *u is a local best
reply to r and b' 1in T the local strateay S does not
yield a higher local payoff under r and b'. This together
with (60) yields

(61) Eu(su,s,b') < Eu(ru,s,b‘)

It follows by (c) in 8.4 that a local change at u from
s to t = s/ru does not decrease player 1's global payoff.
We have:

(62) E(t,b') = E(s,b') > E(r,b')
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This shows that t belongs to $. Moreover, the number k(t) of
information sets with different local strategies is equal

to k(s) - 1, contrary to the assumption that s is minimal

in S with respect to k{s). Consequently, the assertion of
the lemma is true.

8.12 Theorem 3 (decentralization theorem): Let T = (r,f,n)
be a perturbed game of a symmetric extensive Z-person game

(r,f) and let b be a pervasive behavior strategy of player 1
in T. Then b is a symmetric equilibrium strategy for I, if
and only if for every information set u of player 1, the
local strategy bu assigned by b to u is a local best re-

-

ply to f(b) in T.

Proof: It has been pointed out in 7.3 that reB is a best
reply to b'eB' in r, if and only if f(r) is a best reply
to f(b'). Therefore, (b,f(b)) is a symmetric equilibrium_
point of r, if and only if b is a ‘best reply to f(b) in T.

It follows by lemma 2 that y{u,b,f{b)) is positive for every
essential information set u. Therefore, lemma 3 permits the
conclusion that b prescribes local best replies to f(b) in
§_at every information set of player 1, if b is a best re-
ply to f(b). Lemma 4 shows that b is a best reply to f(b),
if this condition on the local strategies prescribed by b

is satisfied.
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9. Image confrontation and detachment

The second condition in the definition of a direct ESS

for perturbed games permits some further conclusions on
Jocal properties of a direct ESS for a perturbed game. The
conclusions rely on an important distinction between image
confronted and image separated information sets. An in-
formation set is image confronted if at least one play
intersects this information set and its symmetric image.
Otherwise, it is image detached.

Local payoffs at an image detached information set do not
depend on the opponent's Tocal strategy at the symmetric
image of this information set. If a mutant differs from
the population strategy at an image detached information
set only, then it makes no difference for the fitness of an
animal contestant whether his opponent is a mutant or
not. Therefore, a local strategy change to an alternative
best reply at an image detached information set always
violates the second condition. Stability requires that a
strong local best reply is played at an image detached
information set. Of course, this is only a heuristic ar-
gument which needs to be worked out in detail.

The local properties of a direct ESS for a perturbed game
have the consequence that a 1imit ESS must be a symmetric
equilibrium strategy which prescribes pure local strategies
at image detached information sets. One can expect that in
many cases the analysis of biological game models is great-
ly simplified by the use of this fact.

In models with distinguishing initial random decisions
(see 5.4) all information sets of players 1 and 2 are
image detached and a 1imit ESS must be a pure symmetric
equilibrium strategy.

Unfortunately, the necessary local conditions for a direct

ESS of a perturbed game are not sufficient; a counterexample

indicates that there is not much hope for purely local

cufficient conditions. However, as we shall see in section 11
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such conditions can be derived for a special class of games.

9.1 Image confronted and image detached information sets: An

information set u of a symmetric extensive 2-person game
(r,f) is called image confronted if at least one play of T

intersects both u and f{u). If this is not the case, then
u is called image detached.

Exampies are provided by figures 7 and 9. In figure 7 the
information sets u and u'are image confronted. In figure 9
the information sets u and u'are image detached.

The following statements (i) and (ii) are an immediate
consequence of properties (d) and (e) of a symmetry (see 5.1):

(i) An information set u is image confronted,if and only
if f(u) is image confronted

{(ii) An information set u is image detached,if and only
if f(u) is image detached

9.2 Theorem 4:(image confrontation and detachment): Let

T = (r,f,n) be a perturbed game of a symmetric extensive
2-person game (r,f) and let b be a direct ESS for T. Then
the following conditions (a) and (b) are satisfied for the
local strategies bu assigned by b toc information sets of

players 1:

(a) If u is image detached, then b s a strong
Tocal best reply to b and f(b) in T

(b} If u is image confronted, then the following inequality
holds for every alternative local best reply "u at u,
i.e. for every local best reply r, at u with ru#bu in T:

(63)  E (b,sbsf(b/r )) > E (r sbaf(b/r,))

Proof: It will first be shown that (b) holds for every in-
formation set of player 1, not only for image confronted
ones. Then (a) will be derived as a consequence of (b) for

image detached information sets.
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Consider an alternative local best reply "y at u in T.
Local payoffs for ru under b and f(b) are the same as for
bu' It follows by (b) in 8.4ﬁthat r=b/ru is an alternative
best reply to b and f(b) in I, Therefore, the second con-

dition in the definition of a direct ESS requires:
(64) Eu(bu,b/ru,f(b/ru)) > Eu(ru,b/ru,f(b/ru))

This is nothing else than inequality (63); it does not
matter whether b or b/ru is the second argument in the
local payoff, since the first argument is the relevant
Tocal strategy at u. This shows that (b) holds for every
information set of player 1.

Now, suppose that u is image detached. Then a local change
at f(u) does not influence the local payoff at u, since

no play through u intersects f(u); the realization proba-
bilities of u and of endpoints after u remain unchanged.
Therefore, for every local strategy S, at u the follow-
ing must be true:

(65) E (sysbsf(b/r )= E (s,,b,f(b))

u’
In view of the fact that "y is a local best reply to b
and f{b) in r it follows that both Tocal payoffs in (63)
must be equal. Consequently, (63) cannot be satisfied un-
less b, is the only best reply to b and f(b) at u in r.
Condition (a) holds for image detached information sets.

9.3 Remark: It has been pointed gut in 8.5 that ru is a
lTocal best reply to b and b' in r,if and only if f(ru)

is a local best reply to f(b') and f(b) in r. This re-
mains true if the word "local best reply" are replaced

by "strong local best reply“. This together with (i) and
(ii} in 9.1 and the symmetry property (54) of local payoffs
yields the conclusion that under the assumptions of theorem
4 the following conditions (a') and (b') hold for the lo-
cal strategies b assigned by b' = f(b) to information sets

u of player 2:
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(a') If u'is image detached then b) is a strong local
best reply to b and f(b) in T

(b') If u is image confronted then the following in-
equality holds for every alternative local best
reply r' at u, i.e. for every local best reply r&

u

L i 1
with r F bu

(66) E&(b&,b/f(r&),b‘) > E&(r&,b/f(rh),b')
9.4 Theorem 5 (properties of a limit ESS): Let (r,f) be

a symmetric extensive 2-person game and let b be a limit
ESS of (r,f). Moreover, for every -information set u of
player 1 Tlet bu be the local strategy assigned to u by b.
The following statements (i), (ii) and (iii) hold:

(1) b is a symmetric equilibrium strategy of (r,f)

{i1) For every image detached information set u of player 1
the Tocal strategy bu is pure

(i11) At every image confronted information set u of
player 1 which is not blocked by f{b) the follow-
ing condition is satisfied for every alternative
local best reply Py to b and f(b), i.e. for every
local best reply 'y with "y # bu

(67) Eu(bu,b,f(b/ru)) > Eu(ru,b,f(b/ru))
Proof: Statement (i) simply repeats the content of remark
7.12. It has been included in the assertion for systematic

reasons only.

As we have seen in 8.5 a strong local best reply in a per-
turbed game is extreme. Statement (a) in theorem 4 has the
consequence that a direct ESS of a perturbed game of (r,f)
assigns an extreme local strategy to every image detached
information set. Consider a test sequence 51,52,... such

that b is a limit equilibrium point of this test sequence
and let bl,bz,... be a sequence of direct ESS's for the

corresponding members of the test sequence which converges
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to b. Clearly, the sequence of extreme local strategies

bi, bﬁ,... assigned to an image detached information set u
of player 1 by bl,bz,..., respectively cannot converge

to the local strategy bu unless bu is a pure local strate-
gy. Therefore, (ii}) holds.

Consider an image confronted information set u of player 1
and let ba,bﬁ,... be defined as above., Each of the bt must
satisfy (i) of theorem 4 in Fk. It follows by (63) that (iii)

in the assertion of the theoren holds.

9.5 The example of figure 3: The full power of theoretical

tools cannot be revealed by extremely simple examples, but
even there the analysis is facilitated by the application

of the results obtained up to now. The game of figure 3

with the natural symmetry described in 5.3 begins with a
random decision which is distinguishing in the sense of 5.4.
This has the consequence that all information sets of player
1 in figure 3 are image detached. It follows by (i) and (ii)
in theorem 5 that a 1imit ESS of this game must be a pure
symmetric equilibrium strategy. If player 2 chooses e at

g then player 1's only local best reply at Uy and Ug is d.
Similarly, 1if player 2 chooses d at Ugs then player 1l's
only local best reply at Ug and Ug is e. This shows that

the game has exactly two symmetric equilibrium strategies

in pure strategies, namely the following pure strategies

¢ and ¢

(68)  o(u,) = e
(69)  o(ug) = e
(70)  ofug) = d
(71)  4(uy) = d
(72)  ¢(ug) = d
(73)  w(ug) = e

In the literature it is customary to refer to strategies
like ¢ as "bourgeois strategies" since they favor the pos-
sessor of the territory whereas strategies 1ike ¢ are cail-
ed "paradoxical" (see for example Maynard Smith 1982}.

Player 1 does not have any other best reply to f(o¢) than g3
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similarily, he does not have any other best reply to f(¢)
than ¢. This shows that in both cases the second condition
in the definition 6.1 of a direct ESS is satisfied. We can
conclude that each of both strategies ¢ and ¢ is a direct
ESS and that the game of figure 3 has no further Timit ESS.

The game has a third symmetric equilibrium strategy with
mixed Tocal strategies at some of the information sets of
player 1. As we have seen it is not necessary to compute
this strategy in order to exclude the possibility that it is
a limit ESS.

9.6 Comment: Theorem 2 shows that a direct ESS of a perturb-

ed game is pervasive. On the basis of this result theorem 3
gives a local characterization of the global equilibrium pro-
perties expressed by condition (a) in definition 7.5 of a
direct ESS for a perturbed game.Theorem 4 shows that further

local conditions are imposed by the second condition (b) in 7.

Since the local conditions for image detached and image con-
fronted information sets are quite strong, the conjecture
suggests itself that these conditions are not only necessary
but also sufficient in the sense that every pervasive sym-
metric equilibrium strategy for a perturbed game with the
properties {(a) and (b) in theorem 4 is a direct ESS of this
perturbed game. A counterexample will show that this con-
jecture is wrong but there are special classes of games for
which it is true.

In order to have a convenient way of speaking about behavior
strategies which have the local properties of an ESS, the
notion of a locally stable strategy, abbreviated LSS, will
be introduced. For this purpose we need some auxiliary de-
finitions. For each image confronted information set a
"local game" will be defined. The local games are "perturb-
ed symmetric bimatrix games”, perturbed games of this kind
are completely analogous to‘perturbed extensive games.
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9.7 Perturbed symmetric bimatrix games: A perturbance n

for a symmetric bimatrix game G = (I,E) is a function

which assigns a non-negative minimum probability u to every
n€N  such that the sum of all u with €l is smaller than 1.
The symmetric bimatrix game G = (I,E) together with a per-
turbance n for G forms a perturbed game é = (n,E,n) of G.

The set of all mixed strategies q for G with g{(n) > . is
denoted by Q. In G only the mixed strategies in § are per-

missible. A mixed strategy reQ is a best reply in G to q€Q
if we have: :

(74) E(r.q) = max E(s.q)
s€q

Moreover, r is a strong best reply to q in é if there is
no other best reply to g in G. An equilibrium point of G

is a pair (g,r) such that q and r are best replies to
each other; an equilibrium point of the form {q,q) is
called symmetric; q is a symmetric equilibrium strategy
if (g9,q) is a symmetric equilibrium point. An ESS of & is

a symmetric equilibrium strategy g of € with

{75) E(g.r) > E(r,r}

for every best reply r with r # q to g in E. An equilibri-
um point {(q,r) of G is called strong if q and r are

strong best replies to each other. r is a strong symmetric
equilibrium strategy if (r,r) is a strong equilibrium point.

9.8 Local games: Let ro= (r,f,n) be a perturbed game of a

symmetric extensive 2-person game (r,f) and let b be a
pervasive behavior strategy for F. Let u be an image con-
fronted information set u of (r,f). The local game of T at

u is a perturbed symmetric bimatrix game Gub = (Cu,Eub,nu)
whose pure strategy set is the choice set at u and whose per-
turbance n, is the restriction of n to C, and whose payoff

function Eub is defined as follows:

(76) B p(s,ty) = Ey(s,0.F(b/t,))
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-

for every pair (su,tu) of Tocal strategies at u in TI.

Here Eu is the 1oEa1 payoff function defined by (50) in B.3.

ub = (CysBup)-

This game & is the local game of (r,f) at u.

It is c¢lear that Gub is a perturbed game of G

In the case that n,, assigns zero minimum probabilities to

u
all choices at u, the local game Gup = (Cu,Eub,nu) is iden-

tified with_Gub = (Cu,Eub).

9.9 Locally stable strategies: Let ;=(r,f,n) be a perturb-
ed game of a symmetric extensive 2-person game (T,f).

Let b be a behavior strategy for r and for every information
set u of player 1, let bu be the local strategy assigned

to u by b. The behavior strategy b is a locally stable stra-
tegy or shortly an LSS for T, if b has the following pro-
perties (i), {(ii) and (iii}.

(1) b is pervasive.
{(i1) If u is image detached, then bU is a strong
local best reply to b and f(b) in T.

(1i1) If u is image cgonfronted, then b is an ESS of
the local game Gub of T at u.

It is clear that conditions (i), (ii) and (iii) summarize
the local properties of a direct ESS of r expressed by
theorems 3 and 4. A direct ESS of T must be an LSS of T.

9,10 A counterexample: An LSS of a perturbed game is not
necessarily a direct ESS of this perturbed game. An example
is provided by figure 10. This game is more complicated
than the examples considered up to now. Therefore, the
conventions of graphical representation have been supple-
mented by double arrowed connecting lines above the pay-
off vectors; these lines show which pairs of endpoints

are symmetric images of each other and which endpoints

are symmetric images of themselves.

The game under consideration is a perturbed game f=(r,f,n)
of the game (r,f) represented by the figure. As indicated
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in the figure the minimum probabilities are e with
0« e< 1/2 for the choices R, and Ru. at u and u', re-
spectively, and zero everywhere else.

The strategy b which is an LSS of T but, nevertheless, fails
to be a direct ESS of I is described in the explanation
below the figure.

Obviously, b is pervasive and, therefore, satisfies (i)
in the definition 9.9 of an LSS. A1l information sets in
figure 10 are image confronted. Therefore, (ii) is trival-
1y satisfied. We have to check whether (iii) holds at
player 1's information sets u, v and w in figure 10.

Figure 11, 12 and 13 show the local games of I under b at
u, v and w, respectively. The graphical conventions are
those of figure 1. Wherever a choice has a positive mini-
mum probability the extreme Tocal strategy with this intend-
ed choice corresponds to a row and column instead of the
choice itself. The bimatrix representation obtained in

this way can be analyzed in the same way as an ordinary
symmetric bimatrix game, since every.permissible mixed
strategqy in a local game is a convex linear combination

of the extreme local strategies.

In figure 11 every mixed strategy "y with U # bu is an
alternative best reply to bu. 1t can be seen immediately

that
(77) Eub(bu,ru) > Eub(ru,ru)

holds for all these alternative best replies r . There-
fore, (iii) in definition 9.9 is satisfied at u.

In figure 12 the local strategy Lv assigned to v by b is
a stronqg best reply to LV. There is no alternative best
reply. (iii) is satisfied at v.
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In figure 13 the situation is essentially the same as
in figure 11. A1l mixed strategies r_ with r, ¥ L, are
alternative best replies to the local strategy Ly assign-

ed to w by b and

(78) Ewb(Lw,rw) > Ewb(rw,rw)

holds for all these alternative best replies r . Therefore,
(i11) is satisfied at w.

It is now clear that b is an LSS of r. Nevertheless, we can
find an alternative best reply r to b in I which violates
the second condition in definition 7.5 of a direct ESS for
a perturbed game. This strategy r is a pure strategy which
assigns Ru to u, and LV to v,and R, to w. This is expressed
by the notation r = RuLva‘

Figure 14 does not represent a local game. It describes

the payoffs obtained by the four strategy pairs which can
"be formed with b and r. The graphical conventions are the
same as for bimatrix games. It can be seen immediately that
r is an alternative best reply to b and that we have:

(79) E(b,r) <« E{(r,r)

This shows that b fails to be a direct ESS of the perturb-
ed game T in spite of the fact that it is an LSS of T.

9,11 Comment: The local properties of an LSS do not secure
alobal stability in-the sense of the direct ESS definition
7.5 but they do provide stability against mutants whose be-
havior differs from the population strategy at one infor-
mation set only. Suppose that local strategies at different
information sets are always controlled by different genes.
If this is the case one can be satisfied with the limited
stability of an LSS.

Unfortunately, the assumption of separate genetic control
for each information set is less plausible than it may
seem at first glance. Animal fighting behavior is often
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described as controlled by the relative intensities of
drives like fear and aggressiveness. {(Baerends 1975,
Leyhausen 1965, Lorenz 1965, 1978). If this theory is
correct, it is reasonable to expect that there are genes
which influence the overall strength of such drives rather
than their intensities in specific fighting situations.

A mutation may increase the general level of aggressive-
ness and thereby lead to more aggressive behavior at

many information sets at the same time.

It is probably true that some mutations can be excluded
as practically impossible. However, plausible assumptions
of this kind seem to require a detailed picture of the
internal organization of animal behavior.
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