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ABSTRACT

An informational extension of a given normal form game is
the result of introducing a procedure (informational pattern)

for choosing the plavers’ strategies in the initial game. As an

mtuple of "new” strategies generates an "old” outcome, it is
meaningful te talk about new eaquilibria. Sets of all equilibria
under different informational patterns are studied; the impor-

tance of the possibility for a plaver to commit himself to a

certain reaction rule is discussed. e —




s DEper vh 5 composed on Ehe basis of my lectures deli-
Jermd gt Bielefeld  Iniversity in April 1991. The aim was ‘o
impart some ideas and mathematical framework developed in Mos-
cow im 1970th and 80th: I followed partially my earlier Russian
book Kukushkin, HMorozov (1984). A reader interested in a more

broad and detailed picture may try to read the book Germeier

(1976).

1. Introductiort

Let us imagine a finite society of plavers esach of whom
aims for a goal and has some range of possible actions. The de-
gree to which anvone’'s goal is achieved depends, generally spe-
aking, on actions of Www the playvers. If I add that every olay-
er has to choose his action independently of his partners, we
would have the standard concept of a normal form game; but I
will not add this sacramental phrase. Instead I say that this
situation may generate various normal form games in accordance
with how the proacess of choosing the actions is organized. From
this coint of view simultaneous independent choice is Jjust one
(the mwavrmumu of possible ways to organize the process.

Certainly, when such a way (or informational pattern) is
chosen and fixed, i.e. the seauence of moves, information avai-
lable *for every plaver at every moment, possibilities to reveal
one’s decision or just send a message etc., we can include into

the defimition of one’s strategies nll possibilities to resct

with one’s choice to all informetion avellable, and so have
again a normal Torm gnme with exbtendsd atreteay setse. Dl the
point is that our attention Pere will be direcbsd nob Lo any
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one of these possible normal form games as such but wo their
interconnections, to their variety as a wholz. So 1’1l bprefer
not to forget the connection between the simplest, initial 3ame
and all these extended games which will be called its informa-
tional extensions.

In order not to be too abstract. let us consider an
example.

Suppose a peculiar person has decided to organize a game.
He has wl<wnna two players and given each of them four cards
with  the following inscriptions: MNorth, South, East, West.
Cards of one of them are red, of the other, blue. The rules of
the game are these: each of the plavers has to put one of his
cmrds on a table, and then the organizer is to pay .the plavers.
If they both have chosen the same direction, "Red® has a dol~
lar, "Blue” nothing; if the directions are just opposite, Red
has nothing, Blue the dollar; at Hmmr. if the directions are
orthogonal to emch other, the plavers receive 50 cents each.

The organizer is not interested in how they would make
their choices, he does not object to their reaching an agree-—
ment before putting their cards on the table but neither does
he guarantee any such agreement.

Under these circumstances it is rather worryvinsg for the
players that the game taken as a bimatrix 4%4 game has no equi-
librium point. Moreover, in H. Moulin’s terminology (see Moulin
1986), it is characterized by the "struggle for the follower-
ship”. If anyone manages to make his choice after that of his
partner, knowing his decision, then he will certainly win the
dollar. But if evervone tries to be the last to put his card on

the table, the most plausible outcome is that robody will do so
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and the bored organizer will give up his idea and quit the room
carrying his dellar with him.

So a natural auestion arises: with what advice could a
game expert help the plavers?

A auite traditional recommendation would be that to use
mixed strategies. The players may agree to put their cards on
the table with the faces down (such an agreement would be self-
enforcing), mnd then they may choose their cards at random. If
both a&re riske-neutral, such a pProcedure would lead to fair di-
vision of the dollar. But suppose both of them are risk—averse;
then this equilibrium is Pereto dominated by the division "50 -
50" .

Now the game expert may advise one of the players (let him
be Red) openly to tear into pieces any one or two of his cards.
After this Blue OGJ‘UCn on the tmble such a card which his
partner is unable to match, and the outcome "50 = 50" with
orthogonal directions becomes an equilibrium.

I would like to stress that the proposed solution is not
wm eliminate a strategy preventing the existence of an eauili-
07»:5. If, e.9., Red is especially proud of his right to choose
North, he er well retain the card to the very end.

In the light of this example it may be stated that what is
to be discussed here is & version of Nash’'s idea of modeling
cooperative agreements with non-cooperative decision-making,
see Nash (1951). Tc¢ intereoret the following, we may suppose
that there is nobody to guarantee anvy cooperative agreement be-

tween the players but it is possible tc enforce a choser infor-

mational opattern. i.e. proceaure for non-cooperative decision-

making. Here lies & source of informal considerations as tc how

plausible seems “enforcibility” of this or that informational
cattern.

Remark. The »aper Moulin (1978) is certainly relevant to
our topic, but the definition of extensiorn by information 2x-
change (“prolongement par Achange d’ information') there seems

too narrow: it does not include, e.3., voluntary revealing of

one plaver’s choice to another.

2. Eauilibria of quasi-informational extensions

Now I’1ll introduce a general definition which may seem too
general, too abstract so fTar, but, I hope, will not seem so
later on.

Let a normal form game [ be given, i.e., & (finite) set of
plavers N (INl=n), a set of strategies X, for emch i€N, and

preferences of each player over the set of outcomes X = X kﬁ
ien

We shall regard the preferences as defined by the utility func-
tions p:mxu permitting ordinal utilities, i.e. functions de-
fined up to a strictly monctonic transformation.

Now a auasi-informational extension of the game I is a

game I with the same set of plavers AN, and the msppings Nz XoX
and Q,wa¢xw for each I€N satisfying the following conditions:
1) thﬂau = :»nagxuw

2) mle (xJox ) = (x,x )

for any iI€N, xwmk». meRL and some x ,mk i

- "

It means that an rtuple of “new"' strategies An»vmmz de-—

‘fines an outcome NT(x)E€EX of the initial game, and each player

retains every of his "old" strategies Ohﬂx,umk,. If the strate-

gies X, are rules to choose a decision under a given informa-

tional pattern, then when everybody has decided on his strategy




an osutcome of the jame [ must =2merge, hence the mapping T. Con-

ditinm i) retlects an 2ssential assumption that the olavers’
utilities zare derived from sutcomes, and not from procedures as
such. A strategy ﬂ_ﬁk.v is a rule which prescribes to choose 2,
regardless of any information available (it is not necessarily
unique); condition 2} states Jjust this. The prefix “aquasi”
means that this definition reqauires no interpretation for the
new mnﬁwnmowem as rules for choosing old strategies under a
givert informational manno13. When such interpretation is given,
the extension will be called informational, but this latter
concept is intrinsically informal. I hope to elucidate this
‘point later.

For a given normal form game [ denote NE(I) the set of all
Nash equilibria of the game.

Theorem i. If [ is a auasi-informational extension of [

then NE(I) € aﬁzmmmuu.

Let x°ene(l), pick nonAﬂﬁanuvn.mE and show »..omZNHE. In-

deed, for any I€N, v\wm.x_.. we have t_ﬂ\t,.kw,uutwmnm\ﬁkww:u
=u (), x )Su () =u (") ) =u (7). =

Denote for every normal form game [ and every ieénN

a (I = sup int  u(x), (1)
' X €X, x_ €X_|

]

m,:J inf sup  u (x). ) (2)
X €X  x €X.
-5 e 1 1

Proposition 1. For every normal form game [, if xeNE(I)
then for every iI€N the inequality t,n.«vwmmﬁ.u holds.

The proof of the proposition is auite straightforward. @

Proposition 2. If [ is a quasi-informational extension of

I' then for every i€A the following inequalities hold:

.

a (T 2« (N, B (D) s 8 (D).

Indeed, for any €N, &0 there exists a,.m\.«v such  that
. m = r..b he
w lx, x )20 (IN-e for every «_ <X . Pick € =c _xnumk.u for any

Lo -t
. S
X_(EX_, we have ; (x

:ut.:.m.x ez (M-€e. So
i % -4 1

x e
x J=w (nlx’, x
-1 i 1 =ik

)
i

,QMHSNQ,.HE...S as € is arbitrarily small, the first inequality

is proved. Validity of the second inequality is proved quite
similarly. 8

From now on we suppose that in the initial game [ every
mﬁvnnonx set x» is a compact and every utility function U, is
continuous, then every sup and inf in (1) and (2) may be re-
placed with max or min, respectively. (This may be untrue with
respect to a guasi-informational extension of I )

Proposition 3. If m is a quasi~-informational extension of
I' then for every i€N the inequality m,ﬁmu z a (I holds.

This follows immediately from the well-~known inequality
mnmmu 2 a.nmu and Proposition 2. ®

, Denote IR(I) the subset of X Qn+w30a by the system of in-

equalities twnxu,w «.

Theorem 2. If m is a ncnmwbwzﬂo1annu03n» extension of T
then anzmﬁmuu € IR(D).

This is an obvious corollary of Propositions 1 and 3. ®.

Theorem 3. For every x°€IR() there exists a quasi-
informational extension m of T such that xomanzmﬁmuu.

Define ‘M,uchax,v. For every i€N, x €X detine P (x)ex
by the condition

P {x) € Arg min u (X).
x_ €X
af g
Now let m({(* ) =x° n ® oy L) o=
( i kmz.u. X unk.ﬁA .vkml/mhuu mkg.ﬁumkuwu. and
for every other x€X let 7(x) be any outcome from X satisfying

i....x_....u = m...‘k,....v.
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It is streightforwvard to see that I' is a quasi-

informational extension of [ (with ¢ defined by the natural

inclusion X X ). Let us show that A‘,vnmé @ NE([). Indeed, for
w *

any I€N, ,xmmkm we have

twﬂku.An,vmmzznkwuntmwnﬂkb“Ax,vmmz)hkv_uutwﬁxu‘ﬁhﬂxhuum

sa (D) s (x*)=e (RC= D L 0) =u (<50 0.«

This extension has an obvious interpretation. Suppose that
besides the plavers there is a mediator who has no objectives
of his own and is ready to implement any agreed upon decision
rule. Every plaver may either choose his strategy himself? (x.)
or transfTer the right to choose his strategy to the mediator
(* ). The mediator makes his choice after all the players,

i
knowing all their choices. His decision rule is described by

the mapping «. .

Now we have an example of the informal considerations men-—
tioned above. If Em agree to regard this extension as informa-—
tional, SN EReSEY 4 BbRoLetsd [Thaokens 2 Ahd 3 describe all
possible equilibria). But one may argue that the difference
between an arbiter who guarantees an agreement and a mediator
who is ready to choose for the plavers their strategies in ac-
cordance with a prescribed rule »u.n:nDJQMVPG. So the only me-
aningful interpretstion of the concept of informational exten-
sion is that each playver should choose his strategy himself and
the rules of the geme may only define information available to

each player. 1°1ll prefer to take this second position which

allows me to develop further constructions.
From this point of view Theorem 2 establishes an upper
bound for possible extension of the set of eauilibria. In the

following sections we shall consider some specific ways to ex-

- .

tend the indtial geme which mre certainly informationsl, there-
by establishing lower bounds for the set of all informetional

eauilibria.

3. Equilibria of mete-games

The first such example is provided by the so called meta-
games of Nigel Howard. The idem was first introduced in Howard
(1966}, but this peper was methematically incorrect; in his
later book Howard (1971) there was no attempt to describe the
set of outcomes which cen be made equilibrium in a meta-game.
The following results were obtained in Kukushkin (1974).

The basic definition is inductive, msnd the principal step
is as fTollows. Suppose that one of the players, let him be
plaver i, is tec choose his strategy after all his partners,
knowing their strategies; then we have @ new normal form Samne
where a strategy of plaver i is a mepping P2 X, @ X, while
the strategy sets of other players are the same ms before. This
game will be denoted »ﬁ" it is easy to see that it constitutes
a auasi-informational extension of the initial game ' with the
following mapping 7: =msh.kxpvuﬁi,nk-~u.x-wu.

These games .H for JEN are called meta-geames of rank 1
over the game I'; meta~gmmes of rank 2 over I are mete-games of
rank 1 over mete-games of rank 1 over the game I and so on. A

meta-game of renk m over T is defined by a seauence M»'....u
"

and will be usually denoted as . g T.
SRR

Let us discuss informally the "implementsbility” of metas-

9ame procedures. Sc far as information on x is concerned, the
]

interpretatiorn is rather straightforward: choice of implies
i

some materisl actions which can be observed from outside. But
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information on reaction rules ¢, is a different matter - how
could playver 1 observe what player J intends to do when 1t is
his turn to move?

One possible sappromch is to restrict ourselves to
situations where players are not persons but organizations;
then implementation of a chosen rule for reaction requires
certain material steps to be tesken which can be observed by

other players. Certainly, it is not so easy to imagine complete

information derived from such observations.
Another approasch is to regard a meta-game as &, so to
speak, compression of a repeated game; during the repetitions

the reaction rules wused by the plavers are, in a sense,

observable (though getting complete information is again

dubious). In fact, there exists an unauestionable similarity

between the results to follow and the “Folk Theorem”™ on
repeated oames, see Aumann (1989), Theorem 8.14. On the other
hand, this similarity should not be overestimated.

Further, tm may give more freedom to our imagination, Jjust
supposing thet the whole decision-making process is organized
via a computer controlled by the game organizer (whose duty is
to enforce the procedure). Every player submits a diskette with
a program implementing his decision rule Au1001035w30.pnzoc000
is fixed beforehand). All these programs are put on the hard
disk, and the organizer allows ons plaver’s program to analyze
programs whenever this is required by the rules

other plavers’

of the meta—-game.

At last, I would like to argue that "implementability” of

the meta-game procedures would seen much more plausible, if

if each plaver

transmission of information were voluntary, i.e.

- 11 -

Just had the possibility to commlt himself to & certein reac—
tion rule. The present definition alliows no sueh interpreteo-
tion. Later on we shall return to this possibility.

Pro o
position 4. Every meta-game ,u.:,uﬁ over I' is a quasi-

informational extension of I,

Proposition S. Every metp-game r i
i s 4 Il 8 .8
@mp nei m 1

meta-game over T' (therefore, = quasi-informational ex-

h!...—u

tension of ; ; I.
m oty

Both propositions follow immediately from the inductive
character of the meta-gesme detinition. ‘m
Proposition 6. For every sequence I ,...,4 ,4 i
; : | T Tme1” " Yhep

the following inclusions hold:

NE(T) < MNE(, 1)) s TNEC,
" 1 mep B+l m 1

This follows immediately +rom Theorem 1 end Propositions &
and 5. '8

Now we mre begirmning to describe all mete-game equilibrim.
First we’ll get necessary conditions for an outcome of the
initial geme to be = meta-game eauilibrium, then prove their
sufficiency for the simplest camse of m=2 and, afterwvards, for
the general case which needs more sophisticated reasoring. From
Nnow on we suppose A{1,...n}.

For a given sequence m_.....u' and J€N denote N (i) the
set of JEN which enter the sequence earlier tharn [ does for the
Ti 3 i -

irst time (if 4¢(i,...,4) then NiD=(d,...,53), M=
=M (N (D)u{d)).

P . { .
oposition 7. For any Ippee-ad BNG JEN the inequality

vm., Z.,aﬁ~ N ﬁ»: Bousw: EAﬁhw {
[ x ) - § - ’
Sty X X e

“




- 12 =
holds.
Praot . Suppose for the simplicity of notation that
(i, ... tnfiloo...st (sSm) ana N (1)=0, N (D)=(1,...,i-1} for
all i€{l,...,3}. Consider two alternatives: either Iiss or i)s.
In the tirast case let k be the number of the first entry

.

3 i fo=1, I . the
of i into the seauence I,,....I Heru. Hyum for I<{k)} In

e r I has as his strategies mappings
meta-game I' playe
K 1
. x P L% - X, (it
ﬁw. \x\ax...x»\ma—xk:\_.. X: i

is unéssential now

193 amon
what exactly are the strategy sets »m for J{(i). There is =]

+
them (at least one) mapping @, such that

] PR € Argl PR i .
< ﬁkau.--k. » X, 1 v X ) max min min w mkw
i i~1 1
hence « ( I ) = min...max...min X n accort rnce with
1 w (x}. I da
i i

i
B &
k 1 N: X, "

Propositions 3 and 5 we have the needed inequality (3).

In the second case we have N ({)={s+l,...,m\{i}; so while

e can pick
evaluating mhn»n...p»nu w i

. @
kwm Argmax min Ewnku and get imequality (3)

X Axhvumz-A_,

Let ¢ be a permutation of the set AN Denote for I€EN

o

v =min . . . min max mirn . . . min twﬂku.
o)

x . b
*o(n) *olist) oy Yoci-n a1y
i tation
Theor'em 4. For every ~u.....aa there exists a permuta

. ) and every i€N the in-

o such that for every xe€n(NE(, .
]

equality
w ()2 (&)
i i
holds.
] e sequence
Let ug....igu be the result of excluding «103 th

L4000, 1 any repetition HH,nMa. if i,#i, then J,=i,, and so

on); define qakuuhr for k€{1,...,s}; for kd>s define 0(k) arbi-

LT O S

trarily (but in sueh a way that o be @ permutstion), Now the
theorem follows from Propositicn 7 and the well-known inequas—

lity “minmax 2 maxmin’. ®

The values <w on the right-hand side of inegualities (4)

have strailghtforverd meaning: i+ all the plavers make their
choices in the order defined by the permutation o (starting

with o(m) and ending with 0(1)), the best gueranteed utility

N o
level of each plaver i is just v So we may try, at least, to

maike an equilibrium of any outcome satistying (4) by organizing

“punishment” of a deviating player by everybody else; in which

[o4

case his utility level can not exceed the level Ve The problem

- is that everybody’s eauilibrium strategy must combine the res—

diness te punish everybody else, should he deviate, with signm—
ling his own good intentions. This task is much easier for =2
where there is no need for signaling thean for the general case,

If =2, Theorem 4 stastes that at any equilibrium of any
meta-game the plaver who is the first in the seaquence defining
the mets-game gets at least his minmax, while his partner gets
at least his maxmin.

Theorem S. I M=(1,2} and xeunxw.xmvmk is such that
v, (x")28,(I), u,(x*)20,(T), then eNE(,T).

Pick kwn.m Argmin max t_auu and define the meppings

. %

snukms.k». emne“...xn constituting the needed Nash equilibrium:

o a (4] o

. x; o Af xg=x,, x, . if 9.=9,,

P lx,) = (23 o P(0,) = tn °

X, mauu. if kmnxm. x, ', if s_usﬁ
t2) ;

where X, .:NU € Argmin ENT.;.
: X
1
o o (1) (1)
Indeed, if  9#.  then ane._.e»un:ﬁnxn Yox, Y, 30

Can!-.QMuMb—n—Ju:»Akouo I QNA‘”kaN then ﬂaiﬂu‘ﬂglke. At last,




- 14 -

if uumﬁ”uan then =ASM.euuqu“mvﬁkNu.kmu for some x,EX; so
mnzw 2S5 M S, (£, m

These strategies have a rather simple interpretation: eve-
ry plaver is reasdy to choose Xa. but if nis partner deviates he
is ready to punish him. The conditions of the theorem guarantee
deterring effect.

S0 for 2 we have necessary and sufficient conditions for

an outcome to be a meta-game equilibrium. It appears natural to

expect that any outcome satisfying ineaualities (4) becomes an
equilibrium in the meta-game Qﬂsf..q:_ﬁ for which the systems
of inequalities (3) and (&) coincide. In his original paper N.
Howard stated just this, but was wrong.

Consider the following finite three-person game [ where
kwuﬁm.»‘wv' kmnanao.wv. and the utilities are as follows:
t—no.o‘ovuno. tﬂnxua»m for any other x€X; ENnQ.D.Ouapo.
awﬁu.c.pun:wmn‘w.punm. tunxuuww for any other .xmku
u,(0,0.0)=10, w(1,1,1)=0,(1,0,0)=5, wu,(x)=15 for .any other
X€X. It is emsy to see that v{=15, v;=5, v =6 for the identity
Ua...abnbnwo... e: eli)=i VIeN, so the outcome (0,0,0). satisfies
conditions (4).

Proposition 8. The outcome (0,0,0) does not belong to the
set nmzmnuuaﬂuu.

Note that in the meta-game the strategy set of plaver 1 is
O ={p 1 X, XX X}, the  strategy  set of plaver 2 is

= : ; set ot player 3 is
emlAem.e“xXW$kmv, the strategy
euuAeu"egxewleV- Suppose, to the contrary, that there exist
] o o

(93, 95, P MNE(,, T)  such that n(9),9,,P)=(0,0,0) which means
92(93,#3)=0, 93(9;,01=0, 97(0,0)=0. Consider two possibilities.

Let s“n».Puxw" denote ewmem the mapping for which

- 15 -~

swﬂsu.kuvuﬁ. Now we have tw”=gsw.sw.sMuwntmﬂkM.p.kwunpm .
x“nﬁ”mw.kww. This means that using sm instead of ﬁw olaver 2
woulad raise his utility level.

Let s“ﬂn.wuuﬁu denote ewmeu the mepping for which
ﬁwﬂsg.ﬁwvnﬁ. Now we have cuﬂaﬁem.sM‘emuvﬁtwﬁxM.km.pvu»m as
x”uﬁmmkmfpv. This means that usine ew instead of ﬁm player 3
would raise his utility level. m

It is worthwhile to discuss this example in more details.
Plaver 1 may be regarded as a party interested in the outcome
(0,0,0). The previous proof shows that in the meta-game his
knowledge of his partners’ strategies is insurfticient to make
this outcome an equilibrium. The situation kmnp. %=1 may arise
wher player 2 has deviated and plaver 3 began to punish him as
well as when plaver 2 has begun punishment of deviating olaver
3. Playver 1 can not distinguish between these two possibilities
and he can not punish both his partners simultaneously. Hence,
whatever strategy of player 1 be adopted, at lemst one of his
partners can profit by deviating.

So to make any outcome satisfying (4) an equilibrium it is
necessary that every plaver before 303&1@ his final decision
know about everyvone of his partners whether he intends to de-
viate or not.

41a01oi 6. For any permutation ¢ and any outcome x° of the
game I' satisfying (4) the following inclusion holds:

X" e atn-2)...0(10) . ..ot

Without w3< restriction on generality suppose O=e and

I'=

introduce some denotations. Let I''= r, =
T | Sne2...1n...1

= .ﬂx“ the projection from the set of the outcomes of [ to

that of I"existing according to Proposition S will be denoted




- 16 -
7' fove-as¥,  will  denocte MAPLLNGS P 1K KX X U
P oL e.,xk.,lx,...xk:;vkw..,..ﬁzn_vﬂx...%:L.,.ks“ Proeee
. JEP— mappings é,.u;,...ua. . ...e:.&v_. T, .w.n.mﬂx. -
:;,.,,...x&:«vﬁﬁ.,'.s-‘eatmn%ax...xé:»uxenn’xenl&u:lm. mn £he

' the strategies of the plavers are mnappings

moka--amne

x® .
B ae.,d 3 im bhe meta-game [T they are VY,...V .9 9. For

n
P N [ 0
moery  palr  i.JEN (i#F) Tix a mapping x.,._ FX XX X, sa-

tistying for all kai.,..k:u the following condition:

Argmin min...min tuﬂku. if idJd,
[ X . X x
& -1 1
Nm mkm.v»u.-..«k:u i i
Argmin mir. . .mEx. .. win t_.wnku. if )4,
Ko X, x
i i=1 J 1

pNow define inductively the sets ewme, by the following

equalities:
‘o a o, O oy o
®] = mﬂméw.ﬁﬂxm...anu!«z‘

Q nv 0 D 0 9 ° .i‘
9» 5 Aﬁv»mew_g.—ﬂﬁﬁ-x:a-ﬂwl._u k»éﬂ-ac-wk?u‘k

o 0 .0
A4 €d &
Aﬁh uv.‘.A»M

i
The strategies from ew may be called “well-meant®. Now for

every pair i, 6N (i#J) introduce the “strategy of deterrence”

CI) g,
P, mek.,

x°, if 9 €4° VYs(i and
1 L 8
[+]
1) _ x =x_ Vs¥i,
s~ mﬁ»‘,a-cﬁr».k~+na...-k=u.§ . 8 8
3§

Ay

mk:u.....kau else.

For i#m1 define the mappings swmew.

o . o B
. ) x,, if emmeu Vs< 1,
PP s n X grenen X )= s

X

nk:._.,...k:g it

J=min{sle #0°}.

The mepping @ €0° is defined in a specific way:

%’ if P me” Ys(i and xmnxs_

n~1’ 3

2 fn) . Bl B
= i ) B Y 3 #
ﬂc,.“u_ms;......u::m.h:u k x:.;m».:‘_' it bu @x s¢{ and L X
(i : PR o
X, tx ) if L‘.Swsﬁw.emmemv.

At last, define the mappings WY, for isn-2:

g°,  ifr p 50° Verz,
S 8

i

o
O I T TR L .
000 it smin(sie #07}.

Mow denote xouﬁew,.-..ém&.snl.a”u“ verification of the

‘equality w(x°)=x" is straightforward. Let us show .«omzmﬁﬁxu.

i.e. that no player can profit by deviating.

Consider the consequences of a deviation by a plaver
3 % “x o o % o o o
JE(L, ... m2bbet YEY, WP, W LWLV eV e P
% T x % % ~x
ﬁ”: denote x =m(Y ), (P,...50 s smluﬁmun%‘ne ). It tollows

L+ * o

immediately from the definition ot ﬁw that ewnﬁm . for
I€{ 4L,y . =3}, MNow we have Just two alternatives: either
ewmew or not. If swmew then we have @=g, for I€{1,..., -1}

hence x =x°- which means the deviation has brought plaver J
neither profit nor loss. IT ﬁwmew. ‘we have ewus‘:

1 1
i€{1, ..., 71} and x= x”t?”:.....xuu for i€{j4l,...,nb. If

for

*l
=

the definition of ﬁm:. the equality xquk«.v holds for

1 ) 1

it occurs that x uw for i€{j,...,nl, then, in accordance with

i€{1,...,J-1}, too; hence x*=x° again. At last, if x”naw for at

:: & .J

f ,k:;.....k: for

least one i€{J,...,n, then we have xnnx

every i€{i,...,J-1}, hence .E.ﬂﬁx»umtw and the deviation is un-—

profitable.
Now suppese plaver n has deviated choosing s“ instead of

ﬁm. If e“me”. nobody will notice anvthing, so x=x". If e“ne”

then every plaver i{mn-1 will use s::u if it occurs that

i
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] ® tn) ind 2 ° .

=p (. ... .9 d=x, then avery plaver i{n will choose
n n 1 ne2 n=-1 n

. “ o .

xw and nothing will chancoes 1T .«aﬁx:“ thern =svery playver Ii(n
§ g . < T, % e . , e
will choase a4 =Y, X e hence elaver s wtility zan

Mok exceed the level <”.

For a plaver m=1’'s deviation the reasoning is essentially

- (n~1)
the same. If ﬁ“lﬂe”l thers avery player I{mn-1. will use s.,:
{n~1) . £ * P
while plaver m will choose x“uxaz 3 if it occurs that .«:nu“
% = (n=1}) (n-1) o o
ard x:._lealme_ seens @, fxavn.«:-— then everybody else

* o x o

will choose X = and nothing will change; if kaur\a or
®

k“. 43.”- 4 then every player {1 will choose x>
uﬁ:-:mkw:.....k“f hence plaver n—1"s utility can not exceed
the level v° . B8

ne-1

Remark 1. The strategies ew do not use any informastion

about the chosen strategies ﬁw for J<i.

Remark 2. The system (4) is always consistent because in

o

the meta-game . . (in fact, even in ,. .. .\
every plaver I has ‘a strategy gusranteeing him the utility

[

level Ve

4. Filling the hole in the Pareto border for nm2

L.et us return to the case 3:».. It is rather easy to see
that if the system twnlwmm (i=1,2) is consistent then any Pa-
reto optimal outcome can be made equilibrium in an speropriaste
meta-game. The oroblem is that the system may very well be in-
consistent, in which case the most °symmetrical® Pareto optimal
outcomes of the ogame are not meta-game eaquilibria. What shall
we (or the plavers) do in this case?

" First of all, remark that the constructions of Theorem 5

cen be applied to any extension I' of the came [, not necessa-
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mily to I' itself (provided it be possible to write min instead

of inf in zqualities (1) and (2) for [). 30 we can organize the

game [ in such a way that nobody should have his 8 () as

Qp_,.m.u, our first sxample demonstrates how this cam be achieved,
and then apply Theorem $ to the game m

Suppose one of the strategy sets (let it be »\mu is provi-
ded with a metric p; denote ?meamkmv. For any m, 0OSrsf, de-—
fine the following game [°. First, plaver 2 chooses x»mkmwhm
preliminary choicel), then plaver 1, knowing Yos chooses xumku.
at last, plaver 2 chooses x,€8(y,,r)={ X €X,1p0x,, »,)SP}.  In
this informational extension of the game [ strategies of player
1 are just mappings f"km..vkﬁ while strategies of plaver 2 are
pairs of a choice \mmkw and a mapping ﬁmukulmnkw..}: the pro-
jection @ runs as follows: %(9, C\N.smuVnﬁsamkmw'swﬁs,mkmuT.

It is eamsy to see that

mg:..J = n.ﬂ...u = min max min u,(x),
Y, X, x,€8(y,,r)

Qm:,..u = mN:.J = max min max u (x).
¥y X, x,€8(y,,r)

Denote fﬂlumaﬁ,nu. <~Alunwde.

Call a metric compact X essentially connected if the map-
ping Xx(0, RI+8(x,rr) is continuous w.r.t. Hausdor?’s metric at
the right side.

Proposition 9. If the set Xm is essentially connected and
x° is a Pareto optimal outcome of the game [ satisfying

BT 2w (x") 2 (T, B(M) 2 u(x°) 2 ay(D),
then there exists r€(0,R] such that

t.mxouw.\.ﬁl for both i=1,2.

It follows immediately from the supposed essential connec—
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~tedness of X, that v, (r) is contirsous on [0.,R]. As <ﬂaawam“nﬂu
and <“mkwu9dﬁﬁu¢ there 2xists ~<{0,R] such that :,Akcuufwﬂﬁw.
as v im)=a (T7) for both i, there exist stratesies 0], (»,03)
for which cwﬁaﬁew.h\w‘smUuuw<.m7v. S0 the ingauality
tmﬂkewA<wh1~ would contradict the Pareto optimality of the . out-
come x°. ®

Theorem 7. If the conditioms of Propositiorn 9 hold then
there exists r€(0,R] such that komaazmﬂugﬂnuu.

It 1ohwm£w immediately from Proposition 9 and Theorem S. @

Remark. The theorem remains quite meanimgtul for a zero-
sum game I, 1if the plavers are risk-averse and, consequently,
their use of mixed strategies could destroy Pareto optimmlity.

rmn us discuss the essential cornnmectedness property
without going too deep into topologicanl details.

Proposition 10. If X is a convex compact subset of a Ba-
nach sepace then X is essentially connected w.r.t. the metric
induced by the norm.

I will omit the simple and reather tedious proof. ®

Proposition 1i. If X is & connected compact polyhedron
(see, e.9.., Spanier 1966} then there exists an eauivalent met-—
ric on X under which it is essentially connected.

Let us fix a triangulation of X. For any two points be-
longing to the same simplex define our metric as the distsnce
in the pre~immge of the simplex. For any other pair of points
X, ¥ we consider all sequences Xys aaos Xy where Ko=Xe A=Y and
every two points Xio X o belong to a unsvpmn" now we define the
distance between x and » as the minimum of the sums of awanu:l

ces between the neighboring points over the set of all such

sequences.
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I’11 skip over all further details. ®

Remark. We could redefine the meta-~games supposing on =sach
step that the corresponding plaver can reveal his strategy to
his partner but is not obliged to do so (though no cheating is
possible). Under this modified definition it is possible to
show that any outcome giving each Uﬁn<o1 at least mw is a meta-
game squilibrium. As in the game [’ the esqualities a.=B, hold,
we may state that passing of information about X, must be com-
pulsory, while revealing the reaction functions s, nay Uw
voluntary.

Certainly, if X is discornected, then it can not be essen-
tially connected w.r.t. any equivalent metric. So our theorem
is not applicable to (bi)matrix games. Indeed, some time ago

A.Vasin constructed (but had never published) the following

peculiar example of an antagonistic 3x3 onaa.ﬂu

2] -1 -1
1 1 -1
1 -1 1

It is easy to see that m%ﬂun». Rg:Julpu so the game has no
saddle-point. Certainly, the value of I in mixed strategies is
0, but the players are risk-averse and would prefer to get 0O in
a pure-strategy eauilibrium.

Suppose there is a procedure for seguential decision-—
making leading to choosing the outcome 0 as an equilibrium. As
we are considering pure strategies only, the trajectory is
unique, and one of the plavers has to be the last to fix his
final choice. Suppose, it is player 1; it means that at some

moment plaver 1 knows that x, is fixed, while having some range

of possibilities for himself. Obviously, he can then ensure the
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wtility level of 1, and our supposed strategies do not consti-~
tute sn eouilibrium. Quite simdlarly, if playver 2 is the last,
he omn ensure the utility level of -1 (for plaver 1)s wncwpws
prium is impossible again. A

if we drop the idea of voluntary provision of  information
on reaction functions, it becomes possible to make ean
eaquilibrium of any individually rational outcome (see Howard

1974), but a vague philosophical question remains whether this

extension is better interpretable than that of Theorem 3.

5. “Vasin - Survich®’s Meta-Games

Now consider & very peculisr construction due to A.Vasin
snd V.Gurvich (never U:vawzaa‘vvovo1n<. all but just announced
in Vasin, Gurvich 1980).

Their definition differs from the Howard’s one just in one
point: the basic step. For i1, JeN, i#Jj denote wﬂ the game where
player I makes his choice of x, knowing kb (and everybody awDJ
has no information about the partners’ choices). An arbitrery
vasin-Gurvich’s meta-game is obtained by iterating this trans-—
formation. It is gquite obvious that any Howard’ = meta-game con
be obtained in this way, so the only auestion is whether this

construction leads to & more expanded set of eaquilibrias. And

the snswer is thet it does.

Thecrem 8. If i, JeN, I#7 and an outcome x°ex of & ogeme T

satisfies the inequalities:

twnuoyw min max mir tmnku‘

< >
Xy X X,

Eanoawnaﬁy for every k#i,
then there exists & (Vasin-Gurvich’s) mets-game r" over T tor

which x"em(NE(T )).
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-

I will give & proof only for m=3. Dencte I = '9233p
21321"°

b ={p : X =X & :
1 17 X7 X ) Nnasm.enikwv. emuaﬁMne&wav. @»naeanemle»u.

Y = H
] Asm.ﬁgLQNV. The sets ﬂ». ﬁ». ew are the strategy sets of the

game I'.

Lemms. The +0w»c:w3n equalities hold:

B nmun min max min o (x), ,

g P ,(x : (5)
mmﬂwunQMAﬂv. (&)
mmnﬂuuawnﬁv. (7)

These equmlities together with Theorem 6 imply Theorem 8
(for a={1,2,3}, i=1, F=2). So we have Just to prove the lemma
Prove oncnpun< (5). Here plavers 2 and 3 are punishing
player 1, and the problem is how is player 3 to know x.? The
1
punishm ¢
ent strategy 9, being fixed, playver 2 knowing e. knows,
in fact, 9.; so the punishi
1¥ ment mapping «w outside this P, may
be quite arbitrary, in psrticuler, it may be wused to convey
complete i i
Nnformation on e» to plaver 3. The latter, knowing 81

is mble to deri
rive the choice X B8 X, may be fixed beforehand.

To express this idea i i ®
more technically, fix an umm Argmin
. Xz
max min v (x) end deno *={p* FloHy=x"
1 te o, {9 €0 lp,(p)=x, for a unique

¥y *p

X
() A
P ). Let smmem be such that for every emmem there holds

kS x
Q H € x x *
A emu Aramin tuﬁs»mxmu.xu,xuu. where s” is the wuniaue solu-

X3

tion for @ (9 )=x'. At i iy

- Lo, m last, define emm4~ by the equality

n = *

(V)=0, Tor eny ¥, where pl(v (9]))=x), PL(p)Ex) when-

| . & 2

0<mvkﬁﬂu€ﬂﬁﬁuv. Now it is easy tc see that for any V.€¥  there
” 1

holds Y,y e )= x %
Hau.cn.qmawhxﬂ.xq.kau where X€ Aramin v (x,, x. )
2* % 4 SUxs X x ).
X

Hence the eauality (5).

Prove eauality (6). Now plavers 1 and 3 are punishing pla-




. ®
yer 2. As The punishment strategy ¢, may pe chosen beforehand,

.upm<ﬁ1 3 knowing sm is able to derive x,.
In more precise words, fix ] e”mea for which

suﬁxmvm Argmin min tmﬁku" define e” by the equality @nﬁeuuns”

kg .xw

for every ﬁumem. and pick @ emmem satis?ying QMAGNWm Argmin

X3

tngunﬁnguz,smg“v.xuu for every @&, Now it is easy to see
X *®
that for any aMmem, there holds aneu.em.suvankﬂ.xu.kwv where

ﬂu”.kwum Argmin tmmxu. Herce the equality (6).

10X

At last, to the equality (7); now players 1 and 2 are pu-
nishing player 3. When the strategy eﬂmem is fixed, plaver 1
knowing 9, is able to derive kunsmﬂsMu and, consequently, to
choose & proper punishment pair ﬂxa‘XNV. Now he is to choose a
afmeu communicating according to some (adopted beforehand) co-
ding system the proper X, to be chosen by plaver 2 to him. And
the latter’s mapping ﬁw is to decipher this message in =accor-
dance with the same coding system.

The reader is invited to produce the necessary technice-
lities him(her)self., ®

Remark. It is rather instructive to compare the equilibri-
um strategies of Theorems o.nza 8. In the first case the use of
information aveilasble to each player tmm ws.n sense straight-
forward: everybody tried to recognize the deviator and to pu-
nish him properly. Here the players ere much more sophisti-
cated: the possibility to commit himself to a certain resction

rule which becomes known to one’'s partner is used to communi-

cate informatior or another partner’'s:s decision.
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