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1 Introduction

Many countries with concern about pollution control currently have a public debate
about the right choice of regulating policy tools. Whereas in the United States more
and more markets for tradable emission credits are created on regional, national, and
soon also on international bases (for example bilateral with Canada for permits of SO,
o_.a%.moa&. most environmental politicians in Europe, specially in Germany, apparently
prefer effluent taxes over of permits. We all know from economic theory, that this
debate may be void under certain assumptions, that is, a Pareto optimum can be
implemented by either of both policy tools if the right effluent tax is imposed or the right
number of effluent permits is given out. For this theoretical result to hold, however,
the regulatory authority needs to know the consumers’ preferences as well as the firms’
technologies, or at least a social damage function and the firms’ abatement costs in
a partial analysis. Equally important, it has to be assumed that the output market
as well as the market for permits — if there is any — are perfectly competitive. (For
an exposition see for example BAUMOL and OATES (1988), and SPULBER (1985) for
long run considerations.) This assumption is obviously not satisfied in many industries
involving pollution. To find examples is not difficult. Think of electric power generating
industries in Europe or think of the powerful chemical industry. Especially there, a lot
of different pollutants are generated, but each by few specialized firms only, such that
a (potential) market for permits would be naturally thin.

Since very few theoretical work has been provided about vo:::rn control under imper-
fect competition so far, this essay investigates regulation of firms which do not behave
as price takers. We consider a simple model with two firms aamwmm.:m in Cournot com-
petition on an output market for a single homogeneous commodity. The firms choose
quantities, and the market price is determined by a downward sloping inverse demand
function. To keep the analysis tractable we assume the simplest type of technolo-
gies that allow us to highlight the firms’ asymmetries. Firms have different constant
marginal costs, and a pollutant is generated proportionally to the output. These pro-
portionality factors may also be different. There are no further abatement technologies.
In other words, the technologies are of Leontief type. Welfare is taken to be separable
in consumers’ gross surplus, social damage from pollution, and the firms’ production
costs.

After deriving the social optimum, we investigate regulation via Pigouvian effluent
taxes as well as by creating a market for permits. To make the analysis interesting,




we assume that the pollutant will be generated by no other industry. This induces a
thin market for emission permits. Taking into account the firms’ strategic behavior, we
completely characterize the optimal tax policy and also the optimal number of permits
contingent on the firms’ technologies, and the steepness of the social damage function.

Different from vﬁnoca competition, it turns out that neither taxes nor vmnazg im-
plement the social optimum in general. This leads us to ask if one of the policies is
generaliy more inefficient than the other in this model. Although the answer is no, that
is, no policy can be said to be superior to the other in all cases, the permit policy yields
a higher welfare for a considerable set of parameter constellations. In particular, if a
firm has a strictly worse technology from the social planers point of view, which means
that it should never produce in social optimum, regardless of how flat or steep the
damage function is, this worse firm will also never produce under permits, regardless
of how many permits are given out by the regulator. The optimal emission tax, on the
other hand, does not always induce the worse firm to be inactive.

More interesting are those cases where, say, firm 1 has the lower private cost but is
also the worse polluter. It turns out that in this case, from a social point of view, only
firm 1 should produce if the social damage function is relatively flat, only firm 2 if the
social damage function is relatively steep, and both of them for intermediate values
of steepness, In this situation, the permits policy also shows some advantage. To
explain this, imagine the damage function becoming steeper and steeper, and employ
the optimal tax or permit policy. Although the worse polluting firm 1 closes down
"too late” in both regimes (compared to the social optimum), firm 1 closes down
earlier under permits than under taxes. Also welfare is higher under permits than
under taxes for those parameters. In other words, if social damage from pollution is
so high that only the cleaner, but higher private cost firm should produce, the social
optimum will be achieved under permits for a greater range of damage functions than
under taxes.

If social damage is low, on the other hand, the permit regime will be exploited by
the lower cost firm 1 which will buy all the permits and exercise monopoly power. In
that situation, laissez~faire may be even better than giving out any number of permits.
Under taxes, on the other hand, welfare may be increased towards laissez-faire by
negatively taxing, that is, subsidizing pollution, a phenomenon also been observed
when regulating monopolies, or recently by EBERT (1992) for symmetric oligopolies.

Apart from EBERT’S symmetric model and MALUEG (1990), according to my knowl-

edge, no other oligopoly model treats the output market and the pollution sector
simultaneously. HANN (1984) studies 2 model where one big firm has market power
on the market of permits, the remaining firms behave as price takers. He shows that
the final allocation of permits depends on the initial allocation and will be inefficient
in general. MALUEG considers the distribution of permits in a Cournot oligopoly on
the output market, however, without explicitly considering the "pollution technology”
and without offering a solution concept for permit trading. EBERT who investigates
taxation of polluting firms under Cournot competition always gets a social optimum.
His result, however, relies heavily on the symmetry of the firms.

This paper is organized as follows: In the following section we set up the model. Sec-
tion 3 characterizes the social optimum. In section 4 we briefly discuss the underlying
information structure for the tax and the permit regime. In sections 5 and 6 we develop
the optimal linear tax, and the optimal number of permits, respectively. In section 7
we compare the two regimes and give a numerical example. The last section concludes.
Unless stated otherwise all formal proofs are given in the appendix.

2 The Basic Model

Throughout this paper we will consider a Cournot duopoly with firms i = 1,2 setting
quantities gy, gs. The price is determined by an inverse demand function P, with
P’ < 0, which depends on aggregate output Q = ¢ + g;. We assume there is a finite
choke-off price § := P(0) := min{p|D(p) := P~'(p) = 0}. For various reasons, we
further make

Assumption 1 |P"| is sufficiently bounded; in particular: for all Q > O:
P"(Q) < 2P'(Q)/Q.

The upper bound for P” is sufficient to guarantee the second order 8:&:03 for profit
maximization of monopoly as well as for the duopoly firm in Cournot-Nash equilibrium.
It is also sufficient to guarantee uniqueness of Nash-equilibrium.!

Both firms have constant marginal costs ¢; and ¢z, with (w.lo.g) ¢ < ¢ < B

Production is not possible without pollution. Producing ¢; units of output, firm i

!Later on, we also need that P is not too concave. To quantify the lower bound, wos&éﬁ yields
tedious expressions and does not yield further insight.
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generates e; = dig; units of emissions. This cost and poliution structure may be con-
sidered stemming from a linear (Leontief-)technology. Firms do not have an abatement
technology.? Total emissions are written E := e; -+ ¢5. To evaluate utility and harm of
(g1,92) (which determines (e1,€2) ) to the society, we assume to have a social welfare
function W(q,¢2). In the absence of pollution, in the industrial economics literature,
a social welfare is simply taken as W(gi, ¢z} = J§ P(z)dz = e1q1 — €242, that is, con-
sumers’ gress surplus minus aggregate production costs.® We will extend this approach
by assuming, that benefit from production and damage from pollution are additively
separable. This means, in addition to consumers’ surplus there is a social damage func-

tion S : IRy x Ry — Ry with (E,s) — S(E,s), which depcnds on aggregate emissions -

E and a damage parameter s. Employing the usual notation Si(E,s) = W.@W.mh and
30 on, we make the following assumption.

Assumption 2 o) 5 is al least twice continuously differentiable with respect to* E and
5; in (0,0) the right sided partial derivatives exist.

i) S(0,8) =0VYs 20,

i) S(E,0)=0VE 20,

iii) S1(B,s) 2 0 Vs > 0 end strictly greater for E > 0.

i) S11(B,s) 2 0 Vs > 0 and strictly greater for £> 0.

v) S12(E,8) > 0VE > 0,8 > 0.

So, § is increasing and convex in E and marginal damage increases in s. Although s is
an exogenous parameter of the model, parameterizing § via s allows us to characterize
social optimum and also regulatory policies as a function of the damage function’s
steepness. Finally we assume:

Assumption 3 The pollutant resulting from production of the industry’s outpul, only
arises in this indusiry.

2 Assuming the firms to have an abatement technology allowing them to reduce pollution by in-
vesting some effort, which in turn generates a higher cost, screws up the linearity of the cost function.
Then we could start immediately with some cost function C{g, ) which is nonlinear in output and
emissions. This is certainly worth to pursue and should be tackled by further research. However,
much less can be derived in general, as far as I can see.

3This is equivalent to W(g1,2) = Ji7 P(2)dz — P(Q) Q+(P(Q)a1 ~c101) + (P(Q)g2 = caqa), that
is, net consumers’ surplus plus profits of the firms. Some authors use the latter, and sometimes even
multiply surplus and profits with different weights (see for example BARON and MEYERSON (1992) ).
Then, however, the two concepts are not equivalent.

AFor short: "w.r.t.” in the remainder.

Assumption 3 does not hold in all industries, of course. For example COs, is generated
by many different industries. SO, on the other hand, is generated basically by power
plants. Also in the chemical industry, some poisonous pollutants are generated from
production of one certain commodity. Since we want to analyze regulation of firms
under imperfect competition, Assumption 3 is crucial to make the analysis interesting.

Assuming separability of social welfare in consumers’ mz,nvEm. production cost, and
social damage, the welfare function is given by

Q
Wilasas) = [ Ple)dz = S(E,3) - euau = oot (21)

Without any kind of regulation, Cournot competition leads to a Cournot-Nash equi-
librium independently of s. By Assumption 1 there is always a unique equilibrium for
all constant marginal costs ¢1,¢2 <P-

Before turning to regulatory policies, let us derive the social optimum a fictive social
planner would install under complete information. If ¢ < ¢z, it is clear that for s =0
the higher cost firm 2 should not produce anything. If social damage is very high, one
could think that only the firm with the relatively lower pollution level per unit of output
should operate, that is, with the smaller d;. However, it is not quite like this. What
will turn out to be crucial is whether the term (dicz —~dy¢;)/(dy —da) is greater than the
choke—off price or not, or equivalently, what the sign of di/(F—c1)—da/ (F—cs) is, which
is the difference between the firms’ ratio of marginal potlution and maximal marginal
consumers’ surplus. For convenience, we write for short A 1= dy (P — ¢2) — do(F — ¢1)
for the remainder of the paper.

3 The social optimum
The social planner has to solve the following program:

N .
max W, (q, g2) = max .\ce “ P(z)dz — S(dvqa + daqz,8) — 11 — C202 (3.1)

91492 91492

st 120,220

The following proposition yields the properties of the optimal solution (remember that
we assumed ¢; < ¢2):




Proposition 3.1 o} If A £ 0, firm £ never produces for all 5 2 0, unless ¢; = ¢
dy = da, and firm 1 produces q which solves

P(q) = ¢1 + Si(drgq,8)d; . (3.2)

q is decreasing in s. (If both firms are alike, clearly ¢ may be arbitrarily distributed on
both firms).

b) If A > 0, there are parameters 8,3 with 0 < 3 <T < 00 (< oo for dy > 0), such that
the solution of (3.1) is characterized by .

>0
o V 0<s<s,
q2=0
and Q = q is decreasing in 8.
>0
o V g<s8<3,
>0

and qy is decreasing, qp is increasing, and Q = ¢ + g2 is constant in s,

a=0

Q»VO v awwm\.&uvcu

and Q = gz is decreasing in s.

Moreover, Q, E, end W are continuous, E and W are decreasing in 8.

Thus, we can say that firm 1 has the better technology if A < 0, unless ¢ = ¢z,
dy = dy when production can be arbitrarily shared by both firms. Notice that ¢; < ¢z
and dy =dp as wellas g = cz and dy < da imply A < 0. But notice also that A<0
may hold for some dy > d; if ¢; is sufficiently smaller than ¢;. In other words, even if
firm 2 emits less pollutants per unit of output, it may never produce in social optimum
if the cost differential ¢; — ¢ is sufficiently high.

Proposition 3.1 is derived by solving (3.1), taking into account the Kuhn~Tucker con-

ditions with respect to the constraints ¢ > 0 and gz 2 0. Details are postponed to the .

appendix. Notice that ¢; < ¢z and & >0 imply dy > dy, that is, firm 2 emits strictly
less pollutants per unit of output than firm 1. Interestingly, for 3 < s <3 aggregate
output is constant in s and equals @ = A/(dy — dz). Thus, the social planner shifts
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production continuously from firm 1 to firm 2 as s increases, keeping total output con-
stant, until firm 1, which faces the lower production cost but is the worse polluter,

shuts down. Thesc properties are displayed in figure 1.

Figure 1 about here.

4 Regulatory Policies: Some Remarks on the In-

formation Structure

Needless to say that first best solutions are in general not enforceable by prescribing
the firms to produce individually different quantities. Not only is there an information
problem in the sense that the government does not know the firms’ technologies. 1t is
also considered to be unfair to prescribe different policies to the firms. By widespread
opinion of the public and their representatives, firms are supposed to make their own
decisions about their output in an economy with free enterprise. This paper is not
about incomplete information in the sense that the government has prior (probability)
beliefs about the firms’ technologies. If the government, however, has to choose a "fair”
policy that treats all the firms alike, complete information is not necessary anyway. To
choose, for instance, an optimal linear tax, it is sufficient to know the existing types
of technologies and how many there are of each type, but not exactly what firm has
what technology.® Hence, we will assume for the remainder of this paper that the
government knows at least what technologies there are.

We also assume that the emissions generated by each firm can be perfectly monitored
by the authorities without costs. So, the firms will pay a tax bill exactly according
to the amount of their emitted pollutants (in section 5). In case of holding permits,
firms cannot emit more than the number of permits allows them to do. Otherwise, we
assume, a high penalty has to be paid ?om::m‘;w:so:%o:oi. So there is no room for
moral hazard, Needless to say that also this a strong abstraction.

5This information structure is reminiscent of the second degree price discrimination literature. In
Maskin and RiLEY’s (1984) model, the monopolist has to know what kinds of consumer there are,
but not which consumers has which utility function. The same structure can be found in ROTHSCHILD
and STIGLITZ (1976) and STIGLITZ (1977) in the analysis of insurance markets. Of course, assuming
this information structure is more appealing when there are many agents rather than only two as in
our model,



5 Pigouvian Taxes

By a Pigouvian Taxes we mean a linear tax tariff on emissions. Firm i has to pay a
bill of 7 - ¢; il it emits e; units of the pollutant, where 7 is the tax rate. Producing ¢
units, firm ¢’s costs amount to c;g; + 7e; = (& + 7di)qi. We do not impose a condition
on the sign of 7. Negative 7's, mean a subsidy. Indeed, we will see that for low
social damage it is optimal to subsidize pollution, a scemingly perverse phenomenon
at first thought. Since we retain the assumption of Cournot competition, the firms
go on choosing Cournot-Nash quantities if 7 allows both firms to produce, and firm
i produces its monopoly output if firm j chooses ¢;(7) = 0. This behavior can be
gathered in the following equation.

Pgi(r) + g;(r)) + P'(qi(r) + ¢;(T))ai(r) — (ci + 7di) =0 (6.1)

Vi with gi(7) > 0 and Vj # i with g;(7) > 0.

What is the government’s program? 1t wants to find the optimal tax rate under the
constraint that the firms set Nash quantities if they both produce, and monopoly
quantities if only one of them is active, that is, if ¢:(7) is given by (5.1). Hence, it has
to solve max, WFT(r)

(r)+aa(r)
— qu.x\.“.vs a2 P(2)dz — S(drq(7) + daga(T), 8) — ciqi(t) = caqa(7) . (5.2)

Observe that the wm&so:w_ costs of size T¢; for the firms and the tax revenue for the

government cancel out if we assume that the government redistributes them lump sum
back to the firms, or even to consumers. This does not matter. What matters is
that the government has no objective to collect tax revenues in this industrial sector.
Especially, there is no additional technology the government can buy in order to reduce
the aggregate emissions [, once these have been dumped into the environment by the
firms. To solve (5.2), it is useful to know the behavior of gi(7), i = 1,2, especially, what
firm closes first and when the other firm switches to monopoly behavior as 7 increases.
Let 7P be the duopoly tax (or subsidy), at which firm i just closes in competition with

firm j, that is, 7P satisfies

5?.3 =0, qr)>0for7< Porr>7P, and ST...UV >0. (5.3)

Wm:d:m 5.1 ,& If A <0, firm 2 does not produce at all ¥r, or closes first as T
increases, formally the latter means, 3rP such that gy(7) = 0 Vr > P qr) >0
V7 < 7P and qi(rP) > 0. o

b) If A = 0, firm 2 does not produce at all V7, or both firms close simultanecously.

¢) If A > 0, firm I closes first as T increases, formally the latter means, 372 such that
G(r)=0VYr 210, qu(r) > 0 Vr < 7 and g,(vP) > 0.

The next Lemma converts Lemma 5.1 c).

Lemma 5.2 If 370 satisfying (5.) then A > 0.

Let 7(s) := argmax, WFT(r) be the optimal linear emission tax, and let $P = {s ¢

E_MM??VV > 0 for i = 1,2} be the set of those damage parameters where both firms

produce under th i D be i

produce un M« K mm.h.%saﬁ tax, ws.m. mo»aw«. be its closure. Let 77(s) := r(3) for those
are in 5. First order conditions® imply

dWPT .
—(r%(s)) =0 Vse3”, (5.4)

taking right/left derivatives on the boundary of 5°. Assume that the second order
condition

dEWFT
@y (@) <0 Vse3°, (5.5)

is satisfied. It can be shown that this is the case under Assumption 1.7
Lemma 5.3 Under Assumption 1, i) Q/(r) < 0, ii) E'(r)<0®

Differentiating:(5.4) w.r.t. s and solving for the derivative 72'(s) yields

()  Su(B(r),9) B'(r)
W= ey 0 _ 6:5)

8for short: f.0.c.s for short in the remainder.

7
Here we need the lower bound for P". For linear demand, (5.5) is easily established.

8Also if the reader mi i
L eader might skip some of the proofs, she/he may look at this one and read Remark




by Assumptions 1 and 2 and Lemma 5.3. Hence, if there is s > 0 such that
P(s) = 7P (5.7)

the solution is unique. Observe that in case of A > 0, if solutions of (5.7) exist for
both ¢ = 1,2, then 7 < r¥ by Lemma 5.1 and 5.2. Hence we define®

solution of (5.7) in s if it exists,
sy 1= 4 —00 else if i = 2 (5.8)
00 else

This means, s? is that damage parameter for which the value of tax function 72 equals
7{ if such a parameter exists. The settings —oo and co are made for convenience for

later on.

For the subsequent analysis it is useful to consider briefly: -

The case of pure monopoly. Let us assume for a moment that only firm j is around
and is to be regulated by an emission tax.

Setting ¢i = 0 in (5.1), we get the f.o.c. for profit maximization of the monopolistic
firm j. Differentiating w.r.t. 7 and solving for gi(7) vields

’ - &u. .
50 = G T P <° (5.9)

by Assumption 1. The f.o.c. for the optimal tax implies
P(gj(7)) = S1(djq;(7),s)d; —¢; = 0, (5.10)

since gj(7) # 0. Given the damage parameter s, let 7i(s) be the optimal tax to
regulate the monopolist j. Differentiating (5.10) w.r.t. s yields

= S12(djqi(r), s)d;
T [P(g5(r)) ~ 251 (d;g;(r), 9)lgl(7) >0 (5.11)

i (s)

since S12 > 0, P' < 0, §y; >0, g; < 0. As a byproduct we get

9The superscript stands for ?duopoly”.
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Corollary 5.1 The optimal emissi ist yi
oo pitmal emission laz lo regulate o monopolist yields sociql opti-

A N v
Hr—m *O;Occu :5-50&—9&0—% *mouﬁ m Hc <<~=n~— 18 m.~m° —Urﬂ »'Q.G. O» mcﬁnw._ °~v0=~ﬂ==~ ;- OD—v.

Back to duopoly. If there js s 2 0 such that

Mi(s) = =P
e = (5.12)

mwm M&:ﬁg is unique, since M () is ms.mn,s% increasing. Hence we define!® Vi=1,2
jmde n." T A4
, solution of (5.12) in s if it oxmmwm.
% e '

8= —co else if { = 2 (5.13)

oo , else
x M; .
This means, s;’ is that damage parameter for which the optimal monopoly tax equals

D . M; S §
7;"- In other words, at $; firm 1 is just on the margin between opening and closing if
the monopoly police M; applies, ¢

The next Lemma is the keystone for the characterization of the optimal Pigouvian tax

Hms_ﬁﬁ‘a.ﬁ Let WM (r, 8) be the welfare when only firm j is ﬁ.o_Sw and reacts as a
monopolist upon the tay 7, and the damage parameter is g,
QN\DAonamoA«%Aool?m: |

owm
5r (o) <0 (5.14)

b) N\DVoaaucAa%Aoo_ then

owM D
or ?.u » g v >0. AUHUV

10 :
For A > 0 there does not exist a solution 2 0 for T™™:(s) = P by Lemma 5.2, For A < 0we
get by Lemma 5.1 that 7(8) = M1(5) for & sufficiently high. Hence we can define s}t = ...mo ifa

A v 2 i
WQ~=5O= of 7 8) =71y does not exist, Ifa > c. and if there are %0—::0_5 of (5.12 fori= L2 then
< A v (]
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S A >0 and 0 < 8P < oo, then

awm
5 (her) <0, (5.16)

Basically, Lemma 5.4 says that, if the tax is such that one firm, say 4, is just on the
margin to close down, s.rﬁ.mg firm 7 # i is still in the market, this tax rate is not
optifnal if firm ¢ were not around. The Lemma also indicates the directions into which
the tax has to be moved in order to increase welfare, Lemma 5.4 implies: .

Lemma 5.5 o) If A <0, and s > 0 then s < 3. Moreover, there are no s™ 4P
j with co > s}, sP > 0. L

) I[A >0, then 0 < sP < s}fs. If additionally sif > 0, then s} < &

After these preparations we are ready to characterize the optimal linear tax as a func-
tion of the damage parameter s.

Proposition 5.1
a) If & <0, then

D
ﬁa?v for 0 < s < s7, (both firms produce)
r(s) = ﬂw« for max{0,s} < s < &M, (only firm 1 produces) (5.17)
T(s) for max{0,s)%} < s (only firm 1 produces)
b) If A >0, then
\ v
ﬁ_c: (s) for 0 < s < s (onlyfirm1 produces)
. ﬂ».u for max{0,55"} < s < 5P, (only firm 1 produces)
7(s) = ﬂba,& for max{0,sP} < s < sP, (both firms produce) (5.18)
JE for s <5 < sl (only firm 2 produces)
™32(s) for s < (only firm 2 produces)
¢) If A =0, then
m(s) = %) vs>o0 (both firms produce) or (5.19)
m(s) = ™M) vs>0 (only firm 1 produces) (5.20)
12

Proposition 5.1 follows immediately from Lemmata 5.1 - 5.5. Lemma 5.4 is most
important among all and a bit tricky to prove. Notice that some of the intervals,
for example mc,.m»ﬁ may be empty. In words, Proposition 5.1 says that if firm 2
has the strictly worse technology, that is if A < 0, it maey be the case that for low
values of s both firms produce. By Lemma 5.1, firm 2 closes first as s increases. For
s € [max{0, sP}, s30), the tax is constant in s and equals 7. This is due an incentive
constraint: Suppose sP > 0. If s increases towards s2, 7(s) goes to 7, that is, firm 2
closes down. For higher taxes than =2, firm 1 is a monopolist. Hence 7(s) # 7P(s),
and firm 1 has to be taxed as a monopolist. ﬁoiof.mr if firm 2 could be prohibited to
produce for s slightly higher than s2, the optimal tax for the monopoly firm 1 would
be lower than 7P for s < s}, This follows immediately from Lemma 5.4 a). But
firm 1 cannot be told to shut down by law. At least this is what we assume. Hence,
to prevent firm 1 from producing, the tax must not be lower than 7. For s > sph
we get 7(s) = 71 (s) > 79, and 7(s) is strictly increasing in s. Notice that in case a)
it can never happen that only firm 2 produces as a monopolist. This follows from the

1]

* fact that firm 1 produces at least for 7 = 0.

In part b) of the proposition (A > 0), where firm 1 has the lower cost ¢; < ¢z, but firm
2 has the "cleaner” technology, it may be the case that the lower cost firm 1 produces
as a monopolist for low damage parameters. Then, both firms produce for intermediate
values of s, whereas for high s only the "cleaner” firm produces. Here, there may be
two intervals for 7(s) being constant in s. On the first interval [max{0, s3" }, s2] (which
may be empty) we have 7(s) = 7P < 0, that is, we get a subsidy.!* On the second
interval [sP, s} (which is always nonempty for d, > 0) we have 7(s) = 7P > 0, that
is, T is a real tax. Depending on the parameters, it is also possible that for s = 0 both
firms produce under the optimal tax. But the case that firm 2 is a monopolist for all

8 is ruled out.

Figure 2 about here.

In figure 2 we have depicted the optimal tax as a function of s for the case b) of the

proposition where all the .&.5. s? are positive.'?

170 see this consider first the natural case where both firms produce for v = 0. Then firm 1 will
drop out first as 7 increases. If at all, firm 2 can only drop out, whereas firm 2 stays, if v decreases,
that is, becomes negative. If g3 = 0 for 7 = 0, then it is easy to see that it would produce for no 7.

2By shifting this curve to the left and cutting off at & = 0 one gets the shape for the other cases.
For case a) interchange the subscripts 1 and 2 and shift the curve to the left-such that s and s

13



Corollary 5.2 a) If & < 0, the taz yields sociol optimum for s 2 af . If the firms
are sufficiently different, in particular, if dy is sufficiently high, the tax solution yields
social optimum Vs > 0.

b) If A > 0, the taz yields social optimum for s € [0,s2") and for s 2> s},

¢) If & = 0 and ¢ # ¢y, the laz yields social optimum for no s, if for some s both
firms produce under the optimal taz. .

d) If ey, =¢; and dy = dy, the tax yields social optimum for all s > 0.

The corollary follows from the fact that we can impose the optimal monopoly tax on
firm1if A < 0and s > &5, orif A>0and0<s < .&5. Accordingly, we can
impose the optimal monopoly tax on firm 2 if A > 0 and s > s}, For A = 0 and
¢; 3 ¢z, we know from Proposition 3.1 that only firm 1 should produce for all s, Under
taxes, however, no firm produces alone if they both produce under laissez faire. Only if
_ both firms are alike, we can achieve social optimum under taxes, which is also EBERT’s
(1992) result. We will return to the efficiency issue in section 7. Finally we state:

Proposition 5.2 If d; > dy, especially YA > 0, we get 7(0) < 0.

Thus, for low damage parameters, the firms’ pollution will be subsidized. We know that
a monopolist or a (Cournot~) oligopoly produce less than the social optimum (which is
equal to the competitive output of the lower cost firm). From the theory of regulating
monopolies or oligopolies (see BARON and Meyerson (1982), or recently EBERT (1992))
we know that in the absence of externalities and under complete information, the firms’
output is to be subsidized in order to increase welfare. A monopolist can even be
brought to produce the competitive output. In our model, the subsidies work indirectly
via subsidizing emissions which stand in fixed .proportions to the firms’ output. The
result does not hold if firm 2 has a much worse technology, that is, if ¢y < ¢z, di < da,
then 7(0) may be positive.

6 Permits

In this section we assume that the government gives out a number of L pollution
permits which may be traded among the firms. Each permit allows a firm to emit one

vanish.
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unit of the pollutant. Since we assume again that the government has no objective
to collect money from regulation, we can also assume that it distributes the permits
for free somehow among the firms, for example fairly, such that each firm holds L/2
permits at the beginning. As we will see, the initial allocation of permits will not effect
the outcome. Assume that L be arbitrarily divisible.

6.1 The Firms’ Behavior

The process going on in the economy may be divided into 3 steps. At the beginning,
the firms hold some initial endowment (I, ;) of permits, with & +1; = L. In the second
step they may trade, that is here, one firm sells some or all permits to the other firm.
Firms end up with a new allocation of permits (e1, e2) with e; + e3 = L. In the third
step, firms engage into Cournot-competition and choose quantities ¢/, ¢ under the
constraint

4 < eild: _ (6.1)

which is binding if e; is sufficiently low. To figure out how the firms will trade the
permits, denote by I1¥(e;,ez) the profit of firm ¢ if the final allocation of permits in
the second step has been (ej,e;) and both firms choose Nash-quantities under the
constraint (6.1). Observe that there is a gain from trade if and only if there is an
allocation (ey, e3) such that

ﬂgr. L)+ Ew«?. L)< b%?? es) + :%nnr ) .

In this case there is a real number T' which can be interpreted as a transfer-payment
_from firm 1 to firm 2 (which may be negative, of course) such that

:wgn: m»v +7T > H—QQ—L& ’
HHQAQH» muv -7 > ﬂw«i». Fv .
How the firms figure out T" is nothing we have to care about. For example, they could

agree on the Nash-bargaining solution. The maximum gain from trading permits is
determined by

—M_n.m%n —“—Hwﬁnranv + H.S‘Aﬁ: auv_ s.t. eyte; < N: €y N o, (-] N 0. Ammv

Accepting the assumption that firms behave as profit maximizers it is natural to make
the following assumption:
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Assumption 4 Firms trade permits in the second phase such that the final allocation
(e}, €3) solves (6.2).

Notice that this assumption allows also for the case that one firm buys all the other
firm’s permits such that the market ends up with monopoly. And indeed, this will
happen for some range of values for L as we will see. Notice further that the solution
of (6.2) does not depend on the initial allocation (I, %), Of course, the final profits
(net transfer payments) do. We do not have to care about that since the distribution
of profits among the firms does not affect welfare.

Before the government can solve the problem how to choose the optimal number of
permits contingent on 8, we have to analyze how the firms will determine the final
allocation by solving (6.2). For this consider the following program:

max Pl + @)l + @]~ e —cage st dig+dau<L. (6.3)
After solving (6.3), we will show that the resulting quantities form a Nash equilibrium,
under the constraint ¢; < ¢;/d;. Denote by gmon the monopoly output of the lower
cost firm 1 in the absence of regulation (which is also the monopoly outcome of the
horizontally integrated industry). Denote further by Loon = d1@mon the number of
permits that are necessary for producing gmen. '

Proposition 6.1 a) If A €0, VL > 0 the solution of (6.9) is given by ¥
X L
@(L) = min ?ss. , Nv ) @(L)=0.
b) Ifer < ¢y and ™ A > 0, there are L, T with 0 < L < T such that the solution of
(6.3) is given by

. L
Sﬁhv = g_bﬂes.e:. mﬂw for NWH
@) =0
au(l) > 0 for T>L>L
Qwﬁbv > 0
u(l) = 0 for L<l and d
< 2 > 0.
@) = £

3£ both firms are alike, the solution is not unique. Either firm could buy all the permits.
1f ¢1 = ¢ interchange the names of the firms and apply case a).
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Moreover, ¢;(L) are continuous in L and Q(L) = qu(L) + qo(L) is constant for T >
L>L. :

To interpret the proposition: if A < 0, firm 1 buys all the permits and behaves as a
monopolist. If L > Lyon, firm 1 also buys all the permits but does not use them all.
In this case, there is underproduction combined with underpollution. By giving out
more permits, however, the government cannot induce the firms to produce more than
the monopoly output gyon.

If A > 0, the same thing happens as longas L >I. T > L > L, the two firms
shift production continuously from firm 1 to firm 2 as L decreases, holding total output
constant. For I < L, the less polluting firm 2 buys all the permits and produces alone.

Proposition 6.2 The solution of (6.2) forms a Nash-equilibrium.

The proof is obvious for L > T and L < L since then the firms just produce their
monopoly quantities under the constraint ¢; < L/d;. The other firm does not hold -
any permits and hence cannot produce. If [, < I < L, for (L) and q2(L) to form a
Nash-equilibrium it is sufficient to show that

oI ;
Tg b)) >0 fori=1,2 (6.4)

that is, each firm would like to increase quantities, given the other firm produces q;(L),
but cannot since it is constrained by its number of permits. (6.4) will be established
in the appendix.

6.2 The ﬂc<@§5m§ ’s program

Given these reactions of the firms when a number of L permits is in the market, and
given the damage parameter s, the government has to find the optimal size of L.
Further denote Q(L) := g;(L) + go(L), ei(L) := digi(L), i = 1,2. Hence it has to solve:

max WY (L) = mp [ " Py - 5(L,5)  exar(L) - exga(L) (65)

If we want to emphasize the dependence on the damage parameter s we write WP (L, s).
Let L(s) denote the optimal number of permits contingent on s, that is, the solution
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of (6.5). Before we cliaracterize this solution, we state some preparatory notations g@
leramata. .

Let'® TP 1= {s | ALP(s) s.t. dWFP(LP(s))/dL = 0 and q1(LP(s)) > 0,¢2(LP(s)) >
0} be the set of parameters o for which there exists a number of permits which yields
a local maximuam of W7 (L) such that both firms produce. Notice that this need not,

and in general will not, be a global maximum for all 5. Lel .M,.M be the closure of L7,
Denote by LP(s) the solution of % = 0 for all s € £", taking right and left

derivatives, respectively, on the boundary.

Further, let L*i(s) be the optimal number of permits if only firm i would be around
and produce as a monopolist. It is easy to see from the f.o.c.’s that LMi(.) is decreasing
in 8, as long as it is binding for the firms, that is, as long as LMi(:) < Lyion, and also
that LP(-) is decreasing Vs € TP, Hence we can define aP by

LP(ePy=T , . (6.6)
and of and by
LP(0P)=Lifd; >0 and 0P = 0 if dy = 0. (6.7)

In words, of is the damage parameter where firm 1 just closes if s fncreases eos.m.aw
of and L(s) = LP(s). Similarly, of is the damage parameter where firm 2 just closes
if s decreases towards ¢ and L(s) = LP(s).

Analogously, we define o™t by

MeMy=T . (6.8)
and oM and by

LP(oM) = Lifdy >0 and o} = 00 if d; = 0. ) (6.9)
In words, o is the damage parameter where firm 1 would open up if s fell below Q»&»
and L(s) = LMi(s). Similarly, o3" is the damage parameter where firm 2 would just

open up if s slightly ezceeded o3 and L(s) = L™ (s). The next two lemmata are the
analogs to Lemma 5.4 and 5.5.

'%In the following, the superscript D stands for " Duopoly” again.

18

Lemma 6.1 (With a little abuse of notation) let W*(L,s) be the welfare when only
firm j is around end reacts as a monopolist upon L, and the damage parameter is s.

If A >0, then

oW
—55—(Ls7) >0, (6.10)

and if additionally dy >0,

WM
@.mb (L,s7) > 0. (6.11)

This implies the following
Lemma 6.2 If A > 0, then
of <ol andifdy > 0 then of <ol , (6.12)

Notice that o may be smaller, greater or equal to of. Lemma 6.1 says that LM (s)
is greater than LP(s) for s close to of, and if d; > 0, then LM2(s) is greater than
LP(s) for s close to oP. This implies that like the optimal tax, L(s) must be constant
on the interval [0, o1"]. For, if s = 0P, then LP(s) = L, and by Proposition 6.1 b),
firm 2 buys all the permits from firm 1, For g 2 oP, firm 2 behaves as a monopolist.
Forbidding firm 1 to produce, the optimal number of permits equals LM (s), which is
higher than L if s is greater but close to oP. Giving out LM2(s) > L many permits,
however, firm 2 does not buy all the permits. Hence, L(s) has to be constant and
equal to L for s € [0, 5] in order to keep firm 1 out of the market. Notice that this
argument is very similar to the optimal linear tax scheme, where the tax rate also has
to be constant on certain intervals of damage parameters.

On the other hand, L(s) must be discontinuous somewhere in the interval (af, o),
To see this, consider first the left hand boundary of this interval, oP. If we employ
the "duopoly-policy” LP, we get LP(oP) = T and 92 = 0. Employing the monopoly
policy LM: w.rt. firm 1 we get LM (oP) > T by Lemma 6.1. Let us assume that
LM (¢P) < Linon. Obviously, LMi(-) is the better policy than L2 (+) for s = . Hence,

jipPer A M ?.wv.qucv S e A .mu?%v.;qucv .
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My,
2

.

Ity arguing similarly the other way round, we get for ¢

WP (1M (o), 0lh) < WP (LP(o}"),0dh) .
Since LP(-), L™(-) and WPer(-,-) are continuous there must be some intersection
i € (P, 051) such that |

WM».Q Abgyaq-.iv.ﬁw.iv = M\MV%.E, Ahbﬁﬁ.‘anwoﬁg:.v ¥

i M 2 least if o} < oP. In the appendix we

and L(+) jumps down from LMi(-) to LP(.), at least if of A i
will show that this intersection is indeed unique. The case oM > oy is similar and

#iil be treated in the proof of the next proposition which characterizes completely the
aptimal number of permits as a function of the damage parameter s,

oliskic firm I faces a real capacity constraint if it is regulated by LMi(-) by

£ M Fonum w e b:ﬁ; .

Banew, LM Iy ot unique, each L > N..:.: would do the job. For convenience we set
,b?«. m.av 122 Lipnon 82 Smon - Am.wwv
Eroposition 6.3 a) If A < c. the optimal number of permits as a function of s is

given by L(s) = LM1(s) Vs > 0. In this case, only firm I produces for all s > 0.
a1 If A > 0, the optimal number of permits as a function of s is given by
(only firm 1 produces)

(both firms produce,
interval  may  be (6.14)

LMi(3) for 0< 9 < oim
LP(s)  for o< s<oP

= empty)
L for max AQ..::&J <s<oM (only firm 2 produces)
LM(s) for s> oM (only firm 2 produces)

where oy is the solution in s of

jiper Abu?v..wv if s<al

iirPer L
W (6he) 2\ grengy -y s>af
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Proof: a) follows immediately from Proposition 6.1, b} follows also from that result
and Lemma 6.2. For oM < aP, the argument has been almost elaborated above, For
details, see the appendix.

Observe that apart from the monopoly effect for large values of L, we get a similar
structure as in social optimum: If A < 0, the worse firm 2 never produces under the
first best as well as under the permit solution. Thus we obtain the following corollary:

Corollary 6.1 If firm 2 has the worse technology, that is, if A < 0 the permit solution
yields the social optimum for all 5> Gpon.

If A >0, only firm 1 produces for low values of s, both firms produce for intermediate
values of s, and only firm 2 produces for high values of s. Output is constant in ¢
when both firms produce. Like in social optimum, production shifts from the lower
(production) cost but more polluting firm to the higher cost but less polluting firm.
L(s) is depicted in figure 3. However, if A > 0, we do not get social optimum under
permits for all s > 0 ag the following result shows. Recall that both firms produce in
social optimum if s € (g, 3) — denote total output on (s,5) by § —, and under permits
if s € (0uat, o) - denote total output under permits on (oi, oP) by 0.

Figure 3 about here.

~ =

Proposition 8.4 i) Oins > 8, #) o >3 and i) § > .

i) says that firm 2 opens later under permits than socially optimal. Analogously, i)
says that firin 1 closes too late than socially optimal. iii) says that both firms produce
less under permits ~— if they both are active — than in social optimum if both are
active. For linear demand and quadratic damage function one can even show that

P

int > 23, and of = 23, furthermore, J = 20.

Corollary 6.2 If A > 0, the permit solution is socially optimal for s & [Fmony 8) and
Jors > oM > 3,

This result seems to be disillusioning quite a bit, however, the permit regime is not
that bad in comparison with the tax solution. Specially for relatively high values of s

it yields better results in terms of welfare than the tax regime does as we will see in
the next section.
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‘Notice a final remark on this section. If & £ Smon, we saw that the optimal number
of permits is not unique. All L 2 Lo == diqmon lead to the monopoly outcome Grmon-
Giving out no permits at ail, leads to the loissez faire Cournot Nash equilibrium. If s
is close $o 0, therefore, no permits are better than any L 2> Lyon, Whereas for § > spmon
but close i0 8mon permits are better. Thus if taxes are not under discussion, but ihe
question is whether permits or not, the optimal permit policy is laissez faire up to a
certain so, and to put up with monopoly for 84 < 8 < 8men.'®

7 Comparison and Discussion of the Policies

Recall for the remainder of the paper that P, s?, s}, s} denote the border cases

D D Mz M

for s if we consider lazes, For permits we use Greek letters of, a2, 0¥, oM 5, and

Omons

Throughout this paper we saw that the sign of A played a crucial role in the analysis of
the model. If this is not positive, a social planner will not allow firm 2 to produce for any
damage parameter s. Under the permit solution, firm 2 also never holds any permits
under Assumption 4. Thus for 8 > ¢yu0n, the government can always induce firm 1 to
produce the social optimum by giving out the right numbers of permits, For L > Luon,
firm | behaves as a monopolist under "laisses faire”. The government cannot induce
the monopolist to produce more by giving cut more permits. Thus for s close to zero,
the tax regime yields a higher welfare than the permit policy. This requires not much
of a proof. By giving out more permits than Lymon, the government can do nothing to
increase welfare, whereas it can indirectly subsidize output by negatively taxing, that
is, subsidizing pollutants. This seems to be some funny perverse effect of pollution
control. But it is simply due to the fact that in absence of negative external effects
from production oligopoly produces less than social optimum (cf. EBERT (1992)). If
both firms are alike we even get:

Corollary 7.1 If both firms are alike, the taz solution yields the socially optimal out-
come for all 3 2 0. The permit solution is socially optimal only for s 2 Oynon.

The permit solution, on the other hand, is better than the tax solution if the social

1835y is determined by the intersection of welfare under laisses faire and welfare under monopoly as
a function of s.
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damage from pollution s not too small, s > 000, and one firm is worse than but not
too different from the other firm:

Corollary 7.2 If firm 2 has the worse technology, that is A < 0, but is not oo bad
such that both firms produce (thet is, |A| is not foo large), and if s} > Opon, the
permit solubion is at least as good as the taz solution for 8 2 Oumen (that is for those
s for which the better firm 1 polluies too much as a monopolist under "laissez faire”),
and strictly better for 5 € (Cmon, 831).

Let us now turn to the case A > 0. Proposition 6.4 showed that under permits firm 2
opens too late and firm 1 closes too late as s increases compared with social optimum,
Moreover, the supplied quantity if botk firms produce (= &w is lower under permits than

in social optimum (= (?). The next proposition shows that under taxes the situation
is even worse in some respect,

Proposition 7.1 If A > 0, then o1 < oM,

Although looking short and harmless, this result is an important implication of the
whole analysis of this paper. In words it says that the damage parameter, from where
on the socially optimal solution is achieved under permits is smaller than the damage
parameter, from where on the optimum is achieved under taxes. This in turn implies
immediately the following

Corollary 7.3 If A > 0, the permit regime achieves the social optimum for a greater
range of demage parameters, for which it is %q:.azn that the higher polluting firm
shuts down, than the taz regime does.

In the light of this corollary, the permit solution is not as bad as it seemed to be
from Proposition 6.4. By continuity of welfare it {follows from Proposition 7.1 that the
permit solution is also better than the tax solution for values slightly lower than o2,
If s further decreases, welfare under taxes may intersect welfare under permits as the
following example demonstrates.

Example 7.1 Let P(Q) = 1 —- @, S(E,s) = 2E* and ¢ = 0.25, ¢ = 0.5, dy = 1,
dy = 0.5. Under this constellation, A = d;(1 - a»v —da(1 ~¢1) > 0, and we get s = 2,
§ = 4, that is, in social optimum both firms are active for s € (2,4). Under the optimal
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Pigouvian taz, both firms are active for s = 0. Firm 1 closes for 5P = 16. For s €
(sP, M2} = (16,20), the tax is constant and equals T = 7”2 = 0.666. Only when s > 20,
the social optimum is obtained by the Pigouvian tax. From figure 4 we see that there
is overproduction for s € (0,2.25) and underproduction for 5 € (2.25,20), combined
with excess pollution for s € (2.25,6) and underpollution for s € (0,0.25) U (6, 20) (see
figure 5). Under permits, social optimum is attained for s € [omon, o) = (0.125,2)
and s > o} = 12, For s € (2,12) there is underproduction combined with excess
pollution for s € (s,0ime) = (2,4.2) and underpollution for 5 € [oin, 017) = [4.2,12).
For the "most” values of s, welfare is lower under taxes than under permits'?, however,
for s € (2,6.5), the optimal Pigouvian tax yields a higher welfare than the optimal
number of permits (cf. Figure 6). So, no policy is superior in general. Compared with
"laissez faire”, both solutions yield approximately good results as can be seen from
figure 7. Other interesting examples could be provided, however, limits on space force
us to close here.

8 Final Remarks

We investigated and completely characterized the optimal linear tax on emissions and
the optimal number of permits for an asymmetric duopoly. Both regimes do not vield
social optimum in general. Especially, the allocation of production turned out to be
inefficient under the optimal tax as well as under permits if both firms are active and.
if firms are different. The permit regime yields a higher welfare if one firm has a better
technology for all ¢ and if the lower cost firm would overpollute as a monopolist. The
permit regime is also better than taxes for a greater range of high damage parameters
for which the lower cost but worse polluting firm should close down in social optimum.
The permit regime is clearly worse if social damage is so low that the lower cost
firm underproduces (and hence underpollutes) as a monopolist such that pollution
should be subsidized under the tax regime. In this case, the lower cost firm exploits
the permit regime, by buying all the permits and thereby building up its monopoly
position. One might have &cgm. however, if such cases are relevant at all. The
czll for environmental regulation usually comes late and for those industries where
social damage from pollution is high. For intermediate values of s nothing can be said
in general! Welfare has to be compared under both regimes. But theoretically the

T his, of course, does not mean very much since we have no measure on the range of s.
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optimal size of permits or taxes has to be calculated anyway!

Clearly this work can only be & first step towards a theory of pollution control under
imperfect competition. In further research also firms with nonlinear technologies, espe-
cially with abatement technologies should be considered, moreover, generalizations to
more than two firms - which is not trivial with respect to permit trading ~-, and Jast
but not least, other kinds of competition such as price competition with and without
differentiated commodities. Of course, permits and taxes are not the only possible reg-
ulatory policy tools. They are even not second best in general. So one might also look
for optimal incentive compatible nonlinear taxes on emissions, or both on cutput and
emissions. Even so, the investigation of permils and linear lazes, as done here, is im-
portant since those tools are relatively easily implemented and, even more important,
become more and more known, better understood, and discussed in the public.

A Appendix

Notation: Since we will make use of left sided derivatives (for short: 1.5.d.) and right
sided derivatives (r.s.d.) in the remainder, we write f!(z) := limpmoncs h.u&.mhhmy for
the Ls.d. and f7(z), respectively for the r.s.d. .

Proof of Proposition 8.1: If d; < dy (and ¢; < ¢3) or dy < dy and ¢ = ¢y, it is
obvious that only firm 1 should produce Vs 2 0, since it has no higher cost and does
not pollute more than firm 2. So let dy > dy. F.o.c.s of the Lagrange function w.r.t.
q and gg yield
Plg + q2) = Si(E,8) - dy —er + py =0 (A1)
Play+ @) ~ S1(E,8) - da ~ ca+ p2 = 0 (A2)
where g3, p13 are the Kuhn-Tucker multipliers w.r.t. the constraints ¢; > 0 and ¢, > 0.

Eliminating Si1(F, s) and assuming py = 13 = 0 Em%
0= A&— - R&TAE + Q»v —~dyey -+ dyey < A«Nn - Ruvw — dyeg 4+ dpcy = A . A>.3

Thus, A > 0 is necessary for both firms to vuo?no. Furthermore, the first equality in
Tf.mv S.Dmv:@w ﬁA@v = Tmuan - &uﬂuv\ﬁm» L &»v. or orps Q = Nuln?rﬁn - Runnv\ﬂkﬂ ‘a &»v
is independent of s. (Notice that A > 0 implies dye; > dyey.)
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Now assume q; = 0, g2 > 0, that is, gy > 0, pta = 0. Then (A.1) and (A.2) become

P(g2) ~ 51(daga,8) *dh ~ ey + py = . (A-4)
P(g2) = 51(daga,8) " da —cz = (A.5)

Eliminating Sy(E, s) yields & > (d; — m&ﬁ?& — ezt daey = dppy 2 0. Thus, A >0
is necessary for firm 2 to produce alone., Hence, for & < 0 only firm 1 produces in social
optimum for any damage function $, and the fo.c. is P(q1) — Si(diq1ys) - dy — €1 = 0.
From this it follows easily that g, decreasey ag g increases. This proves part a).

Next observe that ¢; + ¢z is bounded by %L?.L‘ hence E = dyq; + dyq; is bounded.
Subtracting (A.2) from (A.1) yields

(dz = d1)S1(diqy + d2q2,8) + ¢ — ¢ 4. py—pa =0 (A.6)

Since E is bounded if s is sufficiently small, (A 6) will not have a solution in ¢; and g;
for py 2 0, pp = 0. Hence, 1 = 0, pa > o~ maqumam g >0,q2=0.

Since g; + g2 =: § is constant for 71> 0, g, >0, We have E > daQ > 0 for d3 > 0.
Hence, for large s, (A.6) can only have a solution for #1 > 0, p2 = 0 implying 1 = 0,
g2 > 0. Since § is continuous, there must be 4 with g2 = 0, p2 = 0, pt3 = 0, @ > 0 and
Fwith gy =0, p1 =0, p2 =0, >0 and ¢, W 0, g2 > 0 for s € (3,5). Hence Q) is also
continuous in s. For dy = 0, ¥ = oo, mm:mzw observe that for s € (,3), (A.6) becomes
¢z~ 61 = (di — d)51(diq1 + dag, 5). Since ¢, « ¢, and A > 0 imply dy > d, and since
Q is constant on (3,3), ¢:(2) must be ﬂ_mong:m and ga(s) must be increasing in s on
(s,3). Obviously, also £ and W are continygyg and decreasing as a function of s when
the socially optimal quantities are chosen, Q.E.D.

Proof of Lemma 5.1: We prove it indirectly. Suppose 7' is such that firm 1 just
closes as a monopolist, that is, ¢1(') = 0 vy ', and ga(r) > 0Vr with7/—¢ <7 < s
moreover, ¢3(7) = 0 VY7 > 7’/ —¢ for some ¢ «, (. Then firm U's fo.c. at (q1,¢2) = (0,0)

is
P-ec—7'd =0 (A7)
Taking the right sided derivative of firm 27 profit function al Q_..Sv = (0,0) , we get
P—cy—1'dy <0 (A.8)
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Solving (A.7) for " and substituting into (A.8) yields 4 < 0.

Suppose now firm 1 closes first, arguing analogously yidds A > 0. If both firms close
simultaneously, then (A.8) holds with equality, Together with (A.7) we get A = 0.
Clearly it cannot happen that firm { just closes at some v whereas firm 7 just opens,
otherwise ¢; would be increasing in = for a monopolist, contradicting (5.10). Since
¢ £ ¢z € P, firm 1 will produce for 7 = 0. Hence it cannot be the case that firm 1
never produces for all 7 if A= 0. Q.E.D.

Proof of Lerama 5.2: Suppose there is 7 satisfying (5.3). Then the f.0.c’s in Nash
equilibrium are (taking the r.s.d. for g = 0):

il

P(g) = e = dy
P(g) + P(@2)g2 — €2 ~ 7dy

Eliminating 7° yields A > P(g2)[dy ~ d3] ~ dyey + dpey = 0. Q.ED.

0 (A.9)
0 C(Ad0)

L

Proof of Lemma 5.3: (Sketched) Differentiating (5.1) for ¢ = 1,2 w.r.t. 7, adding
up both equations and solving for Q' yields
Q~ = R— + &u

3IP(Q)+ P1(Q)Q
since 3P(Q) + P"(Q)Q < 2P(Q) + P"{Q)Q < 0 by Assumption 1. To show ii
requires some more effort. Again we differentiate (5.1) for § = 1,2 w.r.t. 7, multiply
the first equation by dy and the second one by d,. Then we add up and solve for
digi(7) + dagy(7) = E'(7). After some manipulations we get

<0

o _ 2P(Q)[d + dy — dydy) — dyd, P(Q)Q |
v= P(Q)BP(Q) + P(Q)Q) . (A.11)

The denominalor is positive, the first term of the numerator is negative, but the sign

of P" is undetermined. Here we need the lower bound of Assumption 1, If P” is
sufficiently bounded from below, E' is negative,  Q.E.D.

Remark A.1 Observe, however, the interesting phenomenon that total output of emis-
sions may increase as the laz sncreases if inverse demand is sufficiently concave! (Sim-
ilar results have been found by EBERT (1991) and ENDLES (1985) ).
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Proof of Lemma 5.4: We show c). The remaining claims are demonstrated anal-
ogously. Since 7(s) solves (5.2), we have &m.m.m?e?vv =0 ,if ;(rP(s)) > 0, = 1,2.
For s = sP the left sided derivative of WFT equals zero:

awrT
dr

(t2)=0 . (A.12)

Since also q;(r) = 0, (A.12) becomes (writing just 7 instead of 1P to save space):
P(ga(r))[gi(7) + 64(7)] = Su(daga(r), o)[digi (7) + dagi(r)] — ergl(r) — cagh(r) =

or

Sildalr), o) - LN G0) - ailr) - () (a13)

Consider now the welfare function WM when only firm 2 produces and is taxed as a
monopolist. First order condition for the optimal monopoly tax yields for 7 = 72

dwMa
dr

(r) = [P(qx(7)) = S1(dzqa(r), 8)da = ealgi(r) = 0 (A1)
where ¢ denotes the r.s.d. . Substituting (A.13) into (A.14) and manipulating we get

dw' by _ _ai(rP) - a5(rP) _
&ﬂ. T.u@v - &-&»u?.mv +&wnw?‘— VQNUAQnAﬂabw:&» = &»_ - A&nﬁw &»nuv_ N A.}._@V

On the other hand, we have for 7 (taking r.s.d. for firm 1):
Plg)—er—1Pdy = 0 , (A.16)
P(g2)+ Pl@)a—ca—7Pdy = 0 (A17)
Eliminating v yields [dy — da])P(gs) — dyca + dae; + diP'(gs)ga = 0, hence, [d; -
da}P(qa(7L)) = dica + daer > 0. Now, gi(rP) < 0 by (5.9), and ¢\(vP) < 0 since firm
1 closes down at r = 72, The denominator equals E'(r?) which is also negative by
Lemma, 5.3), it). Hence, the whole derivative is negative. Q.E.D.

Proof of Lemma 5.5: We show that A > 0 implies sP < sM. The remaining
claims are demonstrated analogously. Since %gj < 0 if firm 2 is regulated as a
monopolist (suppose firm 1 is not existent for a moment) the optimal tax to regulate a
monopoly is lower than 7 by the last lemma. Since 7™(s) is increasing in s by (5.11),
51" must be greater than s?. Q.E.D.
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FProof of Proposition 5.2: For s =0,

PT
()= PQF(r) - () ~eadr) (A18)

We show that dWFT(0)/dr < 0. Adding up the Nash-equilibrium conditions for both
firms at v = 0 yields

@+ P@nt+g)~a~c=0 (A.19)
Solving for P(Q) and substituting into (A.18) yields

dwr? L — ¢
~7—0) = =5 [P(Q(0)) - Q(0) - Q(0) - (e2 - e1)(}(0) ~ g3(0))] (A.20)

Since ¢ < ¢z, Q' < 0 and P! < 0, the L.H.S. of (A.20) is negative if ¢}(0) < g(0).
To get this, differentiate the Nash-equilibrium conditions of both firms w.r.t. = and
subtract one of the other, This yields after rearrenging:

b~ g = Gt - D) (A21)

‘On the other hand, Nash~conditions imply

P@) -
-P(Q)

Then the R.H.S. of (A.21) is negative, if P is not too concave (Assumption 1). Q.E.D.

PQ) -
~P(Q) =¢;(0) .

@(0) = >

Proof of Proposition 6.1: If d; < dy, clearly g2 = 0 VL 2 0, hence let d; > d,.
The f.0.c.5 of the program (6.3) are

P(Q)Q+P(@Q)~cr—Ady+p1 =0 . (A.22)
PQ)Q+PQ)-ca— Ay +py =0 (A.23)

where A is the Kuhn-Tucker multiplier w.r.i. dygi + daga £ L, and py, pa are the
multipliers w.r.b, ¢ 2 0, g2 > 0. Suppose now A # 0, g1 2 0, and yg = 0, hence
g2 > 0. Eliminating A from (A.22) and (A.23) yields:

A&u - &uv»anev —dycg + daey + A&- - &uvﬁ&@v —dapty =0 .
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The L.H.S. is smaller than A, hence firm 2 will never produce anything if A < 0. If
A £0and L > Lyen, clearly firm 1 does not use all the permits. If L < Lpon, firm 1's
output is constrained by L/dy. Suppose now & > 0. If 0 £ X < (e2 — &1)/(dy — da),
clearly (A.22) and (A.23) have no solution for py = pi; = 0. It easy to see that then
@2 = 0 and ¢ = min{gmen , Lfd1}. X X = (¢ ~ &1)/(dy — d3), Q is independent
of L. This follows by subtracting (A.22) from (A.23), but ¢ decreases, g; increases
if L decreases. Obviously there is [ such that ¢ = 0, ¢ = L/dy, and if dy > 0,
there is T, such that ¢ = 0, ¢3 = L/dy, and gy > 0, g2 > O for al T > L > L. For
A > (63 — ¢1)/(dy — dy), clearly g, must be zero and g3 = L/d,. Q.E.D,

Proof of Proposition 6.2t Let g, 1= ¢;(L) > 0, §, 1= q2(L) > 0 be the solution of
(6.3) and let § := g, 4 7,. Then

m:..m“... ) = p@)g+ P@) - i > PQ)T + P@Q) — i = My

where X is the multiplier from (A.22) and (A.23). The R.H.S. is a f.0.c. of the program
(6.8) and equals zero. Hence firm ¢ would like to increase output given the output
§; > 0of irm j. Q.E.D.

Proof of Lemma 6.1: We show (6.11). (6.10) is demonstrated in the same way by
interchanging the indices 1 and 2. The proof works similar to the proof of Lemma 5.5.
Let W be welfare if firm 2 is regulated by permits and firm 1 is not around, We will
show that WM:(LP(aP),oP)/OL > 0 if firm 1 could be forbidden to produce.

By definition of LP(s) we have for the r.s.d. at s = ¢P: E.wﬂ.wuﬁb‘ oP) = 0. Since
ai(L) =0, we got 0 = 292([, oP) =

Plaa(L))a1(L) + g5(L)] = S1(Ly o7) g} (L) + dagi(L)] ~ crgf (L) ~ cagh(L)(A.24)

Since Q(L) is constant on: [L,I], we get ¢{(L) + ¢j(L) = Q'(L) = 0 on [L, T}, taking
the r.s.d. at L. Hence ¢f(L) = —gj(L). Moreover, dig}(L) +dagj(L) = E'(L) = 1 on
[L, T}, taking the r.s.d. at L. Together this yields ¢}(L) = 1/(dy — d;) and g§(L) =
—1/(dy — dz). Hence (A.24) reduces to

SilLyoP) = 222 , (A25)

dy — dy
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‘On the other hand, forbidding firm 1 to produce and calculating the Ls.d. of ¥
w.rt. L at (L,0P) we get

o
AL o o¥) = P(aa(L) = Si(L oP)ds — clal(L)

Plugging in (A.25) yields
G -c
= [P - 22% o) dw

&— .M..n &n :&- o &uvmﬁﬂuﬁbvv s n&uan + &NQL ﬁmabv

Since dy — d > 0 and gj(L) > 0, it remains to show that the term in brackets s
positive. But the f.0.c.s of the program (6.3) for L = [, are .

ﬁ&&uv -y !\/&u ={)
Plge) + ‘v&@»vﬁ g == Ay = 0

Eliminating A yields (d -- dz) P(ga(L)) ~ dyez + dyey + d1 P'(ga(L))gs(L) = 0. Since
P’ <0, the L.H.S. is smaller than (d; — d3)P(q2(L)) - dyes + dae;.  Q.E.D.

Proof of Lemma 6.2: (6.11) implies hzg,?m& > LP(of) = L and hence o < o
since LM1(.) is decrensing (if it is binding for firm 2). (6.10) implies LM(aPy >
LP(of) = L and hence 0P > o since LMi(') is decreasing (if it is binding for firm
1). QED. .

Proof of Proposition 6.3: case a): Omon S 0P, oM < of. This case has almost
been proven in the text. For s < Tmony L(s) = LM(s) = Ly, For s > Omony LM,
LM2 and LP are continuous and strictly decreasing. Further, g,(T) = 0, and @(L)>0
for T>L > L. Now,I = LP(oP) = [M: (¢4"). By Lemma 6.1, we get

W(LM (s),8) > W(LP(s), )

foro? < s < oP+e,if e > 0 and not too large. Hence L(s) = LM (s)forof < s < oP+
€. On the other hand, g, Abt_?“&vv > 0. Since 07" < oP, also ¢, Ah;?w:_ Vv > 0.
But if both firms produce, LP(s) is optimal by definition. Hence

W(LM (s), ) < W(LP(s), )
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for 03" —¢ < s < o}, if € > 0 and not too large. Since W(LM (s), ) and W(LP(s), s)
are continuous, there must be a gy € (02, 0" such that

QABQ_AQ...:V. 3.:& = _M;\AEQAQ.,EV.Q..:L .

If we can show that s;, is .EE:@. we clearly get L(s) = L™ ?v for 8 £ oyny and

L(s) = LP(s) for i < 8 < P, To establish uniqueness of oy, it suffices to show
that the slope of W(L(s),s) is steeper on [s2,s2"] then the slope of W(LP(s), ).
By the envelope theorem we get .

.E\
%
div
s

Since Sp3(L, 8) = S12(L, 8) > 0 for L,s > 0, we are done if we can show that LM (s) >
LP(s) on the relevant domain. The f.o.c.s for LM (s) and L?(s) imply that

LM (s), 5)

]

~Sa(LM (s), 8)

LP(s),8) = =85:(L°(s),9)

i

P EMi(s -
S (LM (s),5) = u.s - (A.26)
S1(LP(s),8) = MHM : (A.27)

Since Su(L,s) > 0 for L,s > 0, LM (s) > LP(s) holds if the R.H.S. of (A.26) is
greater than the R.H.8. of (A.27). But we know already by Lemma 6.1 that this holds
for s = sP. The final step is to show that the R.H.S. of (A.26) increases in s. Since

P' < 0 we have to show that LM decreases. Uunm_.maswsnm (A.26) w.r.t. s yields
dLM: M:&u
& = Poga <0

This establishes the behavior of L(s) for s < oD,

For s = o, we have LP(oP) = L, hence ¢i(L) = 0. For L < L firm 2 is a monopolist.
In the absence of firm 1, we had L(s) == LM2(s). By Lemma 6.2, however, and since
LM (5) is decreasing, we get LM2(s) > Lfor 0P < s < a._c + ¢ for appropriate . Hence
firm 2 would operate if L(s) = LM(s) and q.b Ls« 5 + €. w_:. 25? welfare no:E
be increased by decreasing L. Hence L(s) = L for oP < s < oM. For s > oM, we

have LM (s) > L by definition of o}*2. Hence, L(s) = LM(s) for s > o,

case b): Omon > 0f, o} 2 P I W(LmonsOmon) > W(LP(0man)s Tmen) We are

done, since then oint > Omon- If W(Linon, Tmon) S W(LP(Gmon), Omon), it again suffices
to show that the slope of m‘\gsea.& is steeper than the slope of g@u?v.& for

32

8 € (32, Tmon). But AW (Lpon, 8)/ds = l.muﬂbag.& Since Lmon > bm?v we are done
by the same arguments in case a).

case e} Opmon S Q u * > oP. We have to establish the unique existence of gy €

(0P, o) such that W(LM (g1),0in) = W (LP(Gins), Tint) OF W(LM (Gine), 0ine) =
v\wﬁb. Oint). Il wﬂ.Q& oy > Q\Ahza (0),0P), then i < 0P as in case a) and we are
done, Suppose now W(L, ev < W(LM(aP),0P). For existence of oy € ?:c.qk_v
with W(LM (0ine), @ine) = W(L, 0ine) we have to show that W(L, o} My > W(L, o).
For this it suffices to show that the Ls.d. 3W(T, o2")/8L is negative:

m_«w\_ﬁ. oty
aL
P(ay(DNa(T) + (D)) - S1(T, o) hal(T) + dagy(D)] - ergi(L) - eagh(T)

~5i(T, offt) + 2= M (A.28)

since Q'(L) =0, E'(L) =1 ea (L) = 1/(dy ~ d3), g5(L) = ~1/(dy ~ d3) on [L, T).
On the other hand, taking the r.s.d. of W with respect to L at (T, 0}) we get

(P@() = Sy(T,0)d; - clei(D) = 0
= -W—AH.. Q.%m_v .muﬂn— A.Wwv -y

]

(A.29)
Substituting (A.29) into (A.28). yields for the Ls.d.:

awPr(Lof")  Pa(D)-q L a-a
oL - dy dy = d,
< Pad)-a pa=a _ Pla@)a)
: dy dy ~dy dy

where the last equality again follows from the f.o.c.s of the program 63)for L=T
(use (A.22) and notice that A = (c; — ¢1)/(dy — d3) if L € [L,T]). This establishes
existence.

To show ::.a:gamm it suffices again to show that the m_ovm of W(LM(s), 3) is steeper
than the slope of W(L, s) on the interval (af, o). But diW(L,s 8)/ds = ~SGy(L, s) and
AW (LMi(3),3)/ds = —Sy(LMs (3),s). Since LM(s)> Lfor s < 3" and arguing as in
case a) we are done,

The remaining arguments also work 2s in case a),

case d): omon > 0f, 03" < ¢P. Combine the arguments from the previous cases.

Q.E.D.
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Proof of Propaosition 6.4: Since oy > Q» , we show that ¢f > g, The proof for
5 > 3 works the same. Recall that Q is constant on [8,3] in social ovsBEP call it
Q. Recall also that Q is constant on [L, T} for the solution of (6.3), call it §. In social
optimum the f.o.c.5 at s = g (taking r.s.d.’s) yield

P(Q) - 51, 8)dy — e, =0 (A.30)
P(§) - 51(dr, 5)dz —a=0 (A.31)
Eliminating P(Q) yields

€y~ €y

%—a&»&.hv 8 &— ..l.mu ) ﬁ}.wwv

The f.o.c. of the government’s program for permits at s = of yields

5] ba-a

Sildd,e7) = =3 (A.33)

Since S13 > 0, it remains to show § » Q Eliminating 81(d\@,s) from (A. 30) and
(A.31) yields P(Q) = (dyc; — dya1)/(dy = dy). Eliminating the Lagrange multiplier
{which is the shadow damage) in program (6.3) we get

&—ﬂu - kuhu

knau o= &»3 = NVAQVQ > e = Muﬁ@v . (A.34)

P@) =

Q.E.D.

Proof of Proposition 7.1: We know from Proposition 6.3 that the aggregate output
@ under permits on the interval Mwa?S: P},0M] equals gy(L) and from the proof
of Proposition 6.4 we know that 0 is mngna_:& by the first equation in (A.34). On

the other hand, if the tax is 72, such that firm 1 just closes, the Nash equilibrium

conditions yield

Plas(r2)) + P'lad(rPNas(r) = & = 7Py = 0
Plg(rP)) ~er = 7Py = 0
Eliminating 7P yields
dicg ~ d, m
o) = == = g Pt Datel) (A.35)
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Since dy /(dy ~dy) > 1 for dy > 0, we get go(rP) < Q q2(L) by virtue of (A.34). Now,
for s = o}, and ¢ = Qtu. respectively, the f.o.c. for the government w.r.i, taxes, and
permits, respectively, are:

Plga(r)) ~ .w;a_ﬁ?cv.« )—e2=0 | (A.36)
P(@) - 5(d, ! M) —er =0 (A37)

Since g;(rP) < G, we get Si(diga(rP) > Si(dhd. Since Sy > 0 and S12 > 0 we get
Mo ad QED.
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Figure 1: The quantities in social oplimum as a funciion of s if A > 0. The solid line
depicts aggregate output which equals q,(s) \S. ¢ £ 3 and qu(s) for s > 3. The dotted
lines depict g, and g, for s < 5 < 5.
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89 ) 87 $

Figure 2: The optimal linear tazrate as a Junction of s.
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Figure 4: Aggregate quantities for the marketable oulput commodily as o function of
3. The solid line depicts the social oplimum, the "big dashed” line is Jor the permit
solution, the "small dashed” for the tax solution, the dotted line line denotes "laisses
LP(s) , Jaire”. Parameters such that A > 0.
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Figure 3: The solid line depicts the optimal number of permits as a function of s if

A 0.
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Figure 5: Aggregale emissions as a Junclion of s, solid line: social optimum, "big
dashed” line: permits, "small dashed” line: tazes, dotted line: "laissez faire”. Param-
eters such that A > 0.
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Figure 6: Welfare as a function of s (without "lassez faire”), solid line: social optimum,
"big dashed” line: permils, "small dushed” line: tazes. Parameters such that A > 0.
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Figure 7: Welfare as a funclion of s (including "lassez faire”), solid line: social op-
timum, "big dashed” line: permits, "small dashed” line: tazes, dotied line: "laissez
faire”. Paramelers such that A > 0.
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