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Abstract

We consider an asymmetric Cournot Duopoly with firins facing a linear Leontief Techi-
nology. A quantity of a pollutant is generated proportional to the quantity of output.
The government may regulate the firms by imposing Pigouvian taxes or giving out a
number of tradable permits for emitting a certain quantity of pollutants. We charac-
terize the optimal Pigouvian tax as well as the optimal number of permits as a function
of a damage parameter. Under imperfect competition, social optimum is in general not
enforcable. None of the two policies can be said to be superior to the other in general.
For a wide range of parameters, however, the permit policy tirns out to be superior.

*) Financial support by the Ministry of Science and Rescarch of the state of Nordrhein-
Westfalen (von Bennigsen-Foerder-Preis) is gratefully acknowledged.




1 Introduction

The more seriously societies become involved into environmental pollution problems
the louder becomes the public’s call to take steps and to design environmental regula-
tory policies. The policy implemented most frequently in order to reduce the aggregate
output of pollutants is to impose uniform standards of pollution levels on the firms.
From economic theory we know for almost 30 years that there are more efficient tools
than that, like charging Pigouvian taxes on pollutants or to give out a number of
marketable permits for pollutants. It is well known that under certain (strong) as-
sumptions both regimes are equivalent and yield the socially efficient outcome if the
optimal Pigouvian tax is charged or the optimal number of permits is given out (for an
exposition see for example BAUMOL and OATES [2]). SPULBER [12] demonstrates that
taxes or permits are also optimal in the long run if the number of firms is determined
endogenously.

For this results to hold it is necessary to assume that the government has complete
information about the industry’s aggregate abatement cost as well as about the social
damage which is assumed to depend only ou aggregate emissions. Morcover, it has to
be assumed that the polluting firms supply their marketable output on a competitive
market and also behave as price takers on the market for permits if there is any.

Weitzman showed that under incomplete information about aggregate abatement cost
and damage, either of both tools can yield a higher welfare, contingent on the ratio
of slopes of marginal abatement cost and marginal social damage. Further approaches
on incomplete information have been pursued by ROBERTS and SPENCE [9] and also
by KWEREL [5], who propose a mixture of measures cousisting of permits, taxes and
subsidies on abatement. SPULBER also considers incomplete information on the firms’
abatement cost in [13]. All these models are partial analyses where firms are assumed
to behave as price takers.!

Very few has been done, however, on regulating polluting firms which engage in im-
perfect competition, that is, have markel power ou either market. HAIN [3] studies a
model where one big firm has market power on the market of permits, the remaining
firms behave as price takers. le shows that Lhe final allocation of permits depends on
the initial allocation and will be inefficient in general. MALUEG [6] considers a Cournot,
oligopoly on the output market, however, without explicitly considering the ”pollution

!There is much more literature on taxes and permits under price taking behavior, which we cannot
all give credit here. For an excellent overview of different kinds of permit trading see TIETENBERG s
book [15].




technology™.

According to our knowledge there do not exist oligopoly models where firms engage in
imperfect, competition, and where the output as well as the pollution sector are treated
simultaneously. The reason may be that very few can be said under fairly general
assumptions. For example, the analysis of imperfect competition starts to become
interesting if firms are assumed to have different techuologies since otherwise uniform

standards work quite all right.

In this paper, we set up a very simple asymmetric duopoly model. Each of two firms
owns a Leontief technology, that is, they face constant marginal cost and produce a
pollutant proportional to the output of the marketable commodity.

We pursue partial analysis for one marketable commodity and assume that a certain
pollutant will be gencrated by this industry only. (Partial) social welfare is additively
separable in consumers’ surplus, social damage of pollutant and production cost. The
government has complete or almost complete information about the firns’ technologies,
market demand, and social damage (for a brief discussion of the underlying information
structure sec section 4). First, we derive the social optimum and then look for the
optimal linear tax as well as the optimal number of permits, taking into account the
firms’ strategic behavior on the output market as well as on the market for permits if
there is one. It will turn out that the optimal (linear) tax will be nondecreasing as a
function of the s, the slope of marginal damage which is assumed to be a linear function
of aggregate pollution. For low s the Pigouvian tax will be negative. In other words,
if social damage from pollution is low, pollution will be subsidized in order to increase
output, a seemingly perverse phenomenon, and indeed, in the real world we are more
concerned with over-pollution (high social damage) rather than with under-pollution.

The optimal number of permits, on the other hand, is nonincreasing in s, maybe
discontinuous for some value of s, and may be constant on some interval for s. Both
regimes yield the social optimum, allowing only the less polluting firm to produce, if s is
sufficiently high. Under the permit regime, however, the social optimum is achieved for
a greater range of parameters for which it is socially desirable that only the "cleaner”
firm produces. This yields an argument in favor of permits under imperfect competition
il social damage is high. For very low social damage from pollution, the permit regime
turns ont to be undesirable since the lower cost firm exploits the regime by buying
all the permits and exercises monopoly power. For intermediate values of the social
damage parameter, few can be said in general. Depending on the constellation of
parameters, either of both regimes may yield a higher welfare. Recently, the president
of the Institut fuer Wellwirtschaft, Prof. H. SIEBERT argued in one of the leading

German political magazines, Der Spiegel, in favor of permits by explaiuing its idea b

the example of power plauts: the modern power plant, buys all the permits from :M
odd w:w compensating it for closing down. This work supports his argument if the odd
firm is sufficiently worse or if social damage is sufficiently high (and the corresponding
number of permits is low), however, not for all values of s for which it is ”o i :w
desirable that the worse polluter closes down! =4

~H.._5 paper is organized as follows: In the following section we set up the model. Sec-
.:o: 3 presents the social optimum. In section 4 we briefly discuss the ::%L.:;:
information structure for the tax and the permit Hm::m. In sections 5 and 6 we A_M
<a_o.v the optimal linear tax, and the optimal number of permits respectively. In
mmo»,_on 7 we compare the two regimes followed by some numerical mwmzﬁ_mm Hr.M. last
section contains some final remarks. All formal proof are given in the mvvm.s&x but
will only be sketched whenever standard calculations apply. ,

2 The Basic Model

.Hrgc.m.rocn this paper we will consider a Cournot duopoly with firms i = 1,2 settin

a.wgssam 91, q2. The price is determined by an inverse demand ?sa:o.h P s:m
Yo A.c. which depends on aggregate output @ = ¢; + ;. Both firms have Shaomzn
Em.n%w_w_ costs ¢ and ¢z, with (w.lo.g.) ¢ < ¢;. Production is not possible without
No:::oz.. Producing ¢; units of output, firm ¢ produces ¢; = dig; units of emissions
Total emissions are written £ = €1 + e2. To evaluate utility and harm of @ and @
to the society, we assume to have a partial social welfare function W(gq1,¢2).? In the
absence of pollution, in the industrial economics literature, a social smzw_.m Wm simpl

taken as W(qy, q;) = soo P(z)dz — e1q; ~ ¢3qz, that is, consumers’ gross surplus EmMc..M
aggregate production costs.?

We will extend this approach by assuming that benefit of production and damage of
.vo:.:mon are additively separable, This means, in addition to consumers’ surplus m_n._d
is w“ wong damage function S, which depends on aggregate emissions, and which is
Positive, strictly increasing and strictly convex. The assumption of N&n_m:i_c\ may be

criticized since marginal utility of the marketable output may decrease with the level

u : o
uw”u nwz it partial since we neglect income effects and externalities on other markets,

iis is equi = [9 .
I 2__E<w_mﬂs »o; :\AS.‘ @) = [ P(z)dz~ PQ)-Q+(P(Q)q1 —c) 1)+ (P(Q)q2~caq2), that is,
Plus plus profits of the firms. Some authors use the latter, and sometimes even multiply sury

and its with di i .
profits with different weights (see for example BAroN and MEYERSON [1]). Then, however, the
two concepts are not equivalent, . o




of pollution. such that demand for the product goes down if emissions increase. It may
also be the other way round if, for example, the marketable product consists of some
protective device against the impact of pollution. The last possibility, however, seems
to be most unlikely in the light of the following crucial assumption of the model.
Assumption 1 The pollutant resulling from production of the industry’s output, only
arises in this industry.

Under this assumption it is not likely to have an industry which produces a protective
device which will only be needed because of the negative externalities of its production.
Of course, pollution sometimes does influence the utility drawn from consumption of
certain commodities. Observing peoples behavior, however, pollution does not seem to
have a significant impact on the demand of other consumption goods. In particular, it
is unlikely that this impact is significant with respect to demand for the output of the

polluting industry under consideration.

Assumption 1 does not hold in e/l industries, of course. For example COy, is generaied
by many different industrics. SOy, on the other hand, is generated basically by power
plants. Also in the chemical industry, some poisonous pollutants are generated from
production of one certain commodity. Since we want to analyze regulation of firms
under imperfect competition, Assumption 1 is crucial to make the analysis interesting.

Assuming separability of social welfare in consumers’ surplus, production cost and
social damage, the welfare function is given by

. :
Wianaa) 1= [ Pla)dz = S(B) - augs ~ o (2.1)
To keep the model mathematically tractable we further assume inverse demand to be
linear, that is, P(Q) = D ~ dQ. W.lo.g. we normalize units such that D =1, d =1,
and ¢; < 1 for i = 1,2, leading to
PQ)y=1-@, (22
The social damage function is assumed to be quadratic:

S(E)=~E*, (2.3)

where s 2 1) is the damage parameter.

Without any kind of regulation, Cournot competition leads to the known Cournot~
Nash equilibrium with quantities gi=(1~2c+¢)/3fori=1,2,i # J, independently
of s.

Before turning to regulatory policies, let us derive the social optimum Wmn:é social
planner would install under complete information. Il ¢; < ¢, it is clear that for s = 0
the higher cost firm 2 should not produce anything. If social damage is very high, one
should think that only the firm with the relatively lower pollution level per unit of
output should operate, that is, with the smaller d.. However, it is not quite like this.

3 The social optimum
The social planner has to solve the following program:

' 91+
max W(q, q) := me\.w P(2)dz ~ S(digy + daga) ~ 11 ~ coq, 3.1

91492 91492
stog 20,020

The following propositions yield the properties of the optimal solution:

Proposition 3.1 If

dy < d;
g!.ﬁ.“ - ~.ln»

) (3.2)

firm 2 will be shut down Vs 20, that is, g = 0, whereas firm 1 produces

ml.og
1+dis

Q= ¢ . (3.3)
Thus, we can say that firm one has the betier technology if condition (3.2) holds,
unless ¢; = ¢, d; = dj, in this case the output can be arbitrarily distributed among
both firms. Inequality (3.2) says that firm 1's emission per unit, dy, divided by its
competitive output 1 — ¢; is not greater than the corresponding ratio of firm 2. Notice
:En a < ¢ and di = dy as well as ¢; = ¢; and dy < dy imply (32). But notice also
that (3.2) may hold for some dy > dy if ¢ is sufficiently smaller than cz. In other
words, even if firm 2 emits less pollutants per unit of output, it may uvever produce in
social optimum if the cost differential 2 — ¢y is sulliciently high.



Proposition 3.2 Let

O M , C (34)
1 - Cy I - (65

hold. Then, for

[ Bl + ]
& 5.8 = wmv
P R e — G~ el (
only firm 1 produces with
1 - ¢y
1+ dis

nho=

For

$25 = - nwi» &l — )] (3.6)

only firm 2 produces with

! - .

@ = —— 3.7
Finally, for

§<s<3 (3.8)

both firms produce wilh

i = A&w |~. R_vn ﬁnm ..M Cy — &»T:Q - hmv - &»Q — nnv; a@v
q = 7 «w&_v» Mn_ M& + dyfdy (1 — c2) ~ dy{1l — EE (3.10)

Propositions 3.1 and 3.2 are derived by solving (3.1), taking into account the Kuhn-
Tucker conditions with respect to the constraints ¢ > 0 and ¢ > 0. Details are
relegated to the appendix. Nolice that ¢; < ¢; and (3.4) imply dy > dy, that is, firm 2
emits strictly less pollntants per unit of output. lence, we get s < 3. From (3.3) and
(4.7) it is obvious that aggregate output is strictly decreasing in s for s < s and s > 3.
Interestingly, for s € 5 <5 aggregate oulput is constant in s and equals

di(l ~ c3) = do{l — 1)

9= 4= 4 .

6

4i(s), Q(s)

I
i
@

Figure 1: The quantities in social optimum as a funclion ofsif &_CJSVI&NC.SDV > 0.
The solid line depicts aggregate output which equals qi(s) fors < s and qy(s) fors > 3.
The dotted lines depict q1 and q; for s < s < 3.

This follows simply by adding up (3.9) and (3.10). Moreover, one can show that Q
is continuous in s at s and 3. Thus, the social planner shifts production continuously
from firm 1 to firm 2 as s increases, keeping total output constant, until firm 1, which
faces the lower production cost but is the worse polluter, shuts down. These properties
are displayed in figure 1. Total emissions £, on the other hand, are continuous and
strictly decreasing in s. The same applies to welfare W B(s) as a function of s when
the first best production levels are chosen.

4 Regulatory Policies: Some Remarks on the In-
formation Structure

Needless to say that first best solutions are in general not enforceable by prescribing
the firms to produce individually different quantities, Not only is there an information
problem in the sense that the goverument does not know the firms’ techuologies. It is
also considered to be unfair to prescribe different policies to the firms. By widespread
opinion of the public and their representatives, firms are supposed to make their own
decisions about their output in an economy with free enterprise. This paper is not
about incomplete information in the sense that the government has prior (probability)




beliefs about the firms’ technologies. If the government, however, has to choose a "fair”
policy that treats all the firms alike, complete information is not necessary anyway. To
choose, for instance, an optimal linear tax, it is sufficient to know the existing types
of technologies and how many there are of each type, but not exactly, what firm has
what technology.® In this paper, however, implementation of decentralizing policies is
the issue rather than incomplete information. Hence, we will assume for the remainder
of this paper that the government knows at least what technologies there are.

We also assume that the emissions generated by each firm can be perfectly monitored
by the authorities. So, the firms will pay 2 tax bill exactly according to the amount of
their emitted pollutants (in section 5). In case of holding permits, firms cannot emit
more than the number of permits allows them to do. Otherwise, we assume, a high
penalty has Lo be paid. So there is no room for cheating. Needless to say that also this

¢

a strong abstraction.

5 Pigouvian Taxes

By a Pigouvian Taxes we mean 2 linear tax tariff on emissions. Firm i has to pay a
bill of 7 - ¢; if it emils e; units of the pollutant, where r is the tax rate. Producing g¢;
units, firm s costs amount to ¢;gi + re; = (¢ + d;)g;. We do not impose a condition
on the sign of 7. Negative 7's, mean a subsidy. Indeed, we will see that for low social
damage it is optimal to subsidize pollution, a seemingly perverse phenomenon at first
thought. Since we retain the assumption of Cournot competition, the firms go on
choosing Cournot-Nash quantities. Being taxed they produce

_Iw.+.lw&..|&. .. ..
gi(r) = qf(7) = e 3 A i Vij=12 i#j, (8.1)

unless one of these expressions is negative. If firm j shuts down due to a high tax rate,

firm 2 will produce the monopoly quantity

1 — ¢~ 7d;
ailr) = ¢’ (1) = — : (5.2)

4This information structure is reminiscent of the second degree price discrimination literature. In
Maskin and RILEY'S model [7], the monopolist has to know what kinds of consuiner there are, but
not which consmmers has which utility function. The same structure can be found in RoTHscHiLD
and $116L177 [10], and STIGLITZ [14] fn the analysis of insurance markets. Of course, assuming this
information structure is more appealing when there are many agents rather than only two as in our

el

W L 3 _ n, ¥4 t t A, _ 1 t d :
wap is i 1] government's Fﬁomﬂm.s. N wants to ~=& the Ovﬂ:ﬁy_ ax rate under J314]
* p ?
constraint :.—m_.a :.nm :::ﬁ set Zm—h_u Awr_mguﬁ_:mm _— n—:wv. muﬁsu -C&r—ﬂmw x.:n— :uQSO_XL
Qﬂm.;_\:._ﬁm _m OS—W one G_ :um~= 1s active, wwm:nﬂ' 1t —wm.m to moﬂcﬁ max, —v Au v ’

= wa.\fgiilsu
" Jo (z)dz - %A&»ST.V + &wcm?.vv - ni:T-v — cana(7) (5.3)

Obse iti i
mo<mhw<w :M% the additional costs of size 7¢i for the firms and the tax revenue for the
m i
fovern Mw nW:am_ out if we assume that the government redistributes them lump suin
e firms, or even to consumers. This d
3 oes not matter. What s i
. cons 1at mallers is
nmvan.uﬂ mcm,wziwmi _;_M no objective to collect tax revenues in this industrial sector
sspecially, there is no additional technolo, .
, gy the government can buy in ord
e e fa ~ : y i order (o reduce
o mm”uommaa. Mﬂuaﬁosm E, once these have been dumped into the environment by the
s, Loven if it is not quite realistic that the
. ¢ government does nol care about {
revenues, we want to abstract from them j i taxes 25 »
1 in order to highlight the role of ¢
; axes as a
Mmmc_ws:m tool. To solve (5.3), we have to know the behavior of a(r), i = 1,2. &
rom (5.1) that ¢/V(7) > 0 if and only if . o

1=2¢i+¢—(2d —d)r >0 (5.4)
5.4
1 —2¢+¢; i
& T < el i
< Y- &u. if 2d; > &.Q, R Am.mv
1 ~2¢+¢;
\Nl V ] h .
> o y if 2d; < d;, (5.6)
Hl.wn..+nu..v-c if 2d; = i . (5.7
From this we get g;(r) = aM(r)ifr < (1 = ¢)/d; and
1 ~2¢ +e¢;
& o> 2 i
. > % —d if 2d; > d;
1 —2¢ +¢; .
T < M&ml&.mN if 2d; < d; .

Let 7Y% be the "Nash ta » i
x rate”, at w  j ; f :
that is, ) hich firm ¢ just closes in competition with firm J,
No b= 2¢; +¢;
' M.&. Sl &~ ' ) Am‘mv

Lemma 5.1 [f

Q.» < &u
~.1n— 1 -2 4 : AUCV

firm 2 always cl : 3 1
ys closes first as the lax increases or 1 does not produce al all. In particular;
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a) If 2dy < dy then V0 < 70 and

WMr)>0 < >0,

Sv?VVQ & ﬂAﬂnzc.
E If 2dy = d;, then

a¥ir)>0 vr o,

N No

a2 (r)>0 hid T .

o If2dv > dy > d1/2, then 7*® < 7{'° and

a'(r) >0 & FLET,

No
a¥(r)>0 & Ty

d} If 2dy € dy, then ga(7) =0 V..
Lenuna 5.2 If¢; < ¢; and ®

di_ (5.10)
l—-q l—c’

Jirm 1 always closes first as the taz increases or never operates at all, in particular:

a] If di/2 < d; < 2d; then 7' < 7{° and
a¥(r)>0 & r<'l,
¢G>0 e r<nl

b} If di = 2d,, then
% (1) >0 Y

; (]
qr)>0 e r<r.

of If 2dy < dy, then vN° < 7V° and

No

aM(r) >0 S T,
B (r)>0 “ >0,

Notice that d; > 2dy is not compatible with (5.10) and our assumption that ¢ <.

. o T 4
1f ¢y = cq interchange the names of the firms and apply Lemma 5.1

10

Lemma 5.3 Jf

B 0 (5.11)

1—-¢q ...HIS

and 2dy > dy both firms close simultaneously as 1 increases and Vi = 1,2:

No

S.?VHSZT.VVO & ﬂAJZoH.& .

If2d; < dy, firm 2 never produces.

Lemma 5.4 Suppose r mazimizes WPT(r) and we have g;(r) = a(r) > 0 fori=1,2,
then the ”Nash~taz” is

A+ Bs
— e .
(o) = 7M(s) 1= L0 6.12)
where
A = Amnn L unu - :&m + ﬁmnu = Anm e CR—
B = Nﬁ&w — dydy + va—ﬁ - 2¢y + Ev&» + Q - 2¢; + Ouv&L
C = (d +dy) ;
D = 4(d—dydy + &2y

That means, N (s) is the tax rate at s imposed on the firms if they both are in the
martket and engage in Cournot competition. Notice that since ¢ > 0, D >0, and
$ 2 0, the denominator is always positive.

Lemma 5.5 Suppose v mazimizes W¥FT(r) and for some LI #4 q(r) =0, and
4(7) = ¢M(r) > 0, then the "monopoly-taz” for firm j is

)= g 1 L .19
ﬁme TN7'(.) bé the inverse of (), that is,
) = qux..am Vi .m )
We define vYr¥0 & &,
sf =V (o) , (5.14)
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(The superscript stands for "duopoly”.) This means, 5P is that damnage parameter for
which the tax equals 7¥°. By its definition, sP may also take negative values, which,

however, are not relevant then.

Sinilarly, let ﬂ\:ﬂ_: be the inverse of 7:(.). We define

s o= M7 () ‘ (5.15)

This means, uu_: ? is that damage parameter for which firm ¢ just opens if firm j is taxed

as a monopolist.

Lemma 5.6 w o
a) If di /(1 = e1) < daf(1 = ca), then sP < s, Morcover, 572, sP < 0, hence not

relevant,

1,
b If di/(1 = 1) > do/(1 = c3), then s} < sP, and 0 < P < sM2,

After these preparations we are ready to characterize the optimal linear tax as a func-

tion of the damage parameter s.

Propesition 5.1
a) If di /(1 = ¢1) < dy/(1 = ¢3), then

™(s) for 0 8P, (both firms produce)
T(s)=4 ™  for max{0,sP)}

™i(s) for max{0,s}"}

INIA A
INIA

s
s
s (only firm 1 produces)

Lspecially, for di 2 2dy, 7(s) = 7™™1(s) ¥s > 0 and oaly firm ! produces.

(28

b) \\..«?\C oaa_v > &N\A— !n»y then

™i(s) for 0 < s < oM (only firm 1 produces)

Ve lor max{0,s)"} < s < sP, (only firm | produces)
ms)= ¢ V(s) for max{0,s¥} < s < 5P, (both firms produce) (5.17)

Y for s < s < ™ (only firm 2 produces)

M2 (s) for M o< (only firm 2 produces)

) I /(1= ey) = dz /(1 = ¢3), and 2d,y < dy, then
T(s) = (s) Ys>0 (both firms ~:§?8y (5.18)

12

s3", (only firm 1 produces) (5.16)

Ifdif(1 = ¢)) = d2/(1 = c2), and 2d, > dy then
(s)=7M(s)  vs>o (only firm 1 produces) {5.19)

Proposition 5.1 follows directly from Lemmata 5.1 — 5.6. Lemma 5.6 is nost impartant
among all and a bit tricky to prove,

In words, Proposition 5.1 says that if firm 2 has the strictly worse technology, it may be
the case that for low values of s both firms produce. By Lemma 5.1, firm 2 closes first
as s increases, For s ¢ [max{0, 52}, sM], the tax is constant in s and equals 70, This
is due an incentive constraint: Suppose s? > 0. If s increases towards P, 7(s) goes
to V9, that is, firm 2 closes down. For higher taxes than ¥ firm 1 is & monopolist.
Hence 7(s) s +¥ (s), and firm 1 has to be taxed as a monopolist. However, if firm 2
could be prohibited to produce for s slightly higher than 59, the optimal tax for the
monopoly firm 1 would be lower than 7'° for s < 53", This follows immediately from
Lemma 5.6. But firm 1 cannot be told to shut down by law. At least this is what we
assume. Hence, to prevent firm 1 from producing, the tax must not be lower than 7¥0,
For s > M (s) = vM1(5) > rN0 and 7(s) is strictly increasing in s.

Notice that in case a) it can never happen that only firm 2 produces as a monopolist.
This follows from the second claim in Lemma 5.6, namely that sP,sM <0, 1 is easy
to verify that 7(0) < 0, this means, for low damage parameters, the firms’ pollution
will be subsidized. We know that a monopolist or a (Cournot-) oligopoly produce less
than the social optimum {which is equal to the competitive output of the lower cost
firm if there are several with different costs). From the theory of regulating monopolies
or oligopolies (see BARON and Meyerson (1] or Konishi et al. [4]) we know that in
the absence of externalities and under complete information, the firms’ output is to be
subsidized in order to increase wellare. A monopolist can even be brought to produce
the comipetitive output. In our model, the subsidies work indirectly via subsidizing
emissions, which stand in fixed proportions to the firms’ output.

In part b) of the proposition, where firm 1 has the lower cost ¢; < ¢, but firm 2 has the
better abatement technology, it may be the case that the lower cost firm | produces as
a monopolist for low damage parameters, Theu, both firms produce for intermediate
values of s, whereas for high s only the "cleaner” firm produces. Here, there may
be two intervals for 7(s) being coustant in s. On the first interval [max{0,s)"}, sP)
(which may be empty) we have (s) = V% < 0, that is, we gel a subsidy. On the
second interval Eut&,ﬁ we have r(s) = % > 0, that is, 7is a real tax. Depending on
the parameters it is also possible that for s = 0, both firms produce under the optimal
tax. But the case that firm 2 js monopolist for all s is ruled out.

13
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Figure 2: The optimal linear tazrate as a function of s.

In figure 2 we have depicted the optimal tax as a function of s for the case b) of the

D

proposition where all the &_:., s7 are positive.’

6 Permits

In this section we assume that the mo<9.=.§m=... gives out a number of L permits for
pollution which may be traded among the firms. Each permit allows a firm to emit one
unit of the pollutant. We need not care about whether the permits will be bought from
the government and at what price. We could assume that the government distributes
them fairly among the firms such that each firm holds L/2 permits at the beginning.
Assume that L be arbitrarily divisible.

6.1 The Firms’ Behavior

The process going on in the economy may be divided into 3 steps. At first, the firms

hold some initial endowment (I, 1) of permits, with [ +1; = L. In the second step they
may trade. that is here, one firm sells some or all permits to the other firm. Firms end

By shifting this curve to the left and cutting off at s = 0 one gets the shape for the other cases.

For case a) interchange the subscripts 1 and 2.

up with a new allocation of permits (e, e5) with e; +e; = L. In the third step, firms
engage into (Cournot-)competition and choose quantities ql¥, ¢ under the constraint,

0 < eifd; (6-1)

which is binding if e; is sufficiently low.

How will the firms trade the permits? Denote by I1¥(ey, e;) the profit of firm 7 if the
final allocation of permits in the second step has been (e1,€2) and both firms choose
Nash-quantities under the constraint (6.1). Observe that there is a gain from trade if
and only if there is an allocation {e;, e3) such that ’

T (ly ) + T (0, 1) < 1Y (e, €2) + 11 ey, €2)

In this case there is T' which can be interpreted as {ransfer-payment from firm 1 to
firm 2 (which may be negative, of course) such that

0¥ (er,e2) +T > NV(L,h),
Ew\Anrmnv -T > EQQTNNV 4
How the firms figure out T is nothing we have to care about. For example, they could

agree on the Nash-bargaining solution. The maximum gain from trading permits is
determined by .

ﬁww Tﬂ,..?:amv + E%?:Sv_ m.rﬁ+3m?3wo,mnwo. 3.8
Accepting the assumption that firms behave as profit maximizers it is natural to make
the following assumption:

Assumption 2 Firms trade permits in the second phase such thal the Jinal allocation
(e7,€3) solves (6.2),

Notice that this assumption allows also for the case that one firm buys all the other
firm’'s permits such that the market ends up with monopoly. And indeed, this will
happen for some range of values for L as we will.

Before the government can solve the problem liow to choose the optimal number of
permits contingent on s, we have Lo analyze how the firms will determine the final

allocation by solving (6.2). For this consider the following program:

max Pq + @)g + g2] — ciqr — caqa st digy + dpqa < L (6.3)

1192

15



After solving (6.3), we will show that the resulting quantities form

under the constraint that ¢; < e;/d;.

Proposition 6.1 Let

A Al =) —dy(l — &)
NA&_ !n&ww

. '
l—¢ " 1l=¢

the solulion of (6.3) is given by . :

1~ L
n(l) = z‘.:; ma. ) mﬂw ; g2(L) =0

a(l) = _a._,T_H =2, & (L) =0
b)Ifer<cpand?
d, . dy v
1 - Cy 1 - Ca
the solution of (6.3) is given by .
([ min A‘_Ummr , Mh,.v if L>dQ
all) = { gip[L-&Q] ¥ a§2L240
0 if L<d0
0 i L2
w(l) = { 7 [0@-1] i 4G2L240
L 5
e if L<dQ
dz
We define
I ~c
Nu::‘:w = «N_ I!.\.M\m|_ ]

"Il ¢y = g interchange the names of the firms and apply case a).
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a Nash equilibrium,

(6.4)

(6.5)

(6.6)

(6.7)

ot

as the pollution level of the lower cost fiem 1 if this firm operales as a monopolist in
the absence of regulation.

To interpret the proposition: if (6.4) holds, firm | buys all the permits and behaves as
a monopolist. If L > Ly, firm 1 also buys all the permits but does not use them all.
In this case, there is under-production combined with under-pollution. By giving out
more permits, however, the government cannot induce the firms to produce more than
the monopoly output knmm,

If (6.5) holds, the same thing happens as long as L > &, Q. I aQ > L > dyQ, the
two firms shift production continuously from firm 1 to firm 2 as £ decreases, holding
total output constant. This follows from (6.6) and (6.7). Adding up ¢, and gz yields
a, independently of L. g

For L < d,Q), firm 2, which has the better abatement technology, buys all the permits
and produces alone,

Proposition 6.2 The solution of (6.2) forms a Nash-cquilibrium.

The proof is obvious for L > d;§ and L < 2§ since then the firms just produce their
monopoly quantities under the constraint that ¢ £ L/d;. The other firm does not hold
any permits and hence cannot produce. If d;§) < L < d,G, for qi(L) and qa(L) to form
a Nash-equilibrium it is sufficient to show that

all*

s%m._...snﬁbv_ﬁﬂh: >0 fori=1,2, Ammv

that is, each firm ¢ would like to increase quantities given the other firm produces ¢;(L),

but cannot since it is constrained by its number of permits. (6.9) will be established
in the appendix.

6.2 The Government’s program

Given these reactions of the firms when a number of L permits is in the market, the

government has to find the optimal size of I given the social damage parameter s.
We will denote ¢,(L), q2(L) as the solutions of (6.3) given by Proposition 6.1. Further
denote Q(L) = q(L) + 72(L), el L) = digi(L), i = 1,2, Hence it has to solve the
lollowing program: .

;: DE, . .
:&x:‘n:\vn" :umx\ Pz)dz - S(L) ~ erqi(L) = caqa( L) (6.10)
L L 0
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If we want to emphasize the %vmun_gom on the damage parameter s we write
W (L,s). Before we characterize the solution of (6.3), we state sore preparatory
lemmata. Let L(s) denote the optimal number of permits contingent on s.

Lemma 6.1 Let s be given. Suppose only firm i is allowed to produce, and L(s)
marimizes WP (L), Then

dill i) _ s .
= LY(s) . (6.11)

L(s) =

(The superscript M; indicates that firm i is a monopolist,) Welfare is given by

101 -a)?
2 1+4d?s

Wrer(L(s)) = (6.12)

Lemma 6.2 Let s be given. Suppose L(s) mazimizes WFe(L) and q(L) > 0 for
i=1,2. Then

Lis)= 2=t = LP(s) . (6.13)

(The superscript D indicates that both firms produce in duopoly.) Welfare is given by

= e (331

Now let LP?™" be the inverse of L{-). Define

D 1PV AY C — € )
oPi=1 E_@T&Ei.é@, (6.15)

that is, the solution of 5& = (¢ — 1)/ (dy — dy)s in s. In words, oP is the damage
parameter where firm 1 just closes if s increases towards of and L(s) = LP(s). Sim-
ilarly, of is the damage parameter where firm 2 just closes if s decreases towards of
and L{s) = LP(s).

Analogously, fet LM be the inverse to LM (1) and define

| - Cj !ﬁ&
42Q

oM = L4, () = , (6.16)
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that is, the solution of &;G = d;(1 — ¢;)/(1 + d?s) in s. In words, i’ is the damage
parameter where firm 1 just closes if s increases towards oM and L(s) = LM:(s).
Similarly, o2 is the damage parameter where firm 2 just closes if s decreases towards

oM and L(s) = LMi(s).

Now we get a claim similar to Lemma 5.5.
Lemma 6.3 If (6.5) holds, then :
ol < o and  of <ol (6.17)

Notice that o3 may be smaller, greater or equal to oP.

Lemma 6.3 says that LMi(s) is greater than LP(s) for s close to oP and LM:(s) is
greater than LP(s) for s close to of. This implies that like the optimal tax, L(s)
must be constant on the interval [o?, o). For, if s = oP, then LP(s) = d,Q, and by
Proposition 6.1, equation (6.7), firm 2 buys all the permits from firm 1. For s 2 oP,
firm 2 behaves as a monopolist. Forbidding firm 1 to produce, the optimal number of
permits equals LM (s), which is higher than &0 i s is greater but close to oP. Giving
out LM2(s) > d,Q) many permits, however, firm 2 does nol buy all the permits. Hence,
L(s) has to be constant and equal to dyQ) for s € [oP, o) in order to keep firm 1 out of
the market. Notice that this argument is very similar to the optimal linear tax scheme,

where the tax rate also has to be constant on certain intervals of damage parameters.

On the other hand, L(s) must be discontinuous somewhere in the interval (of,op™).
To see this, consider first the left hand boundary of this interval, 6. If we employ the
" duopoly-policy” LP, we get LP(of) = d;Q and ¢; = 0. Employing the monopoly
policy LM w.r.t. firm 1 we get LM (0P) > diQ by Lemma 6.3. Let us assume that
LMi(0P) < Lion. Obviously, LMi(-) is the better policy than LP(-) for s = ¢f. Hence,

W (LM(eP)) > WP (LP(a7)) .

M
2

.

By arguing similarly the other way round, we get for o
WP (LMi(alh)) < whe (LP(a}"))

Since LP(-), LM (-) and WPe(+) are continuous there must be some interscction o4 €
(oP, ") such that .

Wy ber AN\?}AQQLV nu _\—\waw AN\CAQ..:LV )
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oM,
and Li+) jumps down from LM(:) to LP(-), at least if o3

i« similar and will be treated in the proof of the next proposition which characterizes

' < oP. The case o3" > 0P

completely the optimal number of permits as a function of the damage parameter s.

Before doing this, we define

: - 1
O non = N\>»~ nﬁbﬂe:v == Mn” Amwmv

as e damage parameter, for which the monopolistic firm 1 faces a real capacity

constraint if it is regulated by LM (.).

Proposition 6.3 a) If di/(1 — &) € daf(1 ~ ), the optimal number of permits as a

Junction of s is given by

L — \\:E: \.aw. § < Oman H Ammwv
L(s) \‘\:;.wv for $2 Omon -

In this case, only firm 1 produces for all s > 0.

. b) If di /(1 = ¢1) > daf(1 — c3), the optimal number of permits as a function of s is

given by

Lmon  for s < min{Gmon, Tint} (only firm I produces)
LMi(s) for Omen 8L 00 (only firm I produces,
interval  may  be

empty)

Lis) =< LP(s) for oim<s<op (both firms produce, (6.20)

interval may  be

- emply)
d>0) for max AQ?:.ﬁbv <s< oM fonly firm 2 produces)
LMi(s) for s2a1" (only firm 2 produces)

where oy is the solution of

jirPer hb??.& if s<aP
TrPer (s M, L A

27 (unin{ Lnans ¥ (5))15) = { e d@Q,s) i s>oP

in s,

Proof: a) follows immediately from Proposition 6.1, b) follows also from that result
b D 5 > P rate
and Lemma 6.3. For Qw: < of and gppn < of the argument has been elabor ated
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L(s)
Liion FE.?V
T ;

gt~ — — - |

@ o L 1)

. LMz(s)
-~ . /l// = A~ .
/lla@{».}l/..l.lvl.("l..
Tmon o7 Gint o oP oM s

Figure 3: The solid line depicts the optimal number of permits as a function of s if
&-AM - ﬁnv - &qu = G_v > 0.

above. For the remaining cases, see the appendix. Plugging (6.20) into WFer(.) we
could get the corresponding formulas for the welfare, however, these do not yield further
insight.

Notice that for s € min {Omon) Gine} firm 1 behaves as a monopolist in the absence of
regulation. Hence, L = L,y is not unique. Any number of permits > Lupon would
do the job. Notice further that apart from the monopoly effect for large values of L,
we get the same structure as in social optimum: If (6.4) (= (5.9)) holds, the worse
firm 2 never produces under the first best as well as under the permit solution. If
(6.5) (= (5.10)) holds, only firm 1 preduces for low values of s, both firms produce
for intermediate values of s, and only firm 2 produces for high values of 5. In those
intervals of s (which, however do not coincide) where both firms produce total output
is constant as s increases. Production shifls {rom the Jower production cost hut more
polluting firm to the higher cost but less polluting firm. L(s) is depicted in figure 3.
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Proposition 7.1 Tint > 28, oy =23,

Corollary 7.6 The permit solution is socially optimal for s € {Omon,s) and for s 2

Q.,:, > 28,

Notice that the first interval may be empty.

In other words, under the permit solution the "cleaner” firm 2 opens "much too late”
and the worse polluter, firm 1, closes "much too late” under the permit solution com-
pared with social optimum. Notice that the intervals where both firms produce in
social optimum and under permits, respectively, may be even disjoint (sce also the

numerical example below).

Let us consider taxes.

Corollary 7.7 [or s € E%wﬁ and s > s the optimal tax induces the social opti-

mun.

This is casily verified by considering the resulting quantities produced under the tax
regime and in social optimum, respectively. It is also clear that it must be like this,
for, in those regions of damage parameters, only one firm produces and the optimal tax
for regulating a monopolist can be imposed (there is no binding incentive constraint).
Notice that the interval [0, s3] may be empty.

. My _ M,
Proposition 7.2 Qﬂmﬁ. - ﬂm.m >0, then oy* < sy °.

In words, Lhe damage parameter, from where on the socially optimal solution is achieved
under permits is smaller than the damage parameter, from where on the optimum is

achieved under taxes.

Corollary 7.8 \\,_.mﬁ - ﬁmum > 0, the permil regime nn\mneam ::mmc&& .%:.SS: ?w. a
grealer range of demage paramelers, for which it is desirable that the higher polluting

firm shuts down, than the tax regime does.

Iu the light of this corollary, the permit solution is not as bad as it seemed to be from

Propusition 7.1. From Proposition 7.2 it, follows also that the permit solution is better
M;

than the tax solution for values slightly lower than oy, If s further decreases welfare

nnder taxes intersects welfare under permits as the following example demonstrates.

24

Example 7.1 Let ¢; = 0.25, ¢ = 0.5, dy = 1, dy = 0.5.

Under this constellation, d;(1—¢z)—dy(1~¢;) > 0. In this case we gel s = 2, 5 = 4, that
is, in social oplimum both firms are active for s € (2,4). Under the optimal Pigouvian
tax, both firms are active for s = 0. Firm I closes for s = 16. For s € (s?,5}") =
(16,20), the tax is constant and equals 7 = 7'® = 0.666. Only when s > 20, the
social optimum is obtained by the Pigouvian tax. From figure 4 we see that there is
over-production for s € (0,2.25) and under-production for s € (2.25,20), combined
with excess pollution for s € (2.25,6) and under-pollution for s € (0,0.25)U(6,20) (see
figure 5). Under permits, social optimum is attained for s € [omon,0P) = (0.125,2)
and 5 > oM = 12. For s € (2,12) there is under-production combined with excess
pollution for s € (s, i) = (2,4.2) and under-pollution for s € [0, o) = [4.2,12).
For the most values of s, welfare is lower under taxes as under permits, however,
for s € (2,6.5), the optimal Pigouvian tax yields a higher welfare than the optimal
number of permits (cf. Figure 6). Compared with "laissez faire”, both solutions yield
approximately good results as can be seen from figure 7. Other interesting examples
could be provided, however, limits on space force us to close here,

Concluding, the permit regime is better if one firm has a better technology for all s
and if the lower cost firm would over-poilute as a monopolist. It is also better for a
greater range of high damage parameters if mw_. - m_.wm > 0 holds. The permit regime
is clearly worse if social damage is so low that lower cost firm under produces (and
hence nnder pollutes) as a monopolist such that pollution should be subsidized under
the tax regime. In this case, the lower cost firm exploits the permit regime, by buying
all the permits and thereby building up its monopoly position. For intermediate values
of s nothing can be said in general. Welfare has to be compared under both regimes.
But the optimal size of permits or taxes has to be calculated anyway!

8 Final Remarks

Of course, (linear) Pigouvian taxes and permits are not the only tools to regulate
poliution. We could look for optimal incentive compatible mechanisms. This would
in general mean to offer the firms a menu of quantities of production and emissiou
levels combined with taxes or subsidies. Political cconomists, however, are not too
enthusiastic about controlling quantities of the marketable output. In our model,
however, quantities of output and emissions are perfectly correlated by the technology.
Hence, it is worth looking for optimal nonlinear tax schemes, (which is beyond this



paper). Even so, the investigation of permils and linear lazes is important since those
tools are, first, relatively easily enforced and secondly, and more important, they are
tools which become more and more known, better understood, and discussed in the

public.

Also is there need for investigating the incomplete information case since in most real
world situations the government does not know the firms’ technologies. However, before
doing this one should know the outcome under complete information, studied here.

Analyzing a market with more than two firms is not only messy if all the firms have
dilferent technologies, it also raises conceptual problems if we, consider the permit
regime. For more than 2 firms, say 3, Assumption 2 is vulnerable since it may happen
that after all the three firms have traded permits, two of them have an incentive
to further trade permits exercising a negative externality on the third firm (we have

examples!). In other words, the core of permit allocations may be empty.

Finally, further research should go beyond linear technologies, assuining that firms can
substitute less pollution by a higher production cost. As far as I can see, however, few

can be said under fairly general assumptions.

A Appendix

Proof of Proposition 3.1 and 3.2: This is standard: Setting the partial derivatives
of (3.1) with respect to ¢; and gz equal to zero (plugging in the functional forms of P

and S) we get:

= (q1 + q2) — sdi{digy + daga) =1 + iy = 0
L= (g1 + q2) — sda(dyqy + daga) — 2+ p1 = 0

Here jy and gz are the Lagrange-Multipliers with respect to the constraints ¢; > 0,
q2 2 0. Assuming jy = 0 = gy, = ¢ > 0, g2 > 0, and solving for ¢1, g2 we get (3.9)
and (3.10). 1t is straight forward to show that these solutions are not negative if and
only il (3.4) holds and 0 < s <5 <5 gy =0, pz # 0 holds iff (3.4) and s < s, or (3.2)
holds in which case s < 0. The latter case refers to Proposition 3.1. py = 0, 3 # 0

holds il (3.4) and s 2 s, or (3.2) and s € ¢ < 0 hold. The latler case is not relevant

since s > 0. If exactly one of the y; equals zero we have to solve

max \f Plzydz — S(dugi) — cigi (A1)
ToJo

A“.W_w yields (3.3) and (8.7), respectively, Now, for dy/(1 — a) € daf(1 ~ ¢ ) we get
< H » 3 HH b - ~ ) w
2 $ 2 5. In this case Proposition 3.1 follows, otherwise we get Proposition 3.2 )

H.uaocw of Lemma 5.1 case a) dy > 2d;. TV < 7' is equivalent to (1 —2¢, +
M”Vm.ﬁwn, MMNwAwM (1 M 22 + &1)/(2d; - dy). Since dy > 2dy, this is the mws.m_wm
Swnazm_m: N_.wimn&le > (1 =2 + ¢,)(2dy — .,&V. .§=Ev_3=m, simplifying and
) 2m y : 1l =e3) < dy(1 ). dy > 2d; implies 2d; > d;. Hence from (5.5

eget g > 0iff 7 < 7%, From (5.6) we get gV > 0iff 7 > 7o, ?

No
Ty

cas - ; .
e b) d; = 2d,. In this case, Sz?.v >0 V7, since ¢; < cy. Further, ¢ > 0iff r <
case ¢) d1/2 < dy < 2d;. To show that 73'° < 7{" works the same way as iu case a)
L §

EE:m::ownnoE::_we_.uo::_m.
, =o§=§_moa§‘ovoa.. 5) &
cach im 1.2 ) . positive. By (5.5) and GB we get for
ow.mm_mv 2dy = di. In this case, (5.9) leads to dy(1 — a) < &yl .l.n_v = 4] - )

. Yielding 1 - 2¢; + ¢, < 0. (5.4) and (5.7) imply that firm 2 never produces. ’ ,
Mmhm e) m.wcA dy. Wm@m:, T < 19 like in ense a). (5.5) and (5.6) imply W >0
T>mnad ¢ > 0ifr < V% Hence N (%) = o, therefore, Vr vN .
e,

92(7) = max{0,¢}!(r)}. But ¢¥(r) = 0 v
r ] =0VY7 2 (1-c)/dy. By simple algeb
that (1~ c)/dy < 7™, Hence, firm 2 never opens. Q.E.D .

P
roof of Lemma 5.2 case a) di/2 < dy < 2d,. Same as case ¢) in Lemma 5.1.

case b) d; = V)= :
- e W&~ 2d,. Then, % (T) = (1=2c24¢,)/3 V¥r. (5.10) implies that this is positive,
nce 2dy > dy, we get ¢l¥(7) > 0 iff r < 7{'°. Hence firm 1 closes first.

case c) di > 2d;. (5.10) implies rN° < N0
. (8.5 i N .
and ¢f'(r) > 0iff 7 > ipo, (5:5) and (5.6) imply ¢f¥(r) > 0 iff < r¥0

case d) d; > 2d; is not compatible with ¢; < ¢, and (5.10).
case ) dy = 2d; leads to negative profits of firm 1 if ¢ < cp.

Hence firm 1 always closes first.

Q.E.D.

Firm 2 may open later than firm 1 as 7 increases.

Proof of Lemma 5.3 It js easy Lo show that V0 = 0 If ¢

If
: n.a_ < ¢z dy > dy :.Emm. hold, hence 24, > dy. If 2dy < dy, firm 2 never opens by
similar arguments as in the cases d) and e) in proof of Lenuma 5.1 Q.LED o

=y we get d; = d,,
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Proof of Lemma 5.4 {Sketched) Differentiating WF7(7) yields
W) = P () + ()] = SEENET (D) + e () = esal (1) — s (7)

where e¥'(1) = diq| ‘(). Plugging in (2.2), (2.3), (5 1) and ¢ (1) = ...wm..wnmf and
solving ,.c_. T yields (5.12) after some tedious rearrangements, which we omit. Q.E.D.

Proof of Lemma 5.5 Differentiating WFT(r) = fo! M -5 (di Q.EC.V —c;igM(r) yields

WIT'(r) = [PgM (7)) — S(diad () = el M(r)

Plugging in (2.2), (23), (52) and ¢M'(1) = —4 and solving ».o—,ﬂimim@.&vw?mn
some manipulations. .
Proof of Lemma 5.6 We show that (5.10) implies P < sM2. The remaining in-

equalities are demonstrated analogously.

Since l.& solves (5.3), we have &,‘3 ™)) =0,if g N(rN(s)) > 0, ¢ = 1,2. For
s = ap the Jeft-sided derivative of S\E, equals zero:

d PT
A (el = | s.s

Since also ¢ (77 =0, (A.2) becomes
TSA:SQ‘?+§ AJ_\&Z?VE_E 3+§$.?:t&mwg..Sﬁ ()

Plugging in ¢/ (1) = ~2od we get

d 2dy — 2d; — d
() 4 s (1) WIPRPPINCLEL SR

solving for s yields

. = .CT: ﬂv &— &3 :M&— e Ln,uﬁp + AM&» - «NLG& Ty va
T 2dyqN ()d} + 3 — dyds) ’

Consider now WPT when only firm 2 produces and is taxed as a monopolist. First

order condition for the optimal monopoly-tax yields

awrr Al Sy A
=P ()= (g (7)) = el (1) = 0

dr

(A.4)

23

» MU e -
Plugging in g7 (1) = —F and {A.3) into (A.4) we get ﬁ“qz. ()

_h
)

P(gd (r))(d1 + d2) — [(2d, —
~P(g}!(7)) + 2= 2 1= da)er + (2d, — d
2 2 A} + & — dydy) (2ds = di)erd 4,1 (
Now we employ that g3f(r{"%) = V(TN = [di(l - ¢
- da(1 ~ -

(2.2). Hence the RHS of (A.5) _8823 )~ il = i/ = ) e
- s d(1

4{di + d} — %ﬁﬁ (l-a)~d(l-a)l <0

The last inequality holds since the denominator is positive and Lhe fast | P——
brackets is positive by (5.10). .

asxz.

i No .
Since (rN°) < 0 if firm 2 is regulated as & monopolist (supposs flom 1 i -

existent ﬂc.. a moment) the oplimal Lax Lo pogulate o monopoly {s lower than ™ He
ek isn :

Since 7™ (s) is increasing in 3 by I - ;
cemma 5.0, 577 1 @
5.5, 87" must be greater than o] Qb

Proof of Propesition 6.1 Under Assumplion 2 the firms maximize Il K
N1%(q1, q2) st iy + oy < Loand ¢ 2 0. Lagrange function is: L(g M. A Ssﬁwv -
A%m+§§|§ ﬁvlse:Q§+x§e+&§|S+EE+E§. mpzupn_w M_ME.\MM ﬁm_%
oL = T.MF_ +qa) —c1+Ady+pei = 0. For A # 0, p: # 0 this yields ¢ T\m &Q_
and ¢ = 5.‘ =% ﬂ ~L+ }QH These are both positive if § > 0, s__:o_w__—;h_un_ iF (6.5)
and d@ < L < d,Q hold. For L £ d2Q we get ¢1 =0, and for L < &G w m “ o,
If @ < 0 which holds iff (6.4) holds, we get ¢2 = 0VL. QE.D. .

Proof of Proposition 6.2 It remains to establish (6.9): ant
ing it 9): 5-(q1,q2) = 1 =21~ 2"
Plugging in q1(L), g2(L) from 8.3 and (6.7) yields or (01, G2) 91 q2

mn_a i B
B0 71, 72) i &? (2dz — d,){)

]

> 1—-¢-20 sinceL<diQ
w5 e
ﬁ&l&pVo

employing the expression for €, ¢y < ¢ and the fact dy > dy which follows from (6.5)-

Similarly we get wm” I (g, q2) > aPT5 > cO.G.U.

Proof of Lemma 6.1 If g; =0, we have-to maximize Wi(L) 1= [I(1 - z)dz — :\
Mwﬁ where ¢; = L/d;. Solving the F.O.C.w.rt L u:oEv the result, _woom:v are cs::i_
.E.D.
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Proof of Lemma 6.2 If ¢; 0, for i = [,2 we have to maximize

S\ANL = \.coﬂw — Nv&Nl WN\&:! nn&_ .._a&n —h..t&u@w xxnn&_ H&u —ib+&~@~

Solving the F.O.C. w.r.t L yields the result. Details are omitted. Q.E.D.

Proof of Lenuma 6.3 We show ¢ < ¢, This is the same as (c2 = e1)/dy(dy ~
&)@ < (1= ¢ = Q)/d3G. By (6.5), dy > dy. Hence we get dy(c; — a) < (& = da)(1 —
e1) = (dy = d3)Q. Plugging in § = (di(1 = c2) — dy(1 — ¢1))/2(dy — d») and rearranging
yields 0 < d(1 = ¢z) — da(1 — ¢;), which holds by (6.5). The other inequality is shown

in the same way.

Proof of Proposition 6.3 case a): owmon < 0f, 02" < ¢P. This case has almost

been proven in the text. For s < omen, the government can set L = Ly (or any

L 2 Lpen). By the Lemmata 6.1 and 6.2, LM LM and LP are continuous and

strictly decreasing. For L = d;Q we get go(L) = 0, and g2(L) > 0 for d:Q > L > di §.
Now, o2 = LP7' (1) and o3 = LM (d,§). Since oP < oM by Lemma 6.3, we get

W(LM(s),s) > W(L"(s),s)

for 0f <'s < 0 +¢, if € > 0 and not too large. Hence L(s) = LM () for of <
s < af +e. On the other hand, g, Ahi_ A&v >0if s > o', Since oM < oP, also
q1 Ab§ ?vv > 0ifs > o™, But if both firms produce, LP(s) is optimal by Lemma 6.2.
Hence

W (LM (s),s) < W(LP(s), s)
My

for o3t —¢ < s < o)™ if ¢ > 0 and not too large. Since also W(LM(s)) and W(LP(s))

are continuous and strictly decreasing in s, there is a unique oy such that
mﬂﬂbz_ﬂqmiv,qmiv = S\\AN\DAQ?L. Q._.«:v .
Heuce, L{s) = LM (s) for 0f < s < 04y and L(s) = LP(s) for o < s < ol

For s = of, we have LP(cP) = @, hence q1(d,@) = 0. For L < d;@Q firm 2
is a monopolist. In the absence of firm 1, we had L(s) = LM2(s) by Lemma 6.1.
By Lemma 6.3, however, and since LM (s) is decreasing, we get LM (s) > dyQ for
77 <s < ol + ¢ for appropriate e. Hence firm 2 would operate if L{s) = LM(s)

L{s) = dyQ) for ol < s <ol Fors > oM we have LM2) 5 4@ by definition of

.i:u. Henee, L{s) = LM (s) for s > Qms»‘

and o < s < o’ + . But then, welfare could be increased by decreasing L. Hence

case b): oyon > o, o} < op. In his case LM (s) > Lyon for s near of. 1t is easy
to show (use Lemma 6.1) that H(LoP)y>0for L < LMi(s). Since Lynon > di we
geb

W (Lmowy s) > W(LP(s),5) .
for ¢ < s < 0P + €. On the other hand, arguing as in case a) we get

W(LM(s), ) < T(LP(s),)

forod —g < s < o if e > 0 and not too large. Hence, there is oy € (0P, oih)
such that \

w ?:i Livians h&.?..:&,q.‘iv =W ?uﬂq...:v, S...v ;

The remaining arguments go through as in case a).

s C M . s .
case )i Omon < 0P, o} > oP. In order to establish the unique cxistence of oy, €
(eD,02™) such that o

(LM (0in1), int) = (L (010s), 7ini) -
or )
W(LM (01ne), 0ins) = W (da, 0ine) -

it suffices to show that
W (LM (aP),0P) < W(d§G,0P) . (A.6)

Since LMi(07) = di§, this leads to W(dyJ,oP) < W(d:G,0P). Now, W(d:§,s) >
W(dzQ, s) is equivalent to
= 0w ~ ~ 0 ~ -
@-5-3dF-ad > G- 2 SdP -l
K} o~
Aad MEW ~dQ 2 e -q

v

Solving for s yields:
s ..Aa MAnn - n_v _
. (di ~ dy)(dy + d2)Q
Next we show that s < P = (c2~e1)/da(dy = da)@. This is the same as 2/(dy+d;) <
1/dy & dy < dy which follows from (6.5). Since o < o2 we get s* < ol This
establishes (A.6). The remaining arguments work as in case a) and b),

«

=!8

case d): open > of, of > of. Combining the arguments of a), b) and c) we get the
result,  Q.E.D.
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Proof of Proposition 7.1 sy > of = (¢ —cy)/dy (dy l&t& = 2(co—ey)/dy{dy (1~

&) = da(1 = ¢1)]Q = 2s. The last equality holds by the definition of s. oP = 25 is
shown by substituting d; by dj.

Proof of Proposition 7.2 s} = (1 — ¢; + dyt}°)/d2(1 — ¢, ~ tN9), plugging in
10 = (1 = 2¢; + €2)/(2d; — dy) and manipulating we get s = (dy(c; — &) + dy(1 -
¢2))/d5{dr(1 = e2) — da(1 = ¢1)]. On the other hand: oM = (1 —¢; — @)/ Q. Plugging
in the expression for @ and manipulating we get oM = (dy(1-c) + daf(cz — 1)~ (1=
c2)])/d3ldi(1 = €3) — da(1 — ¢;)]. The denominators of both expressions are alike. The
numerators differ in —(1 — ¢;) < 0, hence oM < M2 Q.E.D.
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Figure 4: Aggregate quantities for the marketable output commodity. The solid line
depicts the social optimum, the "big dashed” line is for the permit solution, the dotted
line for the iaz solution, the "small dashed” line denotes "laissez faire”.
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Figure 5: Aggregate emissions, solid line: social optimum, "big dashed” line: permits,

dotled line: tazes, "small dashed” line: "laissez faire”.
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Figure 6: Welfare without "lassez faire”, solid line: social optimum, “big dashed” line:

permits, dotted line: tazes.
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Figure 7: Welfare including "lassez faire”, solid line: social optimum, "big dashed”

line: permits, dotted line: tazes, "small dashed” line: "laissez faire”.



