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Abstract
‘We consider a pure exchange economy or "market" such that every Emwmn\m.mmi has
piecewise linear utilities. The resulting NTU-market game is a piecewise linear corres-
pondence. Using a version of "nondegeneracy” for games in characteristic {unction form,
we exhibit conditions to ensure the finite convergence of the core towards the Walrasian
equilibrium. .



SECTION 0 :
Introduction and Notation

Equivalence thecrems in General Bquilibrium Theory and Game Theory state that for
increasing or large sets of players/agents some solution concepts like the Walrasian
equilibrium, the Core, or the Shapley value approximately coincide. Earlier, these re-
sults where formulated within the framework of replicated markets or games (e.g.
DEBREU ~ SCARF [3]). Beginning with AUMANN’s paper [ 1], the measure space of
agents/players turned out to be a very fruitful concept, see also HILDENBRAND [4]
and MAS-COLELL [ 5].

However, to some extent there is a third approach based on combinatorial or numbez— .

theoretical considerations related to the concept of a "non-degenerate” characteristic
function in the sense of Cooperative Game Theory. Models of this type deal with a
finite framework. There is a fixed number r of types (similar to the replica-~-model) of
players and integer vectors of the grid ¥ are interpreted as distributions of players over
the iypes. The task is to describe ceriain areas in I and ceriain subgrids such that ,
within these areas the elements of the subgrids yield distributions of players such that a
certain equivalence theorem holds true.

An overview over some applications of nondegeneracy and homaogeneily as "surrogates"
for nonatomicity is presented in [9]. More recent evidence is provided in PELEG-
ROSENMULLER [6] and ROSENMULLER-SUDHOLTER [10], where it is shown
that the nucleolus is as well a suitable object for an equivalence theorem in as much as,
for sufficiently large seis of players in a homogeneous simple game, it coincides with the
unique representation of this game.

The above-mentioned methods appear to work smoothly mainly in models which exhi-
bit a "side-payment” or "transferable utility" character. Clearly, this is so since some
version of "optimization” or "linear production® is always involved, at least implicitly.
The present paper is meant to provide a first approach to the NTU-case. We want to
study a pure exchange economy and the N'TU-game it generates in 2 framework with
finitely many types and piecewise linear utility functions. Can we exhibit areas in Of
such that the Core and the Walrasian Equilibrium coincide by suitably extending the
definition of a nondegeneraie game to the NTU~case and solving the appropriate combi-

natorial problem?

As yet the result is only a partial one: for certain classes of pure exchange economies
the approach is successful, thus, we may formulate a "finite convergence'-theorem.
However, since nondegeneracy and piecewise linearity of an exchange economy and the
corresponding NTU-game viewed as a correspondence on distributions of players over
the types can be established as consistent 8:82.@.. it may be that a departure point for
more insight into the combinatorial structures of equivalence theorems has been
reached.

The paper is organized as {ollows. SECTION 1 studies the NTU~market-game resulting
from a pure exchange economy viewed as a correspondence from generalized profiles of
coalitions into utility-space.It turns out that piecewise linearity of the utility functions
of types renders this correspondence also to be piecewise linear. The regions of linearity
are cones in R® — the space of idealized distributions of players. Hence, in SECTION 2,
we may study the behavior of a face of the correspondence within a region of linearity.
Such a face is of course a polyhedron of lower dimension and the behavior of its normal
as a function.of profiles of coalitions is crucial. The extremals of the faces again can be
identified as piecewise linear function (SECTION 3). Thus , gradually we approach the
behavior of prices corresponding to faces of the NTU-game-correspondence. Eventually,
in SECTION 4, we link Equilibrium-prices and Core~payoffs. SECTION 5 provides an
extended example.

We now start out to provide the setup for our discussion. the piecewise linear pure
exchange economy and the NTU-game derived from its data.

v

Let us consider a pure exchange economy with finitely many fypes of agents or players,
for short such an economy shall be called a market Types are indicated by
p €R = {L,...,r}. The commodity space is R, thus j€J = {1,..,m} refers to a commo-

dity. Each player of type p commands an initial allocation aPe s% + (strictly positive).

We assume the preferences to be represented by a piecewise linear utility {unction
which, for type p, is denoted by

%;wls

More precisely, let us assume that there is a finite set L (not depending on p € R with-
out loss of generality) and vectors nE msmw (p €R,1€L) such that, for any x € R,
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Let k = ?T....wnv € ¥ be a vector of integers. Then the resulting market ¥ consists of

J E,wwma with utility u! and initial allocation wH..:. k. players with utility u' and




initial allocation a'; that is, @ is the "k-replica” of ghesl) - @ (e= .C._.;S enn).

Let 5 = (8),...,8,) € Em := W' U {0} (some coordinates allowed to be zero) be an integer
(or 0) vector such that s € k. Then s is the profile of a coalition having 8y players of

type 1,..., 8, players of typer.

Without offering an interpretation, we Su&mmﬂ also "generalized profiles”, i.e., vectors
tER l—_,. For any t ¢ s.w.. {and in particular for profiles), the (aggregate) instial allocation
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5 t. p
(2) a':= % t a
peR #

and the feasible allocations (assuming equal treatment) are given by

3 @A = {X=(x" Ler?, Bt xnumJ.
® = X= (P | LR T

Switching to utility space we introduce the notation

ux) = @)
tou(X) = (b, u(x), b, u'(x))
fort € s++. Xe ﬁ, Finally consider, for t m5+
4) F(t) = {ue s.ﬂ. | u <t eu(X) for some X €4},

then F is a correspondence that maps generalized profiles into subsets of _ﬂ,. the ele-

ment of which can be considered as feasible utility vectors to a (generalized) coalition
with profile £, coordinate p denoting the joint utility for all players of type p.

The restriction of F to all profiles

?mﬁm | s < k} for some k € H*

ig denoted by <_n = <F= and called the characteristic function of (the nonside~payment—
or N'I'U-game corresponding to) ,

SECTION 1:
The Market Game as a Piecewise Linear Correspondence

Since all utilities are piecewise linear, the correspondence F should exhibit a similarly
simple shape.We expect F(t) to be a convex compact polyhedron for fixed t; thus our
first aim should be to describe the nature of the extremals. Next, with varying t, it
turns out that F also behaves "piecewise linear" in the sense that within the interior of
certain well defined cones in R , the extremals are linear functions of t. This expo-
sition is the aim-of the first section.

For fixed type p the utility function u” is linear within each of the convex polyhedra
B! as depicted in Figure 2., and these polyhedra provide a polyhedral covering of R™.1f

we consider an (equal treatment) allocation X = ?33@ , then each x” is somehow

located in some H” i , thus refers to the system of polyhedra generated by v” as ex-
plained above.

Next, consider a utility vector U which is an extremepoint of F(t) for some t ¢ R o
Suppose that this vector is generated by some X ¢ a, via i =t e u(X). Then we expect

a tendency of the X* (p ¢ R) to move towards the boundaries of the mE,.Scme

speaking. That is, next to the inevitable equation I t R% = wm there will be "many"

Szwzonmo:rma%mm w uopE: mrE?n ) = u? to be satisfied by X and u respective-

_Em@mo&muwmna:wm.

More precisely, let us first formulate the appropriate property for a system of sets of
indices J= (J ;5. d L eens ).
Definition 1.1. Let J = 2»..‘,..&%%..._{ be mcnv that .un CJ (p ¢ R)

and bn CL (p ¢ R). Jis said to be an admissible system if the

following equations are satisfied.
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Now we may establish the connections between extreme points of F(t), admissible
systems, and generating elements of Qn as follows.

Lemma 1.2: Let t ¢ 5“.. 4 ond let i € F(t) be a Pareto eificient
{("P.E.") extreme point of F(t). Then there exists Nmmm and an

admissible system J = QH..:LNPM_.:PL such that (X,u) is the

wnigue solution of the linear system of m + 1 eguations Qa.

variables (X,u) €R™F « §F) given by
ﬁwuc (0€R, jeif)
@) t, 1P (x?)u =0 (p€R,1€LP)
T ot xP=at
pER 4

Proof: As U is Pareto optimal, it is easy to show that

(3) gy = {X el t o u(X) =}
is & nonempty, compact, convex polyhedron. Let X be an extreme point of Qﬂ

and put
J = {jed | ¥ =0} (pER)
o

L = {l€L | iam )=} (peR)

It is then verified by standard arguments that (X,u) is the unique solution of the corres-
ponding system (2) (~ where bn has been replaced by hmv

1

Now inspect the coefficient matrix of (2) (note that rn_?v =cx + mEv. Observe that

the first and last group of equations yield a submatrix of rank

1 T :
[3° ) ++ |3+ m=min [ J | ¢<rm.
: pER P

As the rank of the original matrix is mr + 1, it is possible to complete this submatrix in
order to obtain a square submatrix by choosing (at least r) rows from the middle group
of (2) in such a way that for each p at least on row corresponding to a variable U,
appears. This procedure defines index sets wu c rv (p= 150,1); _rn_ > 1. Note, that for
each j there is p such that j ¢ .u.aw this justifies the first equation (1). The last equation

(1)is obtained by counting rows. g.ed.

Note that X is a P.E. allocation which is extreme in Q_m.

Henceforth, a P.O. extreme point  of F(t) is called a {—wverter, an extreme point X mm&

is called a corresponding node.

Corollary 1.3:

I

o F(t)isa 8532, convex polyhedron.

Forevery t ¢ R

For, the number of admissible systems Jis finite and so is the number of vertices.
Given an admissible system J, consider for some ¢ € s.ﬁ + the system of linear equations

in variables 7, (p€R), nm (pER, j€J) given by
¢ =0 PER,jeJ?

(4) %Jf@nibga pER, 1€’

L P=at,
PER
we have



Leinma 1.4:

Let J be admissible. Then the system (4) has a unique solution if and only if (2)

has a unique solution.

- ] . A
Proof: Clearly, (Z, 7) is a solution of (4) if and only if (..., X*,...,...0) = A.w. yerry=1)
P

is a solution of (2).

Obviously, the square coefficient matrix of (4) does not depend on t €R e Hence, it is

or is not nonsingular independently of t.

Definition 1.5:
Let us call a system J = (J5dpLy,L) nonsingular if it
is admissible and the coefficient matrix of (4) is nonsingular.

A nonsingular system obtained by a vertex U via some corresponding X node by means

of the proceduze indicated in the proof of Lemma 1.2 is also called corvesponding (to &
or to (X,u)).

©)

B

P ) = et (x))

v
Lo

Figure 3




- 12 -

Lemma 1.6:

Let J be a nonsingular system. Then there exist an r x r matrix A = AYand r
m » r matrices B? = BPY (p = 1,...,r) such that, for t € 5++_ the unique solu-

tion of (4) is given by
(5) F=-At , ¥=By (peR)

Thus, in particular, 7 and Z are linear in t. Of course, the unique solution of
(2) is equivalently given by

3

(6) a=At #=1p (p ¢R)
)

Proof: This follows by Cramers rule, Indeed, the typical representation of the solution
of (4) (say, for coordinate mnv is

* ... 0
.
S
LI 3 m.&.... -
P ¥
ml
4
¥ ... ¥
¥ ook

which, by expansion according to the p'th column, is linear in t.

We denote by int T the dnterior of a subset T of ﬁ.. and by CVCPH T its conves com-

prehensive hull

Theorem 1.7:

“There exists a finite collection T = {T,...,T' } of subsets of _ﬂ, with the follow-
ing property.
1, T ¢ is a closed, convex polyhedral cone with apex 0 ¢ s,w. and nonempty

interior,

1

2. ﬁucﬁe_emﬁ.
3. For T, T" €% the cone TNT' is lower—dimensional.

4. For T €T there exists a (finite) family Q = Qq of nonsingular systems such

.

that, whenever t €T, t > 0
(1) F(t) = CVCPH {A% | 3¢Q}

i.e., F(t) is the convez comprehensive hull of vectors >u.: JeQ.

Proof;

st Step:
Consider 2 nonsingular system J = CH.:.LH, L;,.,L;) and the corresponding
solution (X, ) of (3). Clearly, @ € F(t) if X 3 0 and h"Y(%°) » 17 (%) (peR,
Zme_ mb:rmv.
This is equivalent to Z » 0 and ¢! 2 + t ¢y A ¥4 t? ' (peR,
le ﬁb. r mﬁLﬁL. Again, if A = AY and B = BAY (p €R) are determined by
Lemma 1.6, we conclude that u € F(t) if

Bt >0 (p€R)
(8)

() B > ¢ , @)  (peR,leL o1 ELL)

Now, let us regard the rows of this system (which is linear in t) as to be represented by
a Sw:%n D= Uui which depends on Jonly (and can be computed by means of the %_
and BY).

From this, it follows that
©) F(t) = CVCPH {A% | J nonsingular, D% » 0}

holds true for t € w++.



i

2nd Step:

Fix a (finite) family of nonsingular systems, say Q. For any nonsingular system
be the notation indicating the rows Um. of U.uw thus

J J
JEQlet DV =(D
Q A_,.vw 3

K9 is an index set counting the rows of i

Let 0 # w% C Nu and Nu = Nu - Nu Thete are only finitely many choices of

1= o

systems
o=(Q, ﬁﬁmvmﬁ@v
Consider the convex closed cone with apex 0 given by
77 = {t mﬂ | %0 (3eQ), cm. £<0

(3£Q, kek), DY 20 (3£Q kek)}

Then clearly

By omitting those T7 that aze empty or of lower dimension, we obtain easily a covering

_mn o C .H,Q
LIPS

such that, for o € ¥, T? has nonempty interior, § # int T7. -
This construction has been arranged in a way such that
p 4 .
inl T9Nint T =90 (c¢0).
Moreover, for t ¢ int i

{a1p%201=Qq
and hence
F(t) = CVCPH {A%t | JeQ}. ged.

SECTION 2 :
t-Faces

The previous section explains the behavior of the correspondence F(.): essentially it can
be seen as the convex hull of finitely many linear functions in t — provided we restrict

our observation to an appropriate subcone of ﬂ. 4 We would like to eventually obtain

the same picture with respect to a certain face (r—1 - dimensional subpolyhedron in the
boundary) of F(t). If necessary, we shall of course restrict ourselves to further subcones,
however, it would be desirable to obtain a boundary face again as the convex hull of a
finite number of linear functions.

First of all we shall have to clear up the relation of extremals in utility space s.ﬁ.+ and

the polyhedral decomposition in s% ~ which is specified for each type p (cf. SEC. 1).

We should expect that the nodes corresponding to extremals of the same face are loca-
ted within the same HP',

Lemma 2.1.: Let t ¢ Ry and let () eq be @ finite set of vertices of F(t)

q
belonging to the same P.E. face. Then, for p € R, there is /= {p) € L with the

following property: if, for each q €Q, X% is a corresponding node then, for
PER, ,
2 ew’? (qeQ).

l&
That is, any choice of extreme points of Qm (g € Q) yields points situated in a

common H \
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It is sufficient to just sketch the following

Proof: If, for some p € R, the X% are not adjacent to at least one mn« then consider

for oy > 0,(q€Q), T a_ =1, the utility vector

qeQ ¢
i= % a o
qeq 14
which is an element of the face in consideration. Also, ¥ := M@n %9 satisfies

Nmﬁ.

However, since the % are not adjacent to a common H? w. we have

t @)=t (%o )5t L a v’ 7@)= % o =1,
4 4 nmsn npm@a nmann p

while, for all remaining p’€ R we have at least »>. This contradicts the fact that U is
P.E.

Let us use the notation ¢-face for a P.E. face of F(t) which has dimension r-1. A t-face

is, of course, the convex hull of all the t~vertices it contains. F(t) is the comprehensive

convex hull of all its t—vertices. We say that x, y € _xuﬂ are adjecent (referring to some

p €R) if there is some | € L such that cE contains both points.

Corollary 2.2.:

Is If wis a t—vertex, then all corresponding nodes are adjacent,

2 Let Amnvamo be (all) t-vertices belonging to the same face, say mb?v. and let
X% be a corresponding node (q € Q). Suppose, for each q, rm ¢ L is given by
Lemma 1.1. (p = 1,...,r). Then, for every p ¢ R,

q._..1Q
™) L=y e
Thus, the X% (p ¢ R) are adjacent.




= Af =

| u(X)e moci is a compact convex polyhedron; the extreme

A
points are the extreme peints of QM_ (q €Q), hence corresponding nodes. The

: Q .
3. o = {Xed

p-coordinates of these nodes are adjacent.

4. if, for p € R, we choose /= £(p) € bw. according to Lemma 2.1., then

@) wﬁ:nreﬁxynfﬁxc?J?;ﬁxﬁmzxm%w

by
The choice of an index set Q in order to identify a face may seem to be an arbitrary
one. We shall make an attempt to justify this procedure in SEC. 3.

The nexi remark shortly describes the way, the normal of a face depends on the para-
meter {.

Remark 2.3.:

Let t € BT

++
t~face, say m.o.?v. of F(t). In view of Lemma 1.1 and 1.5 there is,
for any g € Q, an rxr—-matrix A% such that

and let ?..nvnmo be a set of r t-vertices spanning a

=A% (a€Q)

holds true. Let X = A%t denote the normal of the t-face MQSW this normal can
be chosen to be nonnegative and hence can be normalized to satisfy

MH+...+M~.H»

if s0, then X may be obtained as the solution of the linear system of equations

M-y =0 (a€Q,qtp)
Y A =1 5
pER p

where p is some fixed element of Q.That is

s 1 =

MAY- APy =0

T A =1
bmw\g

©)

Using Cramers rule and expanding determinants we find at once r polynomials in
tysnob, of degree 1-1, say Uw (p = 1,...,r) such that

()
M=y T )

Next we would like to discuss the behavior of price vectors corresponding to some face
of F(t).
Pick t ¢ R, , and consider some face, say woﬁa. Let u ¢ mbs and let X ¢ 7, bea

corresponding node, thus u = t ® u(X) holds true. Let X denote the normal at wogi
i

Figure 5




Since u is Pareto efficient, we know that

:.. néa u\.
Muunanlmunfc ?viwaAMMn»mc ()| Xeat, },

and by a standard Kuha ~ Tucker — argument there is a joint tangential hyperplane for

the graphs of all functions X n% () at X° . (The constraints defining @, include the ﬁn -

therefore the t o do not appear in the description of these hyperplanes.)

\II-’//

Graph of A u DA =)

; Figure 6

As gradients of these hyperplanes wz.mﬂm&mn: of Mman () at X" are feasible. With x” in
the interior of some H” ) ,they are uniquely defined (and equal A n% J —and at the boun-

daries of the H” we may take the corresponding convex combinations.
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The joint tangential hyperplanes may be viewed as graphs of the linear functions
X&) + oy %) (v e B3)
satisfying
TG + By - #) 2 X uly) (v e BF).

Because of the above~mentioned situation, the price vector p for each g has o be a
convex combination of certain A non I and the set of indices 1 depends on Q only.

Because these reflections are still vague, we supply a more formal description as follows.
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Remark 2.4.;

1. Forxe€ EH let P denote the set of "feasible price vectors for type p", i.e. the

P
set of gradients of all linear ?:nso:m. the graph of which amm:mm & tangential

hyperplane at the graph of u” in x. Now, if r ={l]x eH! w (and hence

x€N miv and j={i | x; = 0}, then it is <m=mmn at once that

_rn

(4) o<m?a+m te [ 12 0,1€L };
_mu

hence P o depends on L » and J P only.

2. Next, let (a2 be the t-vertices of a t-~face mb t). Consider a point u
a€Q

within the relative interior of M.J@?V and let X be a corresponding allocation |
ie., u =t ® u(X). Also, suppose that } = 39t be the normal of this face (L.
Remark 2.3). Then X maximizes the total (weighted) utility of t, i.e.,

MM ﬁ MM i v(x") = max @u an?} | Xea}

for any choice of 1(p) € rw #0/(cf. 2.2.4)

According to a standard Kuhn-Tucker Argument, there is a common support-
ing hyperplane for the graphs of all (weighted) utilities X ) w’(-)at % ie, a

price vector

vmunmn

_ gl o on s 5 1B 1D e § 70
where P - P P (in view of (4)) depends on H_,Q pwo L 2 and .w aq 7

only. In other words, P P depends only on the nonsingular systems un (geQ) that
define the face MOCV. Thus . .

5 QT Q
(5) PO = mmmunmbz_

and any vector

-

(6) el
serves as a price vector. That is, for p € R and y € EH we have

(M B(y°) 2 X (uP(y) - v(=7)).

3. Note that (6) reads as well as follows:

— - 0.‘
p=1%,,
(® _
%mw@ OVE{c” + £ te |2 o::bu
wmu
In mﬁfo&pﬁ if one of the Mn say X, is located within the interior of some mE‘
{ie), ﬁmon {1}, .umw #, then
®) Pd = (M), 2907 = (3, )
i.e.
(10) Pl p=t =t
p 4
and
. P
(11) =L =L (pen).
Mm Mm

At this state of affairs the choice of an index set Q to identify a face m@@ is still not
quite justified. Of course we cannot expect that this is possible quite independently on
the parameter {. However, it is not unlikely that the faces of F keep certain identifying
systems of equations that determine their extreme elements within certain cones in

R}~ This we will be shortly exhibited within the next section.
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SECTION 3:
Q- Faces

Consider a cone T as specified cw Theorern 1.6. With T, for any t we know that F(t) is
the convex, comprehensive hull of finitely many points of the form >u” ; here 7 denotes
a nonsingular system in the sense of SEC. 1. However, if J is nonsingular and >uﬂ is
{easible then, nevertheless, the latier is not necessarily Pareto efficient. Also, if Gnvam@

is a family of nonsingular systems, then the points A = >ua t do not necessarily
constitute a t-Face. )

In order to specify a family of nonsingular systems Q ¢ {J | Jis nonsingular} we identi-
fy indices g € Q and systems J = 79, .

Theorem 3.1.:

Let T C ﬁ. be a cone as given by Theorem 1.6, and let Q be the corresponding

family of nonsingular systems. Then there is a finite collation & ={T, T,...} of
subsets of T with the following property.

T €% is a closed cone with apex 0 and nonempty interior.
T=\J {T|Te%}

o
For T, T’ €T the cone P01 is lower~dimensional,

For any T ¢ & there exists a finite family w = ABW of subsets of Q such that,

for t m.,w,, the sets

Hb:v CVH {A% | qe )
are exactly the t-faces of F(t).

In other words, within every T the t—faces depend ,.mmmmszm.:w only on the choice of a
system 0 cqQ.

Hence, if we pick G w. then for any t € T we know that m,@?v is a t—face.

Proof

- 95 —

Ist Step:

There are only finitely many families Q of nonsingular systems. Therefore, it is
sufficient to prove the following:

Let Q be a family of nonsingular systems. Then the cone
{t | A% (q € Q) form exactly the extremes of a t-face of F(t)}
is either open or contained in an algebraic manifold of lower dimension.

Indeed, if (1) holds true then, with the exception of finitely many lower dimen-
sional cones the Faces @&3 of F(t) for any t ¢ T are also Faces mb?v when-
ever ¢ is sufficiently close and vice versa. Thus T is decomposed into a family of
open cones, within the interior of which the t~faces are defined by a finitely
Qm&w of nonsingular systems.

2nd Step:

2)

In order to prove the claim of the first step, proceed as follows:
{t | A% (g€ Q) form exactly the extremes of a t~face of F(t)}
= {11 A(A%-AP)=0(qpeQ)

has a2 one-dimensional linear subspace of solutions A €R" such that for some
solution we have A > 0 and

AATE < XA APE(r£Q)}

Consider first

{t | 2(A% -AP) =0 (qp€Q)
has a one-dimensional linear subspace of solutions}

= {t | rank (A% ~ APy =11}

q,pEQ

which, for short, is writien

- {t|{rank (B t)=r-1}=..



If "B’ t denotes an arbitrary r x r submatrix (abbreviated SM) of the matrix B t, then

= 1-1,1-1p-
o w:?lcy{lsmg.m e § B t) #0}

(3)

n D t ] det (("Bt) =0
all rxr mz_m* ! ( ) }

Now, for every rxr submatrix of B' t
{t | det (""B"t) = 0}

is an algebraic manifold to which a dimension is assigned ({11}, pp 161/163). If this
dimension is strictly less than n, then (2) is contained in a lower dimensional manifold.

If the dimension is n, then the polynomial det ("B’ t) is the null-polynomial and the
corresponding set in (3) can be omitted. Thus, unless one of the corresponding sets
cannot be omitted, we may continue in (3)

= - ¢ [ det (LTlpTyy =0
w:TTS.L mg.m.* _ ( ) J

which is an open set.

The additional conditions to be imposed on A as explained by (2) obviously define an
open set. g.ed.

In the following we want to deal with those situations only that yield 2 unique price
vector for every face of the correspondence F at varying t. Clearly, inside a cone T as
specified by Theorem 3.1, faces may be identified with index—sets Q, and hence the
required property is a property of the cone — and not of varying t.

Definition 3.2:

i has finite character if, for every T as given by 3.1. and every Q mnma@iw )
face MOS for all t ¢ T, the price vector is uniquely defined, i.e., woﬁv is a
singleton, depending on Q only.

This definition is very much "ad hoc" and it will have to be enhanced by pointing to
appropriate requirements for ©to satisfy such that finite character is ensured. This we
will postpone to some other treatmeni. However, there are classes of markets satisfying
this condition. An obvious candidate is the class of side-payment or TU-markels as the
normal A equals e = (1,...,1) constantly — and indeed, this class has been shown to yield
a finite convergence theorem based on nondegeneracy — see [ 8] .

.

Another clags (not very rich though) can be obtained by "generically" requiring that,
for any T and Q the resulting face m.bg enjoys a (relatively) interior point, say U, such
that a corresponding element X ¢ Qﬁ provides at least one % within the interior of

s0me mn_.

Indeed, by counting equations, it is easily seen that mr 2 m + r is sufficient to ensure
that generically every face of F has dimension r-1, (The mapping

o 11
[{XeR™ | X = c%«:m , w{% = m{% P e, ot elxt )
must have full rank, which is generically ensured by mr ~m > 1 ).

On the other hand, if all elements of 5 face mbg yield corresponding X € @, suck that

every x” in at least two HPL, then these elements satisfy 1 + m equations; thus if mr ~
(m+ 1) < r~1, then the Pareto face cannot have full dimension. Therefore, by asking
for

(4) v t4mA4{r—-1)>mr>m+ s
we ensure the finite character of the market.

With finite character we will essentially be able to demonstrate finite convergence of
the core towards the Walrasian equilibrium ~ this is the topic of the next section.
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SECTION 4 :
Finite Convergence of the Core

Within this section we are now going to collect our structural results in order to prove a
“finite convergence" property of the core towards the Walrasian equilibrinm.

Presently, we can only succeed for core-payoffs that are within the relative e~interior of
some Pareto-Face of F(t), say m.@S. However, similar to the situation in [ 7] and (8],

it is possible to exhibit regions in W' (to be interpreted as areas of distributions of
players over the types) such that the core and the Walrasian equilibrium coincide.

Within some cone ‘T as defined by Theorem 3.1 a face H.bﬁ.v is essentially defined by a
system Q (of index sets) and by the resulting extremals of the form A% (g € Q). Denote
by NDE the cone with vertez 0 that is spanned by A%, i.e.

) K1) ={ £ o A% e 20(aeQ)
qeq 1
Ifu m_x% is a vector satisfying u € N@?y u ¢ F(t), then u is located in front of mbs.

this can be separated from F(t) by the hyperplane containing H.b?v — which is defined
by the normal A

Lemma 4.1:

Let @ be of finite character. Fix Q and consider t € % (cf. 3.1) such that H.,OS
is a face of F(t), let § be the corresponding price vector (Definition 3.2).
Let X e, (u) be such that i =t &u (X)e H.bS.

Then, for any § m.s.w such that s @ u (X) € mo.@, s ® u (X) £ F(s), it follows
that ,

Proof:

Let X be the normal to H.bg and A the one to mb?v. Then, for suitable p €R and
te sw.p  the corresponding prices p and P satisfy

vuynm.wu»nm

(Definition 3.2), hence

~9G —
Gv mnnonm:u

with a certain positive constant. From this we deduce the following line of inequalities
for any X € (1 (%) with s @ u (X)e FOU): -

Dh s Py D d s W)

A
bmm pp .mmw [ ]
(since A separates s @ u(X) from Fs))

(since X € A (1))

. W% (3, W)~ (& -"))

(by the Kuhn-Tucker-argument, see (7), SECT ION (2))

.. .J
- Mf, s uP(z) - mM: (x° -aP).
per 2P pek 7

Hence, using (2) and (3):

}
lim AwurmuvuaosmemMm @iwnvwc.. p.m,m.
peR P C U pek P
Next, for small ¢ > 0, let mmna denote the (closed) "e-interior” of m@@y more
precisely .
(4) ) ={ S o At £ a =1a2¢c (eeQ)}
£ peq qeq ¢ 4
This is 2 compac convex polyhedron with extremals, say,

19 er)  (aeQ)

Lemma 4.2:
Fix T according to Theorem 3.1.

Let ¢ » 0. For every t €T, there isa closed cons 0@3 such that for all

i = t o u(X) € ) it follows that



~30 -
(a) t is located within the interior Om?v“
(b) if's € C(t), then s o u(X) € KYGs).

Proof:

Let t € P, First of all, fix @ = t 8 u(X) € m.m?.v.

Note that
teu(X)= T o A%
qef 4
with suitable "convexifying" coefficients a. The p’th coordinate is

t W’(#)= % a Adt.

(A, p of the p’th row of a matrix A); and hence the p’th coordinate of s ® u (X)is

m
(6) s W?(#)=L £ a AY t.
. » tyqeq 07

{Note that this is linear in s!). Consider
Cu=1s m_x.w.*.._ sou(X)e ND?Z.
Clearly, t €C and as t ® u(X) is in the interior of MDE (hence in the interior of

ND?:. C is seen to be a (closed) cone containing t in it’s interior. (In fact, C is
described by finitely many algebraic hypersurfaces.)

Now, let C% (q €Q) denote the cones generated by taking the extreme points 1€
(qeQ)of m_.w?v and performing the above procedure. Put '

(7) ct) = Qe

Then again, t is within the interior of the closed cone Oms.

Finally, let again @ = ¢ ® u(X) be arbitrary in m,wgw we know that

teuX)=ii= 2 a 1% = T a teuX?)
acg qeg

-3l -

with suitable oy and X% (q € Q). The p'th coordinate of s @ u(X) is, therefore,
8
Prshy — B AP
5,0 () i Ma@ou u(z*)

= TN
: e m.o u(x1°),

8 Y = v & ¥
) seu) = 3 e s0u(X1)

(essentially the linearity of (6) is s is used!).

Therefore, if 5 € Oms_ then s & u(X%¢) ¢ x@@ (by (7)), and, as x@?v is convex, (8)
implies that s @ u () € xp@“ g.e.d.

~Remark 4.3:

1. Note tha, GWS is "algebraic®, i.e., its boundary is constituted by a finite

number of algebraic hypersurfaces.

2. Clearly, GWE can be chosen o exhibit some property of being “positively
homogeneous"”, i.e., if @ > 0 then
Q 1oy = 09
o{m‘ﬁﬁv!oms.
a
Definition 4.4:

Let 0¥ 3 k €. k generates o full cone (wrt. ¢, Q) if there are r lineatly
independent vectors ("profiles") s € 8" such that

(a) s<k
(b) sec)
(c) k-5 €09(k)

is satisfied.
Using profiles k €0 we now switch to markets u¥ with a certain distribution
k= ?T.:.wb of players over the types; this setup we started out with in SECTION 0.
-k
.

We want to compare the Core mev and the Walrasian allocations of
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Theorem 4.5:
Let k €N generate a full cone. If X mm?wv is such that k @ u(X) € mwg. then
X is Walrasian.

Proof:
Fix X with the required properties. Since X € m?f. we know that s ® u(X) is not in the
interior of F(s) = V(s). If, in addition, s € Om?v holds true, then we have all the condi-

tions of Lemma 4.1.

Therefore, there are r linearly independent and integer vectors s €l satisfying the
conclusion of Lemma 4.1., i.e.,

(10) P T s (xF-a)20,
PER p

here P is the price~vector corresponding to Q.

Since for any such s, k — s has the same property ("full cone"-definition) we have as
well

(1) A PR (k, -s,) (7 ~2f) 2 0.

However, as X € 04 (1), we have

12 B k(% -a)=0
(12) A o
and hence it follows from (10) and (11) that
(13) p 2 os (' -a")=0
pER ’

Since our assumption is that there are r linearly independent vectors s satisfying (13),
we conclude that

(14) p(x’-a%)=0 (peR).

1t is well known that this implies that (p, X) is a Walrasian equilibrium. g.ed.

-~ 33 —~

Theorem 4.8:
Let 7 be of finite character and let T ¢ ﬂ. 4 be defined by Theorem 3.1.

Then, for any ¢ > 0 there exisis a set H " ¢ P with the following properties:

—R

Figure 7a

(2) It t €, then there is a > 0 such that ot € H,.

(b) g8 is an algebraic hypersurface.

() HkeW, keH, and X €€ is such that k @ u(%) eF(k), then X is

Walrasian,

Thus, for sufficiently large k € I, all core allocations that yield payoffs which are in the
e-Pareto efficient face, are Walrasian.



Proof:
For t €%, omg is a closed cone with nonempty interior (and "algebraic"), In view of

Remark 4.3, ows increases ("linearly") with t. Therefore the sct
. Qi .— oQ r
(15) mmcv.!om?v:?_mm&ms++
contains a convex closed body, the volume of which increases {"linearly") in t.

By MINKOWSKI's ("second") Theorem (see CASSELS [2], and compare the
argument in ROSENMULLER {7], [8],) the set E(t) described by (15) contains r

linearly independent integer vectors s once the volume exceeds a certain constant, say
cQ- Define

HE = {te? | volume Ammvw cqh

Then HE has properties (a) and (b). Property (c) follows from Theorem 4.5., since
k € HE implies that k generates a full cone. : qed.

SECTION 5 :
Examples

Example 5.1:
Let m = 2, r = 2 and consider the utility functions

; 2
ot E.w. —+ R, nxu& = min {x;+2x,, uxp+xmw (x€ 5+v

for type 1

=

Figure 8

as well as .
2
u?: sw - R, =w?& = x; %y (x €R})

for type 2.
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Smﬁa 9 1
Also, we fix initial allocations

al=(2,1),a% = ?:,

for both types; hence, for t € s.w + the "ideal" initial allocation is

b 1 2 __
(1) tea=a"=t a + tya= ANJ.IN. ty+ty).

The Pareto optimal allocations are represented by the following sketch

Figure 10

-3
It follows that we have three allocations yielding extreme Pareto efficiant points in
utility space, to wii:
o Xt = (1 ¥, 1, 72 = (a4o)
M =M1 =42 it it
teX" = QJ X 6y X7) = ((ag,85); Amwamm.o:
o X" = (t, ¥, 1,5 = (0,4
((&,m,T) for "right, middle, top"); inserting (1) yields
B
Lo X" = (2t +ty, 1;+1,), 0)
M
teX" = QJ..IQ Ji.my A:.o:
T
e X" = (0; (2 +ty, 1, +1,))
The corresponding poinis in utility space are ecasily computed; observe that
u(t8x) = teu(x) (since u = ?».cuv is homogeneous). Also, we may substitute

aH?c = w:?v = %;+2x, as any P.E. extreme point yields r:?a < wEG&.

Thus, we come up with the following three P.E. extrems points of V(t):
=B
U= (48,431,,0)
¥ = (36, 43¢t )
AT

i = (0,3t +2t,).

For by < 2L, the sitnation is represented by the following sketch, Note that the nor

vectors of the P.O. surface of V(t) are A* = (2,3) and A = (1,1) (independent on v and
without normalization. )
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3t

t S Mwu. t, +t, . 2t, +t,
ﬁs_ | Figure 12
The equilibrium price is @.k ww and the corresponding allocations are
4y = %%J w.w.ww 3 = (1) + Awr - w.wv
Figure 11 . , | . The Sno%%&nm utilities are ?Vm = AW.;H, man
The Walrasian equilibrium is obtained in slightly modified "Edgeworth-Box" (featuring ; For t; > 3t the situation is similar (although the "type-oriented Edgeworth Box" is

the aggregated allocations for types)
not quite suitable) and the Equilibrium is given by

i
¢ X = (2,2, ﬁiwv

1

ty %2 = (3iy, 0)

2
with price AW‘ ww and utility vector

(g = (48, 3t).
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; to—tg,t
E:w:w_:w"mA :A,ﬁm:ﬁ: ?mwaommavmsamozrcun 1 .,.m 2
~

) and we have

-1 _
b X0 = (b, £ +t)

-2
to X = (t,0)
with utility vector

F = (31, + 3t t,).

122

Note that (x°, x%) is a (rational) function of t while (Y5 is used for

) = (¢, u'@), 1, D)

= (ul(t, ), u¥(t, B3)).

Now for the Core. We are to consider only €(V(t)) (i.e. a concept in utility space).
Hence, we are interested in vectors @ € R such that t @ @ = (t; uy, ty ug) €V(t) while

s ® i is not in the relative interior of V(s).
Let us first discuss the continuous case (s, t € sw +v. Assume for the moment that t @
is on the upper part of the P.O.—surface; thus
M ied =)t
where Ec is the "corner point" Auf...w..m. Jv. Now, if 0 < s < t satisfies
Msen< il
then the profile 0 < t-s < satisfies
A(t-s) e i > AT(t-s) 0 i

In a small neighborhood of wusm shall find continuously many such profiles s for which,

in addition, AT s @ 4 < AT b is equivalent t0 AT 5 ® & € V(1)

s, =

It follows that, for such t we must have

Weei=aT ()

for continuously many s; i.e.
T, & T w37 i 5 Y
Aps Ay sy l=2) Smﬁiwwwv + Ay 8

In view of the prevailing linearity we may actually insert s = (1,0) and s = (0,1) in
order to find the unique solution
>a?.3c \/ic.sz

0= A
Nooon

9 6
= 33
9, 64, . .
Now, for ¢, < 2ty, t ® i = (—5= ) is in fact an element of V(t) and equals the equili-
brivm payoff. . :

Now we switch to the discrete case.

Let 5
i P
i el ?ns++ | b Amawy

and

L <t,s€TT, t-s€ T}

mM,H?mE.TT_m

We should say that the payoff Em is nondegenerete with respect to mq, if it is the
unique solution of the lincar system in variables Y1 ¥y Biven by
Msoy=x" () Ammmﬂnsww

that is, if there are 2 linear independent profiles in wm

In this case, C(V(t)) = {t @ u} and the core collapses towards the equilibrium.
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Clearly the set
{ten? | 6 ndwrt Ef}

is the system of distributions such that %= € is true and, as the number of linearly
independent profiles depends on the volume of the compact convex polyhedron M.M we

expect the region where %= € (and t 1 < ﬁmv to be of the following shape.

= &

Figure 13

For t; > 3t the argument is quite similar, except that

.43
i=(7

and
toi = (4t),3)

is a point on the south-east part of the Pareto surface of V(t).

For 2ty <t; < 3tq the argument is slightly different.

~43 -
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