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Equal Division Payoff Bounds for 3-Person Characteristic

Function Experiments

by
Reinhard Selten

A new descriptive theory for 3-person characteristic function games
will be presented in this paper. This theory of "equal division
payoff bounds" is based on the idea that players form aspiration le-
vels which are lower bounds for the payoffs they are willing to
accept in a coalition of two or three players. These aspiration le-
vels are derived from the structure of the game. They are based on
equal shares of coalition values and of increments of coalition
values. The theory takes the form of a hypothetical reasoning pro-
cess which looks at the players in the order of their strength. Con-
siderations based on equal shares determine lower payoff bounds

for one player after the other.

Equal shares of coalition values and the order of strength are
basic concepts which have been introduced in the framework of equal
share analysis (Selten 1972). In this respect, the new theory is

related to equal share analysis.

In the paper by Wilhelm Krischker arnd the author incliuded in this
volume a method has been developed which permits the comparison of
different theories for characteristic function game experiments re-
lative to a body of data. This methed will be applied to a sample

of 571 runs of three person games reported in the literature (Masch-
ler 1978 , Kahan and Rapoport 1974, Rapoport and Kahan 1975). The
results of the paper by Wilhelm Krischker and the author are con-
firmed inasmuch as the equal division core shows a better overall
performance than the bargaining set, even if power transformations
are taken into account. However, the comparison also reveals certain
weaknesses of the equal division core which are avoided by the new
theory.

1. Normed 3-person games

In a 3 person characteristic function game three plavers 1, 2, 3
can form one of several coalitions in order to divide a certain



payofi amount which depends on the
3 . coalition. In this paper we shall only
lock at 3-person games where a nlayer
who does not succeed to enter the
b C final coalition receives zero. Such
9 games are called normed. We use the

symbol ij in order to denote the two

1 b3 person coaltion of i and j and the

a symbol 123 for the grand coalition
a>b>c>0 of all three players. We restrict
g>0 our attention to two types of normed
Figure 1: Graphical J=person games: in games without the
representation of 3-per- grand coalition only the two person
son characteristic coalitions 12, 13 and 23 are permitted;
function games. in games with the grand coalition 12,

13, 23 and 123 can be formed. As indi-
cated in the graphical representation of figure 1, the amounts
available to 12, 13, 23 and 123 are denoted by a, b, ¢ and g,
respectively. Without loss of generality we can assume a>b>c.
If necessary, this condition can be achieved by a renumbering
of the players. We assume ¢>0 and g>O.

In the following the word game will always refer to a normed
d-person characteristic function game of one of both types in-

troduced above. A superadditive game is a game with the grand

coalition which satisfies the additional condition gza.

The games used in experiments are scaled in the sense that
there is a smallest indivisible payoff unit which also serves

as the unit of measurement for the payoff scale.

Sometimes it will be convenient to use the notation v (12}, v(13),

v(23) and v{123) for a, b, ¢ and g, respectively.

2. Egual division payoff bounds

In an intuitively obvious sense player 1 is stronger than
player 2 for b>c. Similarlly, player 2 is stronger than player 3
for a>b., We use the symbols * and ~ in order to express the re-

lationships "stronger" and "equally strong"”, respectively.



Our conventions of numbering the players permit the fol-

lowing orders of strength:

12253 for a > b > cC
123 for a > b=c
1%2~3 for a=b > c
Tv2n03 for a=b = ¢

A general definition of the order of strength for arbitrary
characteristic function games can be found elsewhere (Selten
1972) .

The order of strength has an important role in the theory of
equal division payoff bounds. The payoff bounds determined

in this theory have the character of aspiration levels.

In the tradition of limited rationality theory going back to
H.A, Simon, aspiration levels are lower bounds on goal va-
riables (Simon 1957, Sauvermann and Selten 1962). The reason-
ing process postulated by the theory of equal division bounds
determines such aspiration levels for one player after the
other following the order of strength. The aspiration levels
are called equal division payoff bounds or shortly payoff

bounds.

The payoff bounds of players 1, 2 and 3 will be denoted by U,
U, and Uy s respectively. We shall now introduce some auxiliary

concepts and some assumptions on the uj connected to them.

Coalition shares: Coalition shares are equal shares of co-

alition values. The coalition shares of 12, 13, 23 and 123

are a/2, b/2, ¢/2 and g/3, respectively.

Assumption 1: Consider a coalition C where 1 is one of the

strongest members, i.e. C contains no member stronger than i.
Then uy is at least as high &s the greatest integer which

does not exceed the cocalition share of C.

Substitution shares: Let i, j, k be the three players 1, 2, 3,
not necessarily in that order. We have v(ik) > v(jk) if and

only if i is stronger than j. For 1 & j the substitution of jJ
by i in jk yields a positive increment v(ik) - v(jk). This



increment is controlled by i and k. Therefore, we divide by 2
in order to define an eqgual share:

_ v{ik) = v(ik)
(1) ¢4 = 5

we call eij player i's substitution share with respect to j.

Assumption 2: For i &j player i's payvoff bound us is at least
as high as the greatest integer which does not exceed his
substitution share with respect to j.

Completion share: As above, let i, j, k be the three players

1, 2, 3,not necessarily in this order. Assume g > v(jk). If

123 is formed instead of jk the joint payoff of all players

is increased by the increment g ~ v(ik). This increment is
controlled by all three players. Therefore, we divide by 3 in
order to form the equal share (g-v(jk})/3. This number is call-

ed player i's completion share.

Assumption 3: Player i's payoff bound Uy is at least as high
as the greatest integer which does not exceed his completion

share.

Remark: Obviously, assumption 3 applies to games with the grand
coalition only. If such a game is not superadditive, then
(g-v(jk)) /3 may be negative. This does not matter since we

are going to assume that uy will always be at least 1. In this
respect, it is important to remember that the games considered

here are scaled. 1 is the smallest feasible positive payoff.

Assumption 4: Player i's pavoff bound u, is at least 1.

Remark: Our assumptions have the character of arguments which
can be put forward in order to justify lower bounds on a
player's pavoff. Later we shall introduce a general principle
to the effect that the highest bound which can be justified
by one of the arguments is player 1i's payoff bound uy - The
payoff bounds uy and U, of plévers 1 and 2 are already deter-
mined by assumptions 1 to 4 together with this general prin-
c¢iple. The only argument which wili be added to the four as-



sumptions above concerns player 3 alone.

Plaver 3's compefitive bound: In order to motivate this

concept it is useful to focus attention on the case of a
game without the grand coalition which satisfies the "tri-
angular egquation":

(2) - b+c>a

Moreover, assume that a, b, ¢ are positive and divisible

by 2. By assumption 1 we must have uy 2 a/2 and u, > c/2.

The substitution shares (a-c)/2 and (b-c}/2 of player 1

with respect to 2 and 3 cannot be greater than a/2. The
triangular equation (2) has the consequence that player 2's
substitution share (a-b)/2 with respect to 3 is not greater
than c¢/2. The general principle informally introduced above
yields u, = a/2 and u, = c/2. If 12 is formed player 1 will
receive at least u, and player 2 will receive at least u,.
Consequently, player 1 will receive at most a-u, and player 2
will receive at most a-u, = a/2, After these preparations

we now introduce the intuitive idea which leads to the de-
finition of player 3's competitive bound. In order to break
the natural tendency of 1 and 2 to form 12 player 3 has to
be prepared to offer each of them the maximum he can get in
12. In order to match player 1's maximum he has to be sa-
tisfied with b-(a—uz). In order to match player 2's maximum
he has to be satisfied with c—(a—u1). The lower of both numbers
is his competitive bound w:

(3) w = min [b-a+ 5, c- 3

Of course, w may be negative. In this case, player 3 has no
chance to compete with maximum offers in 12.

The argument given above is also relevant for games with the
grand coalition provided we have Uy = a/2 and u, = c/2. If this
is the case coalition 12 appears to be attractive since it has
the highest equal share and it is not unreasonable to look

at a-uy and a-u, as tentative upper bounds for reasonable

payoff expectations.



It can also be seen that it is not reasonable to apply the
same argument in modified form to cases with u, > a/2 or

u, > c/2. As we have seen assumption 2 has no relevance

for player 1. His payoff bound is determined either by

a/2 or by g/3. In the latter case, coalition 12 is not very
attractive and cannot serve to yield tentative upper payoff
bounds. If player 2's substitution share (a-b)/2 1s greater than
¢/2, the competitive bound w is negative anyhow, even if it
is computed with u, = (a=b) /2 instead of u, = c/2. If player
2's completion share determines his payoff bound, then 12 is
not attractive to him and cannot serve to yield tentative up-

per payoff bounds.

Assumption 5: If we have u, = a/2 and Uy = c/2 then U is at

least as high as the greatest integer which does not exceed the

competitive payoff bound w defined by (3).

Assumption 6: Player i's payoff bound is the highest lower

bound determined by one of the assumptions 1 to 5.

Formulag: It is now possible to describe Uy, U, and U, by
closed formulas. For any real number ) let int A denote the

greatest integer which does not exceed ).

(4) u, = int max [%, %, 1]

(5) u, = u, for b = ¢

(6) u, = int max (5, ak, 9;—‘:’, 11 for b > c

(7) uz = u, for a = b

(8) ug = int max [w, E%E’ 1]
for Uy = int % and u, = int % and a > b
with w = min [b-a+ %, c- %

(9) Uy = int max [E%E, 1] for a >b

together with u, > int % or u, > int%

The formulas also apply to games without the grand coalition,

if zero is inserted for g.



It 1s not difficult to see that (4) to (9) follow by assumpt-
ions 1 to 6 and that the numbers uy computed in this way sa-
tisfy assumptions 1 to 6.

Rounded payoff bounds: Subjects in experimental games must

be expected to form their aspiration levels at round numbers.
If for example c/2 determines player 2's payoff bound and

we have ¢ = 55, then we should not be surprised to observe
that he accepts a payoff of 25 in the final coalition. For
most of the experimental games in the sample considered here
numbers divisible by 5 can be regarded as sufficiently round.
Therefore, we define rounded paycff bounds r, as follows:

If uy 2 5 then r, is the greatest number divisible by 5
which does not exceed v, if us < 5 then r, = . This is ex-
pressed by (10):

Uy
(10) r, = max [1, 5 int §_]

for i =1, 2, 3.

Prediction: The theory of rounded equal paycff bounds makes

the following predictions:

(a) Tf there is at least one 2- or 3-person coalition C
with

(11) I or, ¢ viC)
ieC

then a coalition of this kind will be formed.

(B) If a 2- or 3-person coalition C is formed then the final

payoffs Xy will obey the following condition:

(12) x4 2 ry for every 1 € C

The final result of a game has the form of a configuration

(C1,...,Cm; Xqr Xgo x3) where C1""'Cm is a partition of the
player set into non-empty coalitions and X, X, and x, are

integer payoffs with



(13) L X, = v(Cj) for § =1,...,m
i€C,
J
and
(14) X 20 fori=1,2,3

In all practical cases prediction (A) excludes the coalition
structure where each player forms a coalition where he is

the only member. This is the formal interpretation of a result
where none of the 2- or 3-person coalitions is formed.This coali-

tion structure is called the null structure.

Since ry always is at least 1, prediction (A) also excludes
the formation of 2- or 3-person coalitions C with v(C) = O.

Prediction (B) excludes coalition structures with 2- oxr 3-
person coalitions C which do not satisfy (11}).

Limited ratiohality aspects: The theory of equal division

payoff bounds has some interesting aspects of limited ra-
tionality. First of all it portrays the players as satis-
ficing rather than maximizing. Their behavior is guided

by aspiration levels.

Second, players are not supposed to perform complicated com-
putations. They do not have to solve any systems of simul-
taneous equations. They add and subtract and divide by 2

or 3.

Equations (4) to (10) may convey the impression of complexi-
ty. However, the arguments which lead to these equations

are extremely simple. The apparent complexity arises from
the fact that different heuristic principles of aspiration
level formation are decisive in different cases. Actually,
in every single case the application of the theory is very

easy.

Experimental findings suggest that human decision behavior
is casuistic in the sense that it is based on complicated
case distinctions and simple rules for every single case
(Selten 1979, Selten and Tietz 1980).



Finally, it is worth pointing out that the theory of equal di-
vision payoff bounds does not involve the usual game theore-
tical circularity. One payoff bound can be determined after the
other following the order of strength. This kind of linearity
may be a typical feature of boundedly rational reasoning pro-
cesses.

3. Comparisons of predictive success

The method developed by Wilhelm Krischker and the author will
be applied to several theories for characteristic function

games including the theory of equal division payoff bounds.

Based on a body of data the method computes a gross rate of
success, the number of correct predictions divided by the
number of cases. A measure of the relative size of the pre-
dicted area is subtracted from the gross rate of success

in order to obtain the net rate of success. The measure of
relative gize weighs coalition structures equally and weighs
configurations equally within each coalition structure. The
precise definitions cannot be repeated here.

We shall concentrate our attention on four theories. For
the sake of shortness we shall use combinations of two capital

letters as abbreviations:

BS: The bargaining set withou: null structure and with de-
viations up to 5 (described in the paper by Krischker
and the author).

UB: ynited bargaining sets without null structure and with

deviations up to 5 (described below).

EC: Equal division core (described in the paper by Krischker
and the author].

EB: Rounded equal division payoff bounds.

United bargaining sets: Maschler has argued that in some

cases the bargaining set should be applied to certain trans-
formations of the original characteristic function called
power functions. He considered two power functions v, and Vo
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which in the case of games with the grand coalition can be
described as follows:

(15) v, (1) = [g-v(ik)}1/2
(16) v1(jk) = v{ik) + [g-v(jk}1/2

(17) v1(123) =g

(18) Vz(i) [g-v(3ik)1/3

(19) v, (3k) = v(ik) + 2[g-v(ik)1/3
(20) v,(123) =g

where i, j, k are the player 1, 2, 3 in any order.

It is not completely clear what predictions should be asso-

ciated with the bargaining sets of Vi and Vo It seems to be

appropriate to resolve this ambiguity in the following way:

(a) such predictions are made for superadditive games only,

(b) the prediction excludes two person coalitions ij with
v{ij) < g.

lLet B be the bargaining set without null structure for the
original game. Let By and 82 be the bargaining sets of v,
and Vs without the null structure and without the structures
excluded by (b). Define

(21} U=BUB, U B,

Theory UB predicts the set of all configurations
o = (C1,...,Cm; Xqr Xor x3) such that a configuration
g = (C1,...,Cm; Yqr yz,y3) € U can be found which sa-

tisfies lxi—yil< 5 for i = 1, 2, 3.

The united bargaining set cobtained in this way performs
petter than its individual components.
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4. Results of the comparison

The results are summarized by the tables at the end of the
paper. Table 1 evaluates the 27 cases of superadditive games
reported by Maschler. The united bargaining sets UB have a
much higher net rate of success than the ordinary bargaining
set; the gross rate is much greater and the area is only
slightly greater. The power bargaining sets are very small
since they exclude many coalition structures and have small

areas for other ccalition structures.

The difference between UB and BS is much less pronounced

for the experiments of Rapoport and Kahan shown in table 4.

The united bargaining sets UB perform a little better than

the equal division core EC in table 1. In table 4, however,
the net rate of success for UB is considerably smaller than
that for EC.

The equal division core does quite well in all of the tables
1 to 4 but it is inferior to the theory of rounded equal di-
vision bounds PB. It is worth pointing out that PB has the

smallest area in tables 1 and 2 whereas in tables 3 and 4 the

area of PB is greater than that of the other theories.

Table 5 shows the games I to V used by Kahan and Rapoport.
In games I, II and IIT the values of the 2-person coalitions
are relatively near to each other whereas in games V and VI

they are farther apart.

For a*b>c the equal division core excludes coalition 23. In
games I, II, III without the grand coalition this coalition
occurs sufficiently often even if it tends to be less frequent
than the other 2-person coalitions. As Rahan and Rapoport
pointed out this is probably due to the relatively small dif-

ferences between the values of the two-person coalitions.

Table 6 shows a poor performance of EC in the games I, II and
1ITI without the grand coalition. This is due to the exclusion
of coalition 23 by EC. For V, VI without the grand coalition EC
does guite well. The same is true for all five games with the
grand coalition. This can be seen in table 7. If the grand
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coalition is available the 2-~person coalitions become less

importortant

The new theory PB is guite successfull everywhere in tables 6
and 7. It achieves considerably higher net rates of success than
BS and UB for all five games with and without the grand coali-

tion.

Further investigations are needed in order to confirm the theo-

ry of equal division payoff bounds for a wider range of data.



Table 1: Maschlers 27 plays

of superadditive 3-person games (Maschler

1978)

BS UB EC PB
gross rate .59 .89 .85 .89
area .19 .20 .19 .13
net rate .40 .69 .66 .76

Table 2: Maschlers 51 plays

1978)

gross rate

area

success

Table 3: Games I to V without

Rapoport 1974)

gross rate

area

net rate

of non-superadditive 3-person games (Maschler

BS EC PB

.45 .78 .92
.32 .20 .20
.13 .58 72

the grand

coalition. 240 plays (Kahan and

BS EC PB
.59 | .58 | .95
.10 | .07 | .22
.49 .51 4 .73

Table 4: Games I to V with the grand coalition. 160 plays (Rapoport and

Kahan 1975)

gross rate

area

net rate

BS UB EC PB

.51 .55 .78 .94
-08 .08 11 .19
.43 .47 .67 .75
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Table 5: Coalition values for the games I to V of Kahan and Rapoport

Coalition

12 13 23 123

I 95 90 65 120

11 115 90 85 140

111 95 | 88| 81 | 127

Iv 106 86 66 124

v 118 84 50 121

Table 6: Net rates of success for the games I to V without the grand

coalition
BS EC PB
I|.57 ‘.44‘ .74
IT |.66 .46 .79
ITI | .64 .32 .77
IV {.35 .61 .68
v].22 .72 .71

Table 7: Net rates of success for the games I to V with the grand

coalition
BS UB EC PB
I .44 .45 1.59 .75
IT .52 .65 |.66 .84
III .45 .49 1.63 .71
Iv .42 .51 .73 .74
v .29 .28 .77 .74
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