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ABSTRACT

If a weighted majority game {not necessarily constant sum or super
additive) is described by the weights (voting strength) of the players
involved and a majority level, then it is desirable to know whether the
game is in addition homogeneous. The paper provides a recursive procedure
defining a test for homogeneity. This procedure involves the computation
of a number theoretical function, the "matrix of homogeneity". If this
matrix is known all majority levels with respect to which the given set
of weights represents a homogeneous simple weighted majority game are
known at once.



INTRODUCTION

Let o be a finite set ("the set of players") and 1;@2) the power set
of @ ("the system of coalitions”). A simple game is a mapping

v : R(e) » {0,1}, v(@) = 0. A coalition S eR (@) is winning if

v($) = 1 and loosing if v(S) =0 . -

A measure M (nonnegative additive set function) defined on P(a2) (which
is completely specified by the numbers M({w})meg ) together with a real
number 1,0 < A < M(g), induces a simple game v via

1 M(S) > A

v{S) (S eR(2))

0 M(S) < &

or, for short v = 1[A,M(Q)] oM (1F is the indicator function of a set

F), and we call v a weighted majority game if a representation by some
(M,2) exists at all. In this case, M({w}) {is the voting strength or
weight of player w € @ and A is the majority level: once a coalition

can muster sufficient total voting strength in order to exceed the majority

level X it is winning.

A weighted majority game is called homogeneous if there is a representation
(M,2) such that all minimal winning coalitions have exactly weight .

These terms (with slight modifications) were introduced by von NEUMANN-
MORGENSTERN [ 6 ]. Weighted majority games and in particular homogeneous
games were studied by SHAPLEY (see e.g. {14], ISBELL (e.g. in [1]

[ 2] { 31), and PELEG ([8 ] [9 ]).

If "dummies get zero voting strength" (see [ 9] [10]) and the game is
superadditive and constant sum (v(S) + v(S¢) = 1 for all Se€P{a)), then
the game is uniguely represented by M and A (up to a scaling factor,
see [ 9] [101). In this case, M and A are necessarily rationals (or,



by suitable scaling nonnegative integers).

In addition, M 1is nondegenerate with respect to A (i.e., uniquely

determined by the minimal winning coalitions, see [12] [13]). Also,
nondegeneracy may replace the constant sum property in order to ensure
uniquenessi thus, a homogeneous nondegenerate representation, if it
exists, is the only nondegenerate representation.

The above mentioned uniqueness theorems always yield nonnegative integer
representations (after rescaling). As a nonnegative integer representation
always exists, we shall restrict our discussion to the case that both,

M and A take only nonnegative integer values.

More recently OSTMANN [ 7 ] has proved that there is a unique nonnegative
integer representation for any homogeneous weighted majority game (constant
sum or not)having minimal total weight M(R) (the smallest committee
representing a homogeneous parlament). This author studies the incidence
matrix of the minimal winning coalitions in order to derive his results.

The relation between homogeneity and nondegeneracy seems to be intricate.
Both properties allow for a wide class of solution concepts, see e.g. (101,
both seem to resemble properties that are usually attached to nonatomic
measures on a larger measure space and both seem to have common number
theoretical roots (see [11]). As to the solution concepts it should be
observed thatthe intensively studied case of symmetric games (M is
uniform distribution) (see e.g. LUCAS et.al. [4] , MUTO [5], can of course
be summarized under the homogeneous as well as under the nondegenerate

gqames.

The aim of this paper is to provide a recursive test for homogeneity.of (M,1).

a sense,this implies a method of computing all homogeneous games. Frequently,
given some committee or parlament, the weights of the players (members of the

In



groop, parties of the parlament) are specified, thus a weighted majority

game is given. However, in order to test whether the representation is homogeneous
one has to find all minimal winning coalitions and check whether the

voting strength exactly equals the majority level - a rather tedious

procedure.

The present procedure is much shorter (and easily converted intoc a computer
program). Let M be an integer valued measure we first classify players
according to types (some players may have equal weights). Depending on the
distribution of players over the types, the "matrix of homogeneity" C = C(M)
is specified (section II). This is a number theoretical function which may

be computed recursively (section III). If C is known, we immediately obtain
all majority levels 1 such that (M,A) represents a homogeneous game. In
fact C yields at once all homogeneous »nairs that are obtained by
restricting M to a smaller set of types and specifying suitable majority
levels. Thus, C completely describes the homogeneity properties of M.

A few notations: rag and rveg denote the min and max of rationals or
integers r,s respectively; [r] is the greatest integer smaller than or
equal to r ; |S| denotes the cardinality of a set S and, finally,

N of course denotes the set of natural numbers.



§ 1 Admissible levels

For r e N, let

If ge N, and k= (kp,....k,) € N, then the pair (g,k) induces an
integer valued measure M as follows.

Fix a finite set @ such that fjo| =k; +...+ k. and let

be a decomposition of @ into disjoint subsets Ki such that |K1| = ki

(i =1,...,r) ("+" replaces "y" in case of a “disjoint union"). For any
Sca define

r
M(S) := = [SnK g

i=1

thus
M:R(e) >N v{0}

is specified.

On the other hand, an integer valued measure M on a finite set @ dinduces
a pair (g,k) for suitable r (points of measure zero being ignored}. As all
properties if integer valued measures we want to deal with do not depend on
the particular choice of the decomposition, we shall say that (g,k) and M
correspond to each other and frequently use M and {(g,k) synonymously.
Sometimes we shall write Me W' if (a,k) € N:' x N,

Definition 1.1. M e “® " is said to be homogeneous with respect to
A€ N (written "M hom A" or "({g,k) hom A"} if



(1) M) > 2

(2) for S C @, M(S) > A, there is TcC S such that M(T) = A.

In addition "M hom, A" means that either M hom x or M{Q} < i .

In the framework of cooperative game theory, @ is the “set of players",
Ki contains the "players of type 1" and 9; is the "weight" or "voting
strength" of players of type 1. If a coalition S < @ has sufficient
voting strength in order to exceed the "majority level" X then it is a
winning coalition; the corresponding game is represented by the function

v iR (a) 10,1} , v = l[A,M(Q)] o M

(1F js the indicator function of F) and a coalition Sca is winning
or loosing according to whether v(S) =1 or v(S) = 0.

In this framework, M hom A means that minimal winning coalitions have

exactly a total weight of A.

Lemma 1.2. Let M e W€ Y If M hom A, then there is io € {1,...,r}
and ce€ N, 1<c<k; such that

0

"
(3) A=c¢g, + ks g
To =il 1

Proof: Choose io € {1,...,r} such that

r r
(4) T ki:igi<i< T kiG:
s i =i = . 2 i
1—10+1 =1
r
and let se T ki 93
1=10+1
5 c =
(5) 5



If [e] <c, then

r
(6) lelgy + 2
;

In this case, the right hand side of (6) defines a set T C Q@ the elements

of which have at Teast weight g; - Removing one of these elements will
0
cause the measure to fall below of i » contradicting homogeneity, Thus,

[c] = ¢ and (3) follows at once.

For dgsrss €N, i <r<s and (g,k) € N x N let us use the

notation

(7) Ay 1= A? =4S r.(Q,k) =C g, + z k
o,

whenever ¢ ¢ N, C < ki . The number k? depends only on (91""’9r;
0 c
kl""’kr)’ the first r coordinates of (g9,k) € Ni x N (and of course

not on the first 10-1 coordinates).

Sometimes, however, it will be preferable to slightly change our view-
point; thus A? v is regarded as a function defined on a suitable
03
subset (k. > c) of
iy =

UNixNS
s=r

The numbers A? are the only candidates for majority Tevels such that
0

Mewel i possibly homogeneous. Also, a number A? suggests a minimal

0
winning coalition (c players of type io and ki players of type i ,



i= 10+1,...,r). If we remove these players, then the remaining ones
are commanding weights as represented by

(8) (Gqsee-sT: 3 Kosuuusks _15 ki =€) .
1 10 1 10 1 10

The measure corresponding to (8) is denoted by M? ; this quantity

0
may be visualized as a restriction of M onto K, +...+ K. 4+ D
0
where D C K, is a subset of size |D| = (k; -c). Thus
0 0
i -1
c 0
(9) M ()= I Ik;ns| g+ [Das) g,
0 i=1 0
In particular K
i
My o o= M. = (Qqseees 9 _q 3 kyseeasks 1)
iy 1 iy 1 i, 1 1 i, 1

As a notational convenience, m will always denote the total mass of M ;
thus

j=1 1017
(10) = 12_1 K: g, + {k: =) g: »
10 i=1 1 1 10 10
10-1
LIS

etc.

Lemma 1.3. tet Me ™ " and Mhom a € N. Also, let i ed,....r}

and c € {1,...,k1 } be such that »x = A? . Then
0 0



c
M1.0 hom0 g.i

for all i ¢ {io,...,r} .

Proof: Assume ¢ < ki , the case ¢ = ki is treated in the same

way. 0 °

Pick i€ {i_,...,r} such that mS > g. and let
0 i, i

T=A+ Kio+1 +...+ K

be such that M? lives on Q-T .
0

Assume that there is Sca -T,

C
MiO(S) > 95

then w.1.q.

(11) M (S) - gi < g,
'I0 'l-—-'IO

Next pick w € K; (i.e. M{{w}) = gi) then

M(S+T-{w}) = M5 (S) + M(T) - g; > A
0
and as M hom A, there is R C S+T - {w}, M(R) = A. In view of (11} we
may assume that R = S$'+T - {u}, S' C S .
Therefore
M(T) = A = M(R) = MZ (S') + M(T) - g,
0

which implies M§ (s') = g; » g.e.d.
0
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Theorem 1.4.  Let {g,k) € n: x N° and M=

n o =
—

i 'nK-i] 9;
be the corresponding integer valued measure on
= K1 +.. .4 Kr . Also, Tet 2 € N, » < M(p) =
Then i=l

LU e M
=
—
]

M hom A

if and only if there is io € {1,...,r} and
c € {1,....,k1 } such that

0
c r
(1) A =X =cg; + I k: 9.
Yo o d=i 41 1T
c .
(IT) M_io hom, g, (10 <di <)

Proof: It is sufficient to verify that conditions (I) and (II) are
sufficient in order to obtain M hom i .

Suppose, there is T c q such that

-
(12) M(T) > 2 =2 =cg, + I kig,
0 o i=1 +l

Now, remove all players of type r from T (say tr)’ then remove all

players of type r-1 (say tr—l)"" etc. Finally, remove all players

of type io but at most ¢ from T (say ti < c) . The remaining
0
set is called T' and the procedure induces an inequality

r
0 o i=i +l

Now because either all players of type io or ¢ of them were removed

from T, there are at most ki - ¢ players of type 10 left in T'
0
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Therefore (13) reads in fact

MS(T') > !
0

Because of (II), there is S' ¢ T' such that

If we now add ti players of type io to SI""’tr players of
0
type r to S' , we obtain a set S of exactly measure 2, gq.e.d.

Remark 1.5. The following interpretation of Theorem 1.5. is offered.

M hom X is equivalent to the existence of a minimal winning coalition
consisting of all "big players" (i > io+1), some "medium players®

(i=io) and no "small players" (i < 10-1), this coalition having exactly
weight A, thus

The distribution of voting strength or weight over the remaining players

is indicated by M?
0

Whenever the total weight of all the remaining players exceeds the weight

of a player already involved (m? > 9. (1 3_10)), then M? hom g4; > i.e.
0 0

any coalition mustering more weight than a player of type 1 may exactly
replace him within the original minimal winning coalition.
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§ 2 The matrix of homogeneity

Theorem 1.4. allows for a closed description of levels X with respect
to which a measure M e T s homogeneous. We know that X has to

be of the form Ag and we want to specify the range of integers ¢
0
such that (for fixed io) M hom A?
)

Lemma 2.1. Let WL 3 M hom A? for some 10 <r . If ¢ < ki
1 0 0

then M hom A$+
0

Proof: M?+1 is a restriction of M? and we have
0 0
c+l C
m: " =m; - q,
To o o
Hence, if m?+1 > g. for some 1€ {i_,...,r} , then me > g. and
i, — 7 0 iy i
M? hom 95 by Theorem 1.4.. Clearily M$+1 hom 9; holds true a fortiori.
0 0

Thus, the lemma is a consequence of Theorem 1.4..

Definition 2.2. Let io’ rsa s ¢ N, io

For (g,k) € Ni x N° let M_ec " correspond

to (gl,...,gr : kl""’kr)’ the first r coordinates of (g,k), and put

C

5 =] (9 s kpeeak) =8 (goK) (Le <k )

0 0 0 0

Define

(1) c; = CF (g:k) :=min {ceN| 1 <cC < ki > M. hom A? T
0 To 0 0

r
1.o
but is frequently appropriate to consider C: as a function defined on

0

The quantity ¢ depends only on the first r coordinates of (g,k}
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o]

U N ok N
s=r

and taking values in N U{«} {min § = «»!), Clearly, if c? is finite,
then M_ e W " satisfies 0

Mr hom A?
)

for c? <C< ki ; thus the numbers c: (1 <i_ <r) completely

-0
] 0 0
describe the homogeneity properties of Mr . Changing our viewpoint

slightly, for (g,k) € Ni x N° the (triangular) matrix

(2) C = (e} Nipes = C (95K)
I{f;ir

describes the hom-properties of (g,k) and of all initial sequences
(gl,...,gr H kl"""kr) of {g,k); thus (2) is called the matrix of
homogeneity (the hom-matrix) of (g,k).

The following are simple properties of the hom-matrix.

Lemma 2.3. For (g,k) € Ni x N°, we have
r . .
(3) c; <= iff M, _; hom, g, (1-10,...,r) R
0 0
r 1 .
(4) Cr = o according to whether M._1 hom g, or not.
k;
Proof: (3) is obvious as el <o is equivalent to M. © hom g. (i=1,
iy 1 0 i
_—_— . F' s, psse. =
(4) follows for 1, =r since ¢ is finite iff Mr-l hom, g,

which is easily seen to imply M~ hom, g. for all c, lcc<k. .

veesl)s
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Lemma 2.4. For {g,k) € Ni x N° ,» i <r<s and te N

0
(5) AS (ta,k) =t A% _ (gk) {(l<c<ky),
igsr Tyl ==,
(6) CI (tg.k) = CI (g,k) .
0 )
Proof: Obvious. The lemma conveys the meaning that we may always
assume  gqs...59, (or 91""’95) to have greatest common
divisor 1.
Lemma 2.5. For (g,k) € Ni x N, ioi r<s
(7) T (g,k) = €5 (g3 Kyaeernks s 1,...,1)
.lo -Io L] 1 -Io L] ]

Proof: Observe that statement II of Theorem 1.4. does not refer to

the numbers ki +1,...,k

0 r

Lemma 2.6. Let (g,k) € N} x N° and i <j<r<s. If
m1.0 < gj » then
(8) ¢ (g:k) = €371 (gaennagyy 5 Kpaeeakyy)
0 0
Proof: Follows again from Theorem 1.4., since m1.0 < 9; implies
m?o <95 (Lzc f_kio) and thus M?O homg g5 trivially.

The simple properties of the functions C° as indicated by our previous
lemmata of course reflect certain features of the corresponding (homogeneous)

games. For instance, in the situation of Lemma 2.4., assuming C? (g,k) is
0
finite, pick ¢ € N, c? <c<k; and M € W€ " and consider the

0 o
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the game represented by v' =1 c o M. . Now in this game, a
Ay »m.]
0
player of type j (and those with larger weights) is inevitable; he

is a member of every winning coalition.

r

We may obviously remove all these inevitable players, that is consider

Mj-l , take A? j-1 (g,k) = l'? as the majority level and study the
o’ 0

oM.

function v j—l] jo1

A1l winning coalitions of the first game (vr) are obtained by taking
all winning coalitions of the second one (va'l) and adding all

inevitable players.

0f course the same game is obtained by reducing the weight of every

inevitable play to, say, m. 1 . This fact may be reflected by a
0
formula which, analogously to (8), reads

r _ed )
(9) ci0 (g,k) = Cio (gl,...,gj_l, m10+1 : kl,...,kj_l, kj toot k)

Remark 2.6. Let us write for (g,k) ¢ Ni N, 1<j<s:

(10) jel; Gff g | gy or kjo; <oy

It is then verified by 1.4. and 2.3. that the case r =2 1is extensively
treated by the following formula.

[ 1 2 € Il
2 _
c2 = .
© otherwise
2 1 2 e I1
cp =

K - L otherwi
1 ng] otherwise

(the case r =1 is trivial; ci = 1).
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§ 3 Rekursive computation of C

During this section we shall tacitly assume that

(g’k)ENiXNS and 'ioiris,

For i_<r , put

0
ro_.r s
(1) v; =T; (g,k) = min fcjl<c <k, M hom g}
0 0 0 0
such that
(2) c? = c?-l v y?
0 0 o

follows immediately from Theorem 1.4. and Definition 2.2.; this suggests
a recursive computation of the matrix (or function) C. (For io =r,

CE is recursively specified by Lemma 2.3.).

Let us use the notation

3 1 %
( ) -ij L ["g-:l:_]
-
(1 iel
() s :
k1 - 111 otherwise
(i<J=<s)
Lemma 3.1. For r>1
r r-1 r
C1 = ¢ v 11
(5) = max 11 =
i=l,...,r

(max ke = T75) v 1
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Proof: The Temma follows from (2) since, for r > 1,
YE =min {c | 1<c <k Mi hom, g,.}
=min {c | 1<c <k 9y | g. or (ky-¢) gy < 9.}
- 1" |
= 11
Lemma 3.2. Llet 2<i <r-1.If m <gq ,then c. =ci?
h = 0= ' i r’ i i
0 0 0
The proof is trivial: for 1 <c¢ <k, we have m? <g,. and
0 0
c r
M; hom_ g., hence vy. =1.
'10 o °r 'IO
Lemma 3.3. Let 2 5_10 .
1. If M, _, hgm_ g. , then
101 0,
.i
"
C. = = C. = ©
i, i
2. If M; ,hom g. and g, | g_ ., then
iy 1 07, i r
=it (i, <r- 1)
0 0
ro_ .
c; =1 (ig=1)
0
Proof: The first statement follows immediately from Lemma 2.3. and the
recursive formula (2).



As to the second statement: the case i
means of Lemma 2.3. while the case i

- i8 -

n

r 1is again treated by

0
<r -1 1is delt with by

o

observing that M, hom, g; and g, ] g, implies that

G
0

0 0 o

r —
homo 9y s (1 <cx< ki ) , and thus vy, =1.

o 10

In order to state the next lemma let us introduce the quantity

(6)

Lemma 3.4.

Put

(7)

Then
(8)

Proof: 1st Step:

"for 1<c f-ki and 9y > (ki - c) 95 the statements

Let 2 i.io <r- 1.
Assume, in addition

Mio'l homo gi > 91 { grs mi z gr

r .

1, :=min{t]|]0<t<T, , 1, -k, +1<t,

i, = 7= i tigr i =

M, . hom (tg. +a%)}.
i 1 0 i, i
r-1 r

C; =¢: vt + (ks -T1: )

o To To o To"

(Note that 12 = » is feasible).
0

o 0 0

M?D hom0 9,

We are going to show that the following holds true:
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and

(10) M. . hom g - (k; -c)g.
T 1 o Ir iy i,

are equivalent".

Obviously, it is sufficient to prove this under the additional assumption

that m. >g. - (k. -c)g; , in other words, we may replace “hom "
10-1-— r iy To 0
by "“hom" in (9) and (10) and then show that both versions are equivalent.

Assume first that (10) holds true. We want to establish (9).

To this end, et Sc o be such that M? (S} > g, » i.e.
0

M _4(S)) +tg. >g. ,
10 1i‘7o 1O r

where S0 contains only types < 10 -1 and t E.ki -c. Clearly
]

Mi -1 o) > 8~ T gy 290 - (ky - <) g,

0 0 0

Therefore we may apply (10), thus finding TO EZSD such that
M. . (T)=g9.- (k; - ¢c) g,

i 1'% r Ty T
Because of

My _4(S,-T)) > g, -tg: - (9.~ (ki -c)g;)=((k;-c)-t) g
10-1 0 0 r 10 r 10 10 10 10

we may use the fact that Mi 1 hom0 9; holds also true (by hypothesis of
0 0
the present Temma), thus, there is R C S, - T, such that

M-io_l (RO) = ((kio -c) - 1) g.io
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. c
As R0 + T0 C S0 and as, by construction, M1.0 (S - SO) =t gio , the set

T: Ro + T0 + (S - So)

satisfies

-
o
——
—
—
§

=My Red My 4 (Ty) + tgy
0 0 0

((k; -c¢)y-t)g., +4g, - (k: -¢)g, +tg.
i, i r i, i i,

_gr ’

which proves (9).

In order to prove the converse direction assume now that (9) holds true.

Let 5, a (only types <y - 1} be such that Mio—l(so) > g, - (ki -C) 9;

o o

Using the fact that Mio'l hom0 gio » we find T0 - S0 such that

(11) g.- (ki -¢c)g, <M _(T)<g - (ki ~c=-1)g;
r 1, i, i, Ito r 1 i,

(remove appropriate multiples of 9, from S0 ; the first inequality in
0
(11) is w.1l.0.g. strict for otherwise the proof is already completed).

Now

Mo . (T)) + (ki -¢)g. >4
10 1V o 10 10 r

and this suggests a set

T := T0 + {ki - ¢ elements of type 1.} c
0

having measure M? (T) > ¢
0

ro In view of (9) we may construct RC T such that
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¢ =

(12) My (R) =g,
0
that is ,
Mi o RO)+tg. =g,

-l Mo i, r

where R C T, and t<k; =-c.Now, t<k; -c cannot occur, for
0 0

this would necessarily imply that in view of (11)

C
Mi (R <My g (Toh (kg me=1) g5 <9

a contradiction to (12). Hence t = (k
Mio-l (Ry) = 9y, = (kj - <) gy
As R _c T cC So . we have verified (10) and the first step is compieted.

2nd Step: By definition we have

r . c
y; =min {1l <c <k, , M hom g.1.
i, i i, o°r

Now, in case that ki > ]i . holds true, it follows that
0 0

c
M1.0 hém 9

whenever 1 <c <k, -1y .3 this is seen by converting the Tast
0 0

inequality to (ki - ) 9; > 9y and recalling the definition of Mg

0
Hence .0 0

| A . C
y; =minfc|l<c<ks »ce2ky -1 M

hom_ g} .
r
0 0 ) 0 0 0
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Applying the result of the first step, we may write

Y: =min{c | l<c<ks,c>ki - 1
0 0 0 0

Mio-l hom, g,. - (ki - ¢) 95 } .

Introducing t := ¢ - (ki -1 r) we obtain
0 ¢}

r .
y. =min{t | 1; -k, #1l<t<l; ,t>
i ir iy igr
M. hom g + (t-1. )g; 3+ (ki -1,
i, 1 o 7r igr’ 7, o o

which implies (8) by definition of 4% g.e.d.
o

Theorem 3.5. Let (g.,k) € Ni x N° . Then c% =1 and for

. roo . .
igsrss,r>l,c s recursively obtained
0

by the following diagram:



1'0>
m- > g
10— r
M. _q hém_ 4. M. _; hom
101 0 1, 1
v}
r-1
. v T +(k -1 )
10 10 10 1r
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1

r-1 r
. 1
iy 1
r
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Remark 3.6. The iterative procedure indicated by Theorem 3.5. involves
several tests of the type

11 1]
M g hom g; or not
where the matrix elements (c.

) AR
i 1< <, 1

are known by induction.

Generally speaking, if the matrix elements (c:.")1 < i <y are known, a test

"Mr hom »  or not"

k

g. 1is performed as follows {of Lemma 2.2.):
g ror

[$I e Bl 1

for 0 <x<M(q)-=
d i

1. Choose io € {1,...,r} such that

r r
I k;g:<x< I k:g
_ i ¥ RS B
1—10+1 i=ig
2. Put r
A - T ks g
i=i 41 '
0
¢ i=
9
0

If ¢¢ N, then M_ hgmx .

3. If c €& N, then Mr hom » if and only if

r
C_>_C_i
0

Remark 3.7. Theorem 3.5. together with Remark 3.6. provide the required
test for homogeneity.

In addition, if M (or (g,k)) ranges through some bounded subset of V¢ ',

then all homogeneous games generated by these subsets may be described by

listing (g,k), C(g,k), and A% _ (g.k) (1 <i_<r,ct <c<k; ).
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There remains, however, the following problem. A homogeneous weighted

majority game may have several representations, Thus, if M

is given

and test that M hom » has been performed with a positive result -
how do we test whether (M,%) is the minimal representation as studied
by OSTMANN [ 7] ? What is a procedure to generate this minimal re-
presentation? Once this gap can be closed, a complete and unique
description of all homogeneous games is at hand.

Example 3.8.

For r =3, the matrix C can be described in a

rather closed form. We have

P - i - .
c{ =  max 11 o= 1,2,3
i=l...p
2~ 2w otherwise
3 _
Cy =
2 I or 3 £ 1 2e¢l; and 3¢l
My > 95 My < 93
9, | 95 9 | 93
1
3
My h¢m0 Ag Ml homo 45
m, - g
? 3] + 1 lv (kz - ]23)
92
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1. My < 94
or
=1 if 2. kg9 < 93 <M 91 | 93 - ko8 5 (2€1; or g3 2 my-T5p0)
or
3, 93 < KpBps 9y | 93, 2 € 1)

and ¢} = 0 otherwise. E.g., if g = (2,5,11) and k = (2,kyeky) with

kz.i 3 and k3 € N arbitrarily chosen, then

Thus, for ¢ = k,-1, k, and xg = 5¢ + 1lky the pair (M, A7)

= (2,5,11; 2, kz,k3; 5¢ + 11k3) yields a homogeneous game.
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