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Abstract

The paper investigates a Bertrand m:ovo_& in which the two firms have differ-

ent linear technologies. The government can either set a tax per unit of pollution or

distribute tradeable licenses to pollute. The optimal emission tax as well as the opti-

mal number of permits are characterized dependently on a critical damage parameter.
Although the social optimum cannot be implemented and a comparison between both
policies is ambiguous in general, for a wide range of parameters, the tax policy leads to
higher welfare. mosmcﬁ, the social ov:i:i can be implemented always by combing

licenses to vo:c.eo with mcv&&& on output. (JEL: L13, L51, Q28)
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NEES:::R&%:;%

Die Arbeit untersucht ein Bertrand-Duopol, in n_.c:_ die beiden Firmen verschiedene lin-
care Technologien besitzen. Zunichst sel angenommen, die Regierung kénne entweder
cine Emissionssteuer erheben oder eine Anzahl handelbarer Emissionslizenzen an dic
Firmen verteilen. Die optimale Emissionssteuer wird ebenso wie die optimale Anzahl
von Lizenzen in Abhéangigkeit von einem kritischen Schadensparameter charakterisiert.
Obwohl im aligemeinen das soziale Optimum durch keine der beiden Politiken erreicht
werden kann, und ein Vergleich beider Instrumente nicht eindeutig ausfallt, fiihrt das
steuerliche Instrument fiir ejnen groflen Bereich von Parametern zu héherer Wohifahrt.
Jedoch kann das sozjale Optimum durch Emissionslizenzen in Kombination mit Sub-

ventionierung des Outputs erreicht werden.

1 Introduction

The question of how to regulate polluting firms by decentralized mechanismns is not

- only of theoretical interest but it also is a political issue of increasing importance in

many countries. Whereas in the United States markets for licenses to pollute have been
created on different regional levels and for different pollutants, in Europe, especially in
Germany, the majority of those politicians who care the most about pollutien control
apparently do not like the idea of tradeable permits, but rather prefer to impose emis-
sion taxes. Economic theory teaches thal this debate is void as long as markets are

perfectly competitive and the environmental jurisdictions have sufficient information

about the firms’ technologics, consumers’ demand, and about the social damage gen-

erated by the pollution. Under those assumptions, charging the optimal emission tax
or giving out the optimal number of licenses yields the same outcome (see for example
BaumoL and OATEs {1988, and SPULBER (1985] for long run considerations). In a
series of papers, WEITZMAN [1974], ADAR and GRIFFIN [1976], and FisHELSON [1976)
demonstrated that this equivalence result does not hold under imperfect information
about the firms’ technologies or the social damage. Either of both tools may lead to a
higher welfare, contingent on the economies’ parameters.

Where firms do not behave as price takers, on the other hand, investigation of
pollution control has been widely neglected so far. Just recently ULPH [1992] considered
a two country model where the governments could impose individually different taxes
or quotas on :.6:. only firm. The two firms compete a la Cournot or Stackelberg.
EBERT [1992] 5<@m$w§nm uniform taxation of pollutants when firms engage in Cournot
competition. He showed that the optimal tax yields the social optimum if the oligopoly
is symmetric. Decentralizing tools like permits or Pigouvian taxes, however, start to
display their power if firms are different, since otherwise uniform standards work quite
well. REQUATE [1992] showed thal Pigouvian taxes are in general not efficient under
Cournot competition if firms have different linear technologies, moreover, that permits

and taxes may yield quite different ontcomes even under perfect information. Since



ﬁx..:::; competition is relatively soft, the inefliciency result should not surprise, for, it
is well known that-a high cost firm which would drop out under tough price competition
may still operate under softer quantity competition. Therefore, it should be clarified
whether the equivalence between permits and taxes can be restored under tougher price
competition. .

For this purpose we consider a duopoly of price setting firms which have different
constant _:E.mm:w_ costs and also emit different amounts of pollution proportional to
output. Welfare is separable into consumers’ gross surplus, social damage from the
pollution, and the firms’ production costs. First, we consider a situation where G.m
government may regulate the firms by imposing an emission tax per unit of pollution or
by giving out a number of tradeable emission permits. The pollutant is generated by no
other industry, a market for permits will therefore be thin. The social damage function
depends on aggregate emissions and an exogenously given damage parameter which
mmom::wwmm the steepness of that function. .‘We completely characterize the optimal
emission tax as well as the optimal permit policy contingent on the firms’ technologies
and the damage parameter, and then we investigate and compare the welfare properties
of the two policy instruments.

| It turns out that in general neither of those two instruments can enforce the
social optimum. However, the tax policy can implement the social optimum when it
is socially optimal that only the low private cost (but high vozcso:v,?:u or only the
high private cost (but low pollution) firm produces. The reason is that an emission
tax has a direct impact o.: the firms’ total unit cost and almost always induces one of
the firms to rw,,\m a cost advantage after taxes. Hence only the lower total unit cost
firm produces under the standard assumptions of the Bertrand model. On the other
hand, the firms’ technologies may require both firms to produce in social optimum
for a certain interval of damage parameters. In particular, if the damage parameter
increases, production will be shifted continuously from the low private cost to the
high private cost (but less polluting) firm. This continuous shift, however, cannot

be induced by the emission tax. Despite of this shortcoming, the emission tax turns

out to be much more effective under Bertrand competition, investigated here, than
under Cournot competition, which was treated in REQUATE (1992). There it has been
demonstrated that the socially inefficient firm could not always be held out of the
market by the optimal emission tax.

Under permits, there may be three critical intervals of damage parameters, The
low cost firm produces if social damage is small, production will be shifted continuously
from the high to the low pollution firm as the damage parameter increases, and only the
high cost (but low poliution) firm produces if social damage is sufficiently high. This
structure is very similar to the socially optimal allocation, However, since the firms care
about marginal revenues rather than consumers’ surplus and marginal damage caused
by Szm pollution, the critical intervals of damage parameters where under permits
only firm 1, both firms, or only firm 2 produces, do not coincide with those in social
optimum. Typically, the low cost firm produces too much, and the high cost (but less
polluting) firm produces too little under permits. In contrast to the tax instrument, the
optimal number of permits to be given out is not affected by the kind of competition
the firms engage in. This is due to the fact that firms are naturally capacity constrained
if they hold a certain number of permits and have linear technologies. Hence, price

~competition turns into Bertrand-Edgeworth competition under permits. This requires
some rationing rule. If we now employ the common efficient or nwrmcﬁ rationing
rules!, Cournot and Bertrand-Edgeworth competition yield the same allocation under
the permit policy.?

It follows that the emission tax is not sonmm. and often strictly superior to the

permit instrument for a wide range of damage parameters, in particular for those

! Random rationing is sometimes also referred to as proportional rationing in the literature. It
is taken for granted that those concepts are well known. Otherwise see for example Tirole [1988],
Chapter 5.3.1.

*This result is reminiscent of the KREPS~SCHEINKMAN [1983] result which yields equivalence of
Cournot and Bertrand-Edgeworth competition if firms choose quantities first, then prices, and the
efficient rationing rule applies. By S.s&zm permits first and engaging in price competition thereafter,

our model has a similar structure.



which require only ene of the two firms Lo produce in social optimum. However, the
superiority of taxes does not hold for all constellations of nw_.m_:.ormwm. We.will present
an example with extremely asymmetric firms where optimal regulation by permits
yields a higher welfare than optimal taxation.

Finally we allow the government to give out permits to pollute and at the same
time to subsidize output of the marketable commodity. We show that this policy
can always implement the social optimum if the optimal subsidy rate is paid and the
optimal number of permits is given out.

Altogether, this paper and REQUATE [1992] show that under imperfect compe-
tition the optimal choice of decentralizing instruments of pure pollution control, like
taxes on emissions and tradeable permits to pollute, depends very sensitively on the
degree of social damage caused by the pollution, on the one hand, and the industry
structure, :E.a is, the firms’ asymmetry and the special way of competition, on the
other. Subsidies on output, in many real situations correctly under political attack,
turn out to be quite useful if combined with tradeable permits to pollute.

We proceed by setting up the model in the following section. In section 3 we
briefly consider the social optimum. Section 4 characterizes the optimal Emocipa,
emission tax, section 5 the optimal number of permits, both as a function of the social
damage function’s steepness. In section 6 we compare both policies with respect. to
welfare. Section 7 considers subsidies on output combined with permits to pollute.

Section 8 offers a summary and conclusions.

2 The Basic Model

Throughout this paper we consider a duopoly with firms i = 1,2 setting prices D1,
p2. We start from a bounded downward sloping inverse demand function P, where
pi= P(0) is the choke off price. Assuming P’ < 0 on its support we can define demand
by D = P~ for all p € [0,5] and D(p) = 0-for p > p. Further we assume that P is

nol too convex:

Assumption 1 For all > 0 with P(g) > 0: P"(q) < 2'(q)/q.

The upper bound for P” js sufficient to guarantee the second order conditions for
profit maximization of a monopoly. Both firms have constant marginal costs ¢; and c,

with (w.lLo.g) & < &2 < 5. To determine the firm’s demand we follow the standard

Bertrand model: If firms charge prices p; and pq, firm #'s demand is given by

Dpi) i pi<p;,
Di(pi,p;) = D(p:)/2 if pi=p;, (2.1)
0 if pi>p;- .
This definition reflects the implicit assumption that consumers are m_iwwm perfectly
informed about the prices, that they always buy at the cheaper firm if prices differ,
and split up equally if prices are alike, and the firms are not capacity constrained. The
firms’ demand functions will be different if we consider regulation 3. permits, which
naturally impose capacity constraints on the firms. This leads to Bertrand-Edgeworth
rather than Bertrand competition, and will require a rationing rule. We will turn to
that later. 1t is well known that there is a unique Bertrand—Nash equilibrium, with
firms charging a price equal to marginal cost, if those costs are alike. If, say, ¢; < c;
and ¢, < py*, where p]* is firm 1’s monopoly price, we follow the industrial organization
literature and take p; = py = c; as the unique Bertrand-Nash equilibrium (actually

P1 = ¢, — €)%, Hence we will call p = min{p{",¢;} the Bertrand equilibrium price, if

3In terms of elasticity, the derivative of the inverse demand function has elasticity smaller than 2.
4Strictly speaking, there is, of course, no Bertrand—Nash equilibrium (in pure strategies) if firms

are different. For (py,pz) = (c2,¢2) both firms would share demand, but firm 1 could improve by
undercutting cz by e, But also any price below ¢z is not optimal, since then firm 1 could raise the
va.na a little bit again. This nonexistence, however, is due to the properties of the real numbers rather
than a severe economic problem. To overcome the difficulty we could restrict the firms’ strategies to
a finite set of prices — which raises other inconveniences — or to take e—equilibrium as a solution
concept. Thus the price outcome (c3—£’, ¢3) is an £~equilibrium for a suitable &/. We will do the latter
and will then take the limit for € — 0, and simply consider the supremum of firm 1’s e~equilibrium
prices which is ¢;. In this spirit we will interpret the outcome (py,ps) = (c2,¢2) as the limit of

e—equilibrium outcomes where firm 1 gets the whole demand and makes a profit of (c; — e1)D(cz),
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¢ < 5.

It is assumed that production is not possible without, pollution. Producing ¢;
units of oi.%:? firm @ generates ¢; = dig; units of emissions. Total emissions are
wiitlen £ := e; + e5. To evaluate utility and harm of (¢1,92) (which determines
(r1,€2)) to the society, we assume to have social welfare function W. In the absence
of pollution, in the industrial economics literature, a social welfare is simply taken as
Wigi, ¢2) = 2 P(2)dz — €11 — ¢z, that is, consumers’ gross surplus minus aggregate
production costs.® We will extend this approach by m.wmcimaw that W is separable
into benefit from production and damage from pollution. This means, in addition
to consumers” surplus there is a social damage function S : Ry x Ry — IRy with
(E,5) — S(E,s), which depends on aggregate emissions F and a damage parameter
s. Employing the usual notation S1(E,s) := mlmw.m»& and so on, we wzwxw the following

assurnption.

Assumption 2 o) S is at least twice continuously differentiable with respect to® E and

87 in (0,0) the right sided partial derivatives exist.

i) §(0,8) =0 Vs > 0.

i) §(12,0) = 0 VE > 0. . :
iii) Si(F,8) 2 0 Vs > 0 and strictly greater for E > 0.

iv) i (£, 8) 2 0 Vs > 0 and strictly greater for E > 0.

v) S19(B,8) > OVE > 0,8 > 0.

So, S is increasing and convex in £ and marginal damage increases in s. Although s is
an exogenous parameter of the model, parameterizing § via s allows us to characterize

the social optimum as well as regulatory policies as a function of the damage function’s

and firm 2 gets nothing.

- *This is equivalent to W (q;, q2) = \% P(z)dz~P(Q)-Q+(P(Q)a1 — c101) + (P(Q)gz ~ ¢2q2), that
is, net consumers’ surplus plus profits of the firms, Some authors use the latter, and sometimes even
multiply surplus and profits with different weights (see for example BARON and MYERSON [1982] ).
Then, however, the two concepts are not mnc?w_m:.:

SFor short: "w.r.t.” in the remainder.

steepness. Finally we assume

Assumption 3 The pollutant resulting from production of the industry’s output, only

arises in this industry.”

In reality, Assumption 3 does not hold in all industries, of course. For example C'O,,
is generated by many different industries. SO;, on the other hand, is generated basi-
cally by power plants. Also in the chemical industry, some poisonous pollutants are
generated from production of one certain commodity only. Since we want to analyze
regulation of firms under imperfect competition, Assumption 3 is crucial to make the
analysis interesting.

Assuming separability of social welfare in consumers’ surplus, production cost,
and social damage, the welfare function W is given by

W a0 = [ Pl)dz = S(B,5) ~ expy = caia (22)
where the superscript s refers to the damage parameter determining the steepness of
S. Without any kind of regulation, Bertrand competition leads to the Bertrand-Nash
(e-)equilibrium independently of s.

When considering regulatory policies in the sections 4 and 5, we will assume that
the government has sufficient information in the following sense. It knows demand,
the social damage function, and the firms’ technologies. More precisely, it knows
what technologies there are, but not necessarily what firm has what »mnr:o_om%.. This
information structure corresponds to the second degree price discrimination models.

We also assume that the emissions generated mw each firm can be perfectly and
costlessly monitored by the authorities, So, the firms will pay a tax bill exactly accord-
ing to the amount of their emitted pollutants. In case of holding permits, firms cannot
emit more than the number of permits allows them to do. Otherwise, we assume, a

high penalty has to be paid. So there is no room for moral hazard,

"By an industry we mean the set of firms which produce a certain commaodity, that is here, the

two firms which produce the marketable commodity under consideration.
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Before turning to regulatory policies, let us characterize the social optimum that
a fictive social planner would install under complete information. If ¢1 < ¢, it is clear
that for s = 0 the higher cost firm 2 should not produce anything. If social damage is
very high, one could think that only the firm with the lower pollution per unit of output
should operate, that is, with the: smaller d;. Towever, it is not quite like this. What
will turn out to be crucial is whether the term {dics —dyc1)/(dy —dy) is greater than the
choke-off price or not, or equivalently, what the sign of A ;= df(F~et)~do/(F~c2)
is, which is the difference between the firms’ ratio of marginal pollution and maximal
marginal consumers’ surplus. Instead of A it is more convenient to work with A :=

di(P~ ¢2) — d2(P — 1) in the remainder of the-paper. Notice that A and A have the

same sign.

3 The social optimum
The social planner has to solve the following program:

q+g2
max W?(qy, qz) := Smx.\o ! P(z)dz — S(diqy + dag3, ) — c1¢1 — cog0 (3.1)

1,92 91,92
s.b. q1 ..V.l Og q2 W 0.

The following proposition yields the properties of the optimal solution (recall that

& <)

Proposition 3.1 a) [f A <0, for all s 2 0 firm 2 never produces, and firm I produces

7 which solves
P(q) = c1 + $1(drg, s)dy . (3.2)

q is decreasing in s, unless ¢ = ¢z, dy = ﬁ (if both firms are alike, clearly q may be
arbitrarily &.&3&5& among both firms).

b) If A > 0, there are parameters 5 with) <3 <3< oo (5<o00 ford, > 0)
such that the solution of (3.1) is characterized by

i) Vs e [0,s] we get q1 > 0, g2 =0, and Q = q1 15 decreasing in s.

8

i) Vs € [s,5) we get q1 > 0, g2 > o.h, and gy is decreasing, g is increasing, and
Q = q; + gz is constant in s.
iti) Vs 2 5 we get q; =0, q2 > 0, and Q = ¢, is decreasing in s.

iv) Moreover, Q, I, and W are continuous, E and W are decrcasing in s.

Thus, we can say that firm 1 has the better technology if A < 0 (unless ¢; = ¢,
dy = d;). Notice that ¢; < ¢; and d; = d; as well as ¢; = ¢; and dy < d; imply A < o
But notice also that A < 0 may hold for some d; > d; if ¢; is sufficiently smaller than
¢2. In other words, even if firm 2 emits less pollutants per unit of output than firm 1, it
may never produce in social optimum if the cost differential ¢; — ¢, is sufficiently high.
Notice on the other hand that ¢; < ¢; and A > 0 imply d; > d,, that is, for A > 0
firm 2 emits strictly less pollutants per unit of output than firm 1.

The result of Proposition 3.1 is derived by solving (3.1) taking into account the
Kuhn-Tucker conditions with respect to the constraints ¢; > 0 and ¢; > 0. For later

reference we write down the first order conditions®. Differentiating the Lagrangian
with respect to ¢ wam,ﬁ we get
Plg +q2) = Si(E,s)di—c1+p1 =0 (3.3)
Plo+ @)= Si(E,s) dr—catpa=0 (3.4)

Here p, 13 are the Kuhn-Tucker multipliers w.r.t. the constraints ¢; > o@:& qz 2 0.
Assuming gy = pg = 0, eliminating S1(F, s), and solving for P(Q) = P(q:1 + ¢2)
yields: ,

P(Q) = (dicz + dzer)/(ds — dy) (35)
or, equivalently .
Q = D([dicy + dze1)/[dy — da}) . (3.6)

on the interval [s,3], independently of s. Let us denote § = Q(s) for s € [s5,3] and
7= P(Q).

8For short: ”f.0.c.6”, in the remainder.
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If now yi; 2 0, p; =0 for j =3 ~ 4, that is, ¢; = 0, ¢; > 0, the [.o.c. becomes
P(q;) = Si(dyqiys) - dj — ¢; =0 , . (3.7)

that is, price equals marginal production cost plus marginal social damage. A more
detailed proof can be found in REQUATE [1992].

Interestingly, we find that aggregate output is constant in s for s < s £ 3. Thus,
the social planner shifts production continuously from firm 1 to firm 2 as s increases,
keeping total 95::” constant, until firm 1, which faces the lower production cost but

is the worse polluter, shuts down. These properties are displayed in figure 1.

Figure 1 about here.

4 Pigouvian Taxes

Suppose now that a linear tax is imposed on emissions such that the firm’s marginal

cost amounts to ¢; + 7d;. Let
#(7) = arg max(p — (& + 7d;)] D(p) (4.1)

be firm ¢’s monopoly price under tax 7 and let

q*(7) := D(p{"(7)) . (42)

be the corresponding monopoly output.

If
cg+7rd; < ¢ +7d;,
under Bertrand-competition, the market price is given by
p(r) = min{c; + rd;, p["(r)} (4.3)
and the quantity by
Q(r) = max{D(e; + 7d;), g7(r)} (44)

10

o "
c+rdi = ¢ +r1d;,

then |
pr)=ca+rdi=c+7d, and Q=D(c +rdy),

where g = g3 = D(¢; + 4,.5\».
Next define 7 by

¢+ 7idj = p(rf) (4.5)

as the tax rate where firm ¢ switches from monopoly behavior to competition with firm
7 (or vice versa).
Further define for d; # d, the "break even-tax” r*¢ where marginal costs of the

two firms are equal by

be,_ C2—C1

=

Td-d

T

(4.6)

Lemma 4.1 If d; > dy, then 7f < 7% < 1% and

¢

27 (7) Jor 1<t

SRNl _fir B Jfirm 1 produces
p(r) = MWN. Jor 1= qbe both firms produce

a+rdy for TE<r<g (1

o) for gy firm 2 produces

Moreover, p(r) is continuous at b,

Proof: By definition of 7¢ we know that ¢, + ridy = P(gi({)). On the other hand,
P(q1(7f)) satisfies the f.0.c. for monopoly: P(g1)+ P'(¢1)q1 — ¢; — 7{dy = 0. Combining
we get ¢ + 77dy + P'(q1)q1 — & — {dy = 0, thus 5= (2= ey + P(q)q1)/(di — dy) <
(¢2 = e1)/(dy — dy) = 7*. To show 7§ > 7% works almost: the same. The rest can be

checked by inspection (see Figure 2). . Q.E.D.
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Figure 2 about here.
Define for i = 1,2
P(r) = cj4rdy  forj=3-1,
gi(r) = D(pi(r)).
The price pf(7) is firm j’s marginal cost. So firm j acts like a competitive fringe for
firmn 1.
The government's program is now to maximize .
N&al&&smE?yansiixsia. (4.7)
For 7 # 7% only one of the two firms produces and (4.7) amounts to
hizw?z“lmﬁé?yanss?%4 (4.8)
The f.o.c. with respect to 7 is
[P(gi(7)) = Su(digi(7), s)d:i — eilgi(r) = 0 . , (4.9)

First we claim that ¢}(7) < 0. To see this we differentiate the f.0.c. of the monopoly

firm w.r.t. 7. This yields [2P' + P"q;)q} — d; = 0. By Assumption 1 we get
o & .
%= 9Py Py,

Hence, the term in square brackets of (4.9) must be zero. But this is also the f.o.c. for

<0, (4.10)

the social optimum if A < 0 and only firm 1 produces, or if A > 0 and s < sors>3g
when o=_,.< firm 1 or firm 2, respectively, produce. It follows that the social optimum
can be achieved by imposing an emission tax as long as 7(s) < 7% or 7(s) > %, In the
first case, firm 1 produces alone, in the latter firm 2. This holds regardless of whether
pi(7) = pJ*(7) or pi(r) = p§(7). If p(-) has a kink at 7¢, so does ﬂ: at 7 (r) for the
corresponding value of s. This need not bother us. It remains to investigate for what
values of s the taxes 7(s) are greater, smaller than, or equal to ', By Lemma 4.1,
7(s) < 7% implies ) .

Cz — Cy Al e &_ﬁn - &unp
di~dy ' dy—dy

p(7)=P(ai(7)) € crtrdy<cyt+r¥dy=c,+

12

From section 3 we know that for A > 0, in social optimum, Q(s) = ¢,(s) is decreasing
and P(Q(s)) is increasing for s < s. For s € [s,5), @(s) and P(Q(s)) are constant and
P(Q(s)) = [dica — dzcr]/(d1 — dp). Hence, 7(s) < 7 if and only if s < 5. Arguing the
same way for firm 2 we get 7(s) > 7* if and only if s > 3, E.E only firm 2 vnoa_.bnmm.

It remains to :w:nm out the best tax for s € [s,3].- Now, if 7 = 7%, the unique

- Nash-equilibrium is given by pi = p; = (dic; — dac;)/(ds — d3) and gy jumps from

D(pi1(7)) to D(p:(7))/2 as 7 increases from below to 7%, That is, for s € [s,3] and
7 = 7% we have the socially optimal price and the socially optimal quantity, however,
we do not have the optimal allocation of production between the two firms. Whereas
the social planner would shift production continuously from firm 1 to firm 2 as s
increases from s to 3, the government cannot induce this continuous shift by taxes.
By continuity, however, there is obviously some sy € (s,5) such that for the optimal
quantities g:(s), we get ¢1(so) = g2(s0), and gi(s) ~ gz(s) for s in a neighborhood of
sp. On the mnrmn hand, ¢;(s) & q1(s) for s close to s, and gz(s) ~ g2(5) for s close to 3.
Hence, the best linear tax on the interval [s, 5] works like this:

Still prevent firm 2 from production for s close to s by charging 7% — ¢. Qrmnmo.
¥ for s close to so and charge 7% + ¢ for s close to 3.

With a little abuse of notation let W(r,s) := W*(q:(7), g2(r)) and consider wel-
fare as a function of s for fixed tax rates 7% — ¢, 7% and 7% 4 . Clearly, W (vt —¢,")
and W(rb,-) must intersect somewhere between s and so, whereas W(r,) and
W(r% + ¢, ) must intersect somewhere between sq and 5. Hence, the switching points
where 7(s) jumps from 7% — ¢ to 7%, and from 7% to 7% + ¢, are given by the inter-
section of welfare W (7% — ¢,-) with W(r%,.) in s, and W(r%,.) with W(r* +¢,-),
respectively. Call these switching points s; and s,. (Strictly speaking, there exists no
optimal tax for s € (s, ;) and s € (s,5). But it is optimal up to some ¢.)

By these arguments we have shown the following proposition.

Proposition 4.1 If A > 0, then

13



a) 7(s) which solves ({.9) for i = | implements the social oplimum for s < s, and

only firm | produccs.

b) 7(s) = 7% — ¢’ for s € [s,81) (with sy < so), and only firm I produces.

It

% for s € [s1,8] (with s1 < s9< s3), and both firms produce.

c) 7(s)
d) 7(s)

it

% 4 &' for s € (s9,5] (with so < s3), and only firm 2 produces.

e) 7(8) which solves (4.9) for i = 2 implements the social optimum for s > 3, and

only firm 2 produces.

f) E&de%ﬁ Q(s) is decreasing and P(Q(s)) is increasing for s < s and s > 3. Q(s)
and P(Q(s)) are "almost” constant on [s,5]. ("Almost” is supposed to mean "up

to two small jumps at s; and sy”, which can be held arbitrarily small.)

Observe moreover that W (7%, s) smoothly approximates the optimal social wel-
fare WS9(s) in the interior of (s, 3) at the point so. 1t is equal to W59 (sg) for s = s and
cannot intersect W9° (otherwise W59 would not be optimal since it is differentiable

in s). The same holds for the points g and ¥ (up to an arbitrarily small €).

Corollary 4.1 If A > 0, the optimal linear taz implements the social optimum for
those s for which only one firm should produce, that is, for s < s and s > 5. Moreover
there is some so € (8,5) where the optimal linear taz implements social oplimum and

both firms produce.

Thus the optimal linear tax is not fully efficient for those parameters of s where both
firms produce but yields a reasonable approximation.

We turn' now to the case A < 0.

Proposition 4.2 If A £ 0, then only firm I produces, and for all s > 0, T(s) imple-

.

ments the social optimum.

Proof: The proof works indirectly. . First, let dy > dy. Suppose 7(s) = 7%
such that both firms produce. Then p = p = [dic; — dac1}/[di —~ da], or equivalently,
Pdy—dy)—dycatdyey = 0. But A = p(dy—dz)~dicy+daey > ldy—dy)—dyca+dgey = 0,
a contradiction. Suppose now 7(s) > b and p2A7) = 1 + 7dy. Then p > ¢; +7d; >

cy+7tdy = [diey —daei]/{dy - dy], implying A > 0. Next suppose p(7) = p§(r). Then

It

Pal7) + PG (r) = 2 = rds

VNAQ.V - C3 — ﬂvn&»
&wnu -+ &unu A

BT E—k

0

A

i

Hence also A > 0, a contradiction again.

Now let dy < da. Firm 2 can only produce if ¢; + 7d; > ¢; + 7d; which implies
7 £ [e2 — a1]f[dy — d3] < 0. Bul then the market price would not be higher than
¢1 + 7d; < 1. Welfare could be improved by setting 7 = 0. Q.E.D.

Not surprisingly we get the following

Corollary 4.2 The optimal emission taz implements the social optimum for symmet-

ric Bertrand duopoly.

Moreover, it should be mentioned that 7(s) becomes negative for s close to zero.® So,
for small s the tax turns into a subsidy. Since a monopolist produces less than socially
optimal if the damage from pollution is very small, the emission tax can indirectly

subsidize production by subsidizing pollution.

Remark 4.1 The last statement, however, must be.taken with caution. If the subsidy.
is higher than marginal cost and the firm faces free disposal, it could be tempted to
produce pollution, take the subsidy and destroy the produced quantity of the marketable
commodity up to the monopoly output. In other words, subsidizing pollution without

controlling the outpul of the marketable good may not work. But subsidizing pollution,

9To see this, notice first that the optimal quantity is g1 = D(c1 + Si(d141,5)). The firm’s f.o.c. is

for s sufficiently small.
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or even a non-poisonous by-product, in order to enforce more production seems lo be
somewhat ridiculous. Direcl subsidies on the output should be more effective in such a

case. We will return to this in section 7.

The resulls derived in this section, above all, the corollaries 4.1, 4.2 and Proposi-

tion 4.2 suggest that Pigouvian taxes are very powerful instruments in order to control .

the pollution of firms which engage in Bertrand competition. The optimal tax can in-
deed implement the social optimum for those cases, where only one of the two firms is
supposed to produce in social optimum. The intuition behind this result is straightfor-
ward: Under Bertrand competition the lower cost firm always serves the whole market,
whereas the higher cost firm produces nothing. Unless the firms are alike, a tax can
almost always induce a cost advantage for one of the two firms apart from the case
where 7 = rb. In that case the emission tax cannot induce the optimal allocation of
production among the firms. If the interval (s,3) is small, the efficiency distortion can
certainly be neglected. If the asymmetry between the firms is considerable, however,
especially if d; is large and d; is relatively small, the interval (s,5) can become rather

large-and the welfare loss is not to be neglected.

5 Permits

In this section we assume that the government gives out a number of L pollution
permits which may be traded among the ?..Bm. Each permit allows a firm to emit one
unit of the wo:imuﬁ.v Since we assume that the government has no objective to earn
money from regulation, we can assume that the permits are given to the firms for free.
For example they could be distributed fairly among the firms such that each firm holds
Lj2 vw:d;m at the beginning. As we will see, the initial allocation of permits will not

effect the outcome. Assume that I be arbitrarily divisible.
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5.1 The Firms’ Behavior

The process going on in the economy may be divided into 3 steps. At first, the firms
hold some initial endowment (I, {3} of permits, with ! + {; = L. In the second step,
they may trade, that is here, one firm sells some or all permits to the other firm. Firms
end up with a new allocation of permits (e, e;) with e; + ez = L. In the third step,
firms engage in Bertrand-Edgeworth competition and choose prices p;, p,. Since each
firm is capacity constrained by e;/d;, that is, the number of permits it owns, divided by
pollution per output, its demand D;(p;, p;) involves some rationing rule. We assume
that residual demand is determined by either efficient or random rationing (or any
convex combination of both). .

To figure out how the firms will trade the permits, denote by I1M¥(e;, €2) the profit
of firm ¢ if the final allocation of permits in the second step has been (e;, €;) and both
firms choose prices but are capacity constrained by ¢;/d;. Observe that there is a gain

from trade if and only if there is an allocation (&, €2) such'that
TG (B, ) + 103 (h, o) < TI (81, &) + T3 (G, €2) -

In this case there is a real number T which can be interpreted as a transfer-payment

from firm 1 to firm 2 (which may be negative, of course) such that

IV (é,e) +T > OY(h,b),

H._”Waﬁm:mﬁv -T > EQANT Nuv 5
How the firms figure out T' is nothing we have to care about. For example, they could
agree on the mevéwnwwwiam solution. The maximum gain from trading permits is

determined by

max T._%?:Sv + n%?rmni s.t. ey +e < L, el >0,e 2 0. (5.1)

€162
Clearly, this maximum is independent of the initial distribution of permits. Accept-
ing the assumption that firms behave as profit maximizers it is natural to make the

following assumption:
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Assumption 4 [irms lrade permils in the sccond phase such thal the Jinal allocation
(e],c5) solves (5.1). i

Notice that this assumption allows also for the case that one firm buys all the other
firm’s permits such that the market ends up with monopoly. And indeed, as we will
see, this will happen for some range of values for L.

Before we can solve the government’s problem of how to choose the optimal
number of permits contingent on s, we have to analyze how the firms will determine

the final allocation cw solving (5.1). For this consider the following program:

max P(qy + g2)[g1 + 2] — c1q1 — 2 st digi +daga < L (5.2)

41,92 g :
After solving (5.2), we will show that the resulting prices py = p; = P(q1 + ¢2)
form a Nash equilibrium of the price game under capacity constraints. Umaon.n bY Gmon
the monopoly output of the lower cost firm 1 in the absence of regulation (which is
also the monopoly outcome of the horizontally integrated industry). Denote further

by Lmon = digmon the number of permits that are necessary to produce gon.
Proposition 5.1 a) If A <0,V L > 0 the solution of (5.2) is given by 1°
. L
Qnﬁbv = min A.m«:n:, MMV P QNAN\V =0.

b) Ife; < ¢p and ' A >0, there are L, T with 0 < L < T, such that the solution of
(5.2) is given by

o L
a(l) = min{gmon , 4t for L>T,
(L) = 0
Ly. > ¢
QMA v .\.a:. NVN\VM&.-.
q2(L) > 0 ,
Ly =
a(L) W for L<L and dy > 0.
(L) = dz

1%1f both firms are alike, which implies A = 0, the solution is not unique. Either firm could buy all

the permits.

YIf ¢4 = c; interchange the names of the firms and apply case a).
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Moreover, ¢;(L) are continuous in L and QL) = q(L) + qL) is continuous and
constant for T> L > [,

To interpret the proposition: if A < 0, firm 1 buys all the permits and behaves
as a monopolist. If L > L., firm 1 also buys all the permits but does not use them
all. In this case, there is underproduction combined with underpollution. By giving
out more permits, however, the government cannot induce the firms to produce more
than the monopoly output gmen.

If A > 0, the same thing happens as long as L > I, that is, firm 1 buys all the

permits, does not use all of them for [ < Lyion and exhausts them for Lyon < L < T,
ForL>L>L

, the two firms shift production continuously from firm 1 to firm 2 as L

decreases, holding total output constant. For L < L, the less polluting firm 2 buys all

‘the permits and produces alone.

The proposition is proven by solving (5.2) taking into account (L) 2 0. A
detailed proof can be found in REQUATE [1992].

The next proposition establishes that the price which would come about if the
aggregate output resulting from (5.2) were given to an auctioneer, does indeed form a

Nash equilibrium if the firms engage in Bertrand competition after trade of permits.

9 f

Proposition 5.2 If residual demand is determined by efficient or proportional ra-
tioning (or any convex combination of both), (p1, p3) with py = py = P(q1(L)+¢qz(L)) =

P is a Nash-equilibrium of the price setting game, where ¢;(L) is given by Proposi-

tion 5.1.

Proof: The proof is obvious for L > T and L < L since then only one firm produces
just its monopoly quantity under the constraint ¢ < L/d;. The other firm does not
hold any permits and hence cannot produce. For L, < L < T, undercutting p clearly
does not pay since both firms exhaust their capacities at (py, p2) = (p,5). It remains to
show that it does also not pay to raise the price. For this we immediately assume that

residual demand of the higher price firm is given by a convex combination of efficient
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_ and random rationing such that for p; > p, firm &’s profit is given by

W) = WD) ~ ax(Di — ) + (1 = ) (1 - ) DI =) 63)

where j = 3 — ¢ and p € [0, 1].
Making a little detour, let gi(L) > 0, g2(L) > 0 be the solution of the program
(5.2). Its f.o.c. is given by

P(QQ+PQ) ~ci— ;=0 ‘ (5.4)

where Q = qi(L) + q2(L) and X is the Kuhn-Tucker multiplier w.r.t. dig; + dyqs < L.

Further, let p = P(Q).
Back to (5.3), taking the right-sided derivative at p; = j we get:

Zlih) = WD) -+ D) - (D) +
+1- (1- 43 D016 - ) + D)
< - 1= wmw D)5 - <) + D)
_ 3 N A IR T S
SE 1 AN —_

< +-m {1 -G f@EQ i+ P(QE—Adi] =0
where A > 0 is the Kuhn-Tucker multiplier from (5.4). The last equality holds by
(5.4). Q.E.D. ,

Notice that this result does not hold for all rationing rules. For example, take
the rationing rule that maximizes residual demand of the Emwwa. price firm. This rule
turns the efficient rationing rule upside down: those with the lowest reservation prices
are served first rather than those with the highest. In this case the higher price firm
clearly has an incentive to raise the price over p. This rationing rule, of course, is also
the most inefficient one and not very realistic.

In REQUATE [1992] it has been demonstrated that the solution of (5.2) in qu

and g, is also a Cournot-Nash-equilibrium of the quantily setting game. We draw
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the interesting conclusion that in order to determine the optimal number of permits it
is irrelevant for the regulating authority to know what kind of competition the firms
engage in. This allows us to recall from REQUATE [1992] the result of the government’s

program for the optimal number of permits:

5.2 The Government’s program

Given that the reactions of the firms are determined by Proposition 5.1 when a number
of L permits is in the market, and given the damage parameter s, the government has
to w:i.. the ovaaw:msm of L. Denoting Q(L) = q1(L) + g2(L), and e(L) := iqi(L),
it = 1,2, the following program has to be solved:

. aw
max W (L) = max [ ? P(a)dz - S(L, 5) - (L) — caa( L) (5.5)

Let L(s) denote the optimal number of permits contingent on s, that is, the

solution of (5.5), then this has the following properties.

Proposition 5.3 o) If A <0, only firm 1 produces and there is o damage parameter
Omon > 0 such that

a:\ hﬁ.wv = N#aoa \eﬂ 8 < Omon-
a2) L(s) is decreasing and implementing the social optimum for s > guon.

b) If A > 0 and d; > 0, there are parameters 0 < gpopn < g <09 <T<oo (for

dy =0, 09 =& = 00) such that
b1) L(s) = Lion for s < Omon, and only firm 1 produces.
62) L(s) is decreasing for s € [Gumon, g, m:m only firm 1 produces.
b3) L(s) is decreasing for s € (g, 00}, and both firms produce.
b4) L(s) = L for s € [00,7), and only firm 2 produces.
b5) L(s) is decreasing for s > &, and c:@ firm 2 produces.
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b6) L(s) is discontinuous and downward jumping al g, continuvous elscwhere.

b7) ¢ >, >5.

We will explain the result in the following and give some intuitive hints why it holds.
For a formal proof see REQUATE [1992].
The proposition says the following. .

In a), where A < 0, only firm 1 produces which follows immediately from Proposi-
tion 5.1 a). Further, there is a damage parameter opon ("mon” stands for ..Eo.:ovo_w:v,
where for all s < omon the pollution level of the monopolistic firm 1 would be less than
socially optimum. If we assume that a firm cannot be forced to exhaust its permits,
any number of permits L > Lp,n has the same impact: firm 1 behaves like an unregu-
lated iozovo:m«. For 8 > Gpmon, the optimal number of permits does not exceed Lynon-
Hence, firm 1’s constraint ¢; < L/d; becomes binding. Due to the linear technology,
and since firm 1 always buys all the permits, the social optimum can be achieved for
8 2 Cmone .

If & > 0, the same thing happens for small values of s: for s < 0on, a monopolis-
tic firm 1 would underpollute and cannot be induced to producing more and polluting
more by giving out more permits [bl)]. For 8 > omon the constraint e; +e2 < L be-
comes binding. L(s) decreases as s increases, and firm 1 buys all the permits as long
as s < g [b2)]. At the damage parameter ¢ the optimal permit policy is discontinuous
and downward jumping [b6)] (the reason for this jump will be explained below). For
s > g, the optimal number of permits for regulating {wo active firms is given out. This
will last until firm 1 shuts down for s = g which is defined by L(co) = L [b3)]. L(s)
is constant on the interval (og,@]. This is so because L(ao) = L, and for L < L firm 2
buys all the permits. In the absence of firm 1, however, the ouzq.nw_ number of permits
in order to regulate a monopolistic firm 2 would be greater than L if s € [60,]. But
w:v.‘ L > L would induce firm 1 to hold some vm:ﬁ:wu as we know. Hence, the optimal
number of permits has to be held constant and equal to L in order to keep firm 1 out

of the market [b4)]. For s > &, the optimal number of permits to regulate a monopo-
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list can be given out, since this not greater than L. For these parameters, the social

optimum can be implemented [b5)]. L(s) is depicted in figure 3.
Figure 3 about here,

The reason for the discontinuity at g can be explained as follows: The f.0.c. of
(5.5) takes different forms for the cases in which only one of both firms produces or in
which both firms produce. In a neighborhood of g we get two local maxima, say L'(s)
and L?(s), one with L!(s) > T, in which case only firm 1 produces, and an other one
with L%(s) < I, where both firms produce (see Proposition 5.1). To find the global
maximum we simply have to compare the two local maxima, For s < g, the solution
I'(s) > T yields the highest welfare [b2)], for s = g the welfare values coincide, and for
s > g the solution L?(s) < T, with both firms being active, leads to a higher welfare.
Hence, the optimal permit policy obviously is to discontinuously reducing L(-) at s,
switching from one active firm (firm 1) to letting both firms produce.

The last claim [b7)] makes a statement about the welfare properties of the optimal
permit policy. It claims that the damage parameter s, where firm 2 starts to produce
under the optimal permit policy, is greater than gom.ﬁ:mmm parameter s, where firm 2
starts to produce in social optimum. That is, under permits firm 2 starts to m:om:nm.
"later” than socially optimal as s increases. On the other hand, firm 1 also shuts down
later (namely for s = ) than socially optimal, which would be for s = 5. For linear

demand and quadratic damage function one can even show that ¢ > 2s, and & = 2.

Corollary 5.1 If A > 0, the permit solution is sociclly optimal for s € [Omon,s)

(interval may be empty) and for s > @.

Remark 5.1 We saw that the permit policy yields underpollution going along with
underproduction for s < Gmen if we assume that firms cannot be forced to use all their
permits. If s is equal to or very close to zero, "laissez~faire” is obviously better than
any permit policy, since any permit policy L > Luon leads to the monopoly price p*,

whereas "laissez~faire” induces firm 1 to charge ¢; — ¢ yielding a higher welfare if
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P > ¢, since more will be produced and there is very little environmental damage

Jrom production for s close to zero.

Remark 5.2 An allernalive possibility to restore efficiency for s < Guon would be to
modify the licenses in a way that obliges its holder to ezactly emit o quantity of the
pollutant equal to the number of licenses. In this case, firm | would also buy all the
permits if L > N.‘ especially for L > Luon. However, the same problem arises ‘as
Jor subsidizing pollution in order to increase output (cf. mmvanaw 4.1). There is no
guarentee that the monopolist’s excess amount D(c;) — D(pl*) will really be sold to the
consumers rather than being desiroyed, unless the regulator also controls the quantity
of output of the marketable commodity. So, if a minimal output level is supposed to
be enforced, this can probably be done more effectively in a direct way, rather than by

enforcing a minimal pollution level (see also section 7).

6 Comparison and Discussion of the Policies:

We saw that if firms engage in tough Bertrand novamomo? for all s > 0, the optimal
tax induces the socially optimal solution if A < 0, that is, if firm 2 has the worse
technology. Under permits this was only possible for s > omon. In REQUATE [1992] it
has been demonstrated that this result does not hold under softer Cournot competition.
There, for A < 0 the optimal linear tax does nof always keep the worse firm 2 out of
the market!

Turning to A > 0 we get the following result:

Proposition 6.1 If A > 0, the taz policy is superior to the permit policy i) for ell

s €[0,a], i) for all s >3, and iii) for all s in a neighborhood of some so € (s,5).

Corollary 6.1-If A > 0 and g > 3, the taz policy is superior to the permit policy for

all s > 0.

(Recall that by definition, for s < ¢ only firm 1 was active under evm‘wmﬂﬁma policy,
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while .voer firms were active for ¢ < s < 0. At s = 3 firm 1 shuls down in social
optimum.)
Proof of Proposition 6.1: For s € [0,8], for s > 5, and for s in a __mm.mrvo}co;
of sq, this follows immediately from Corollary 4.1. For s € [s,a] observe that both
policies induce only firm 1 to produce if s is sufficiently close to 5. Both policies yield
the same result, that is, same output, same pollution level and same welfare, since they
would regulate firm 1 optimally if firm 2 were not around. Whereas the permit policy
induces only firm 1 to produce for all s < g, the tax policy can eventually do better
by switching the tax from 7%¢ — ¢ to 7% or 7% 4 ¢ as s increases. Q.E.D.

The following example satisfies the conditions of Corollary 4.1, that is, the tax

policy dominates the permit policy for all s > 0.

Example 6.1 Let P(Q) = 1~ Q, S(E,s) = £E? and ¢; = 0.25, ¢; = 0.5, dy = 1,
dz = 0.5. Under this constellation, A > 0, and we get s = 2, § = 4, that is, in social
optimum both firms are active for s € (2,4). The break-even-tax is 7% = 0,5. Under
the optimal Pigouvian tax, only firm 1 produces for 0 < s < 2.39, both firms produce
for 2.39 < 5 < 3.12, and only firm 1 produces for s > 3.12. Under permits, the social
optimum is attained for s € [oymon,s) = (0.125,2) and s > & = 12. Since ¢ > 3, a

Pigouvian tax yields a higher welfare for all damage parameters s > 0 (see Figure 4).

Also if ¢ < 5, it may be the case that the tax policy is superior to the permit
policy for m.: damage parameters s for some quadruple (¢, ¢z, dy, d3), however not for
all. In ‘Example 6.2, where firms are extremely different, im. find some interval of
damage parameters for which the optimal number of permits yields a higher welfare
than the optimal emission tax.

Example 6.2 Let P() and S(-,-) as in Example 6.1. Let ¢; = 0.25, ¢; = 0.74,
dy = 0.7, d; = 0.1. Firm 1 has much lower production costs than firm 2, but also’

generates much more pollutants than firm 2 does. In this case, s = 6.54, 5 = 45.79 and
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g = 14.05 < 45.79 = 3. For 16.5 < s < 20.75, permits yicld a higher welfare than the

optimal Pigouvian tax does. This is illusirated by Figure 5.

7 Subsidies on Output, Permits for Pollution:

Consider now a situation where the government gives out permits to poliute and si-
multaneously subsidizes output. Let ¢ denote the subsidy. Assumption 4 will be
retained. For given s, let further (L¢(s),({(s)) be the optimal permit/subsidy pol-
icy. Denote further by ¢{(s), i = 1,2 the socially optimal output of firm ¢ and by
E%s) = dyqi(s) + &N&?v the optimal aggregate pollution level. Then we get the

following result:

Proposition 7.1 For all A and for all s > 0 there is a subsidy ((s) and a number

of permits L¢(s) which 31«5«:% the social optimum. The optimal permit/subsidy

policy is given by:

LY(s) = E°%s) VA. (1:6)
IfAL0: .
oy o | ) - PR fors S e -
0 \eﬂ 8> Omon -
Ifa>0:
~dy Sy (drgf(s), 8) — P'(gi(s))ai(s) for s < Omon,
0 \cﬂ s € AQEQST,M?
Cs) = { -PUDE | Joa€igal, 0%
d [225 — S1(dagd(s),9)] — P'(a8())ai(s) for s € (5.9),
0 . for s>,

where ( is the socially optimal aggregate output for s € (s,5) given by (3.6).
Before we prove the result, let us give the intuition. For s < Omon, the sub-

sidy/permit system leading to first best is very easy: subsidize output such that the
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monopolist chooses the optimal level of output. Set L(s) equal to the corresponding
amount of pollution (or even higher).

For A > 0 we have seen that under the plain permit regime too much production
was allocated at the low cost (high pollution) firm for a wide regime of damage param-
eters. If output is subsidized by ¢, the unit cost of the firms become ¢; ~ ¢, and ¢; = ¢,
respectively. The higher ¢, the lower is firm 1's cost advantage and the less produc-
tion will be allocated (via permits) at that firm. This suggests that ¢ can be chosen
such that the interval of damage parameters where both firms produce under permits
can be induced to coincide with the interval of damage parameters where both firms v
produce in social optimum. And indeed, this is the case. Since the social optimum will
be achieved, n.?w optimal number of permits L¢(s) .E:mo coincide with E%(s), which is
continuous and decreasing in s. Thus, the jump and the constant piece of the pure
permit policy L(s) vanish. However, the subsidy {(s) jumps discontinuously at s = s
from zero to IﬁA@v@ > 0. Loosely speaking, for A > 0 and s > 5 the permit policy
L(s) is shifted upwards and compressed to the right position L¢(s) = E°(s). One can
show (which we omit) that {(s) is continuous in § and 7.

Proof of Proposition 7.1: Given ¢ and L, the two firms maximize

max Pq + ¢2) - (g1 + ¢2) — (&4 =g~ (a- OE

71,92

sib. digi+daq2 < L, q1 2 0, g2 2 0. Denote @ = ¢ + gz The complementary m_wn;mmu

conditions are

I
=

0 [P(Q)Q+ P(Q) — e +{ ~ \dy + 4]
92+ [P(Q)Q + P(Q) — ca+ { — My + pg]

(7.9)
(7.10)

il
o

First consider A < 0. If s > 0y,n, nothing is to be shown since ¢(s) =0
and L(s) like in Proposition 5.3 implement the social optimum. If s < gmon, the
socially optimal choice of ¢f satisfies P(q}) = ¢; + d1Si(d1¢?,5). Choose now ( :=
~di51(d1q7,5) — P'(¢7)qf and L > dyqf (actually LS is not unique for s < opmon). It

is easy to verify that the monopolist’s profit wa,mammmnm quantity equals ¢¥. Since
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L8(s) = digly LS(s) is not strictly binding. Ilence A = 0, and all the production is
._,__cnwem._ at the low price firm 1.

Let now A > 0. For s < Open, the same thing happens as for & < 0. For
Gmon < § < 3, choose ((s) = 0 and L(s) = L(s) from Proposition 5.3. For s € [5,3),
the social optimum requires WAQV = ¢ + 1 $1{E%s), s) = ca + d2S1(E%(s), s). Further
it is easy to show that Sy(E°(s),s) = (c2 ~ &)/(d1 — d3) for s € (s,3). Set now
¢(s) = lﬁg@v Q. Then (7.9), (7.10) and dyg; + d2g2 = L have a unique solution
with py = 12 = 0, A = (&2 — 1)/(ds = da) = S1(E(s), ) and 1 = ¢{(s), @2 = q(3)-
(7.9) and (7.10) reduce to

P(Q) - ci — diSi(E(s),8) =0  i=1,2,

which is the f.o.c. of the social optimum for s € (s,3).

Next let s € [5,5]. Choose L¢(s) = E(s) and

0(6) = [ 222 5 (dnae, )] ~ PN -

It is easy to verify that (7.9), (7.10), and dig; + dz2q2 < L have a unique solution with
g1 =0, g2 = ¢3(s) and X = (cz — &1)/(ds — d3)-

For s > ¥, we know that the social optimum can be implemented by {(s) = 0.
Q.E.D.

O:w may ask now whether other combinations like subsidies on output combined
with taxes on pollution or even pure subsidies on output will lead to the same result.
From Proposition 7.1 we have seen that pure subsidies do the right job if s < mon, that
is, for those cases where only firm 1 is active and produces less than socially optimal in
the absence of regulation. However, a subsidy on output clearly does not discriminate
between the marginal rate of pollution. Hence it will always maintain firm 1’s cost
advantage with the consequence that firm 2 will never be able to sell anything under
Bertrand competition. Therefore, a pure subsidy on output cannot be optimal for
8 > Omon:

Finally, a combination of taxes on pollution and subsidies on output cannot lead

to higher welfare than a pure emission tax since it cannot induce the optimal allocation
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of production among the two firms for s € (s,3), cither.

8 Concluding Remarks

The paper studied the impact of decentralizing pollution control policies, like emission
taxes, licenses to pollute and finally subsidies on output combined with licenses, in a
model where price setting firms compete imperfectly. The imperfection results from
the firms asymmetry: the lower cost firm does not charge its unit cost but rather will
undercut the higher cost firm slightly. A tax on emissions has a direct mawm& on the
firms’ total unit costs and turns out to be very effective in cases where, from a social
point of view, one of the two firms should serve the whole market and the other one
should not produce anything. An emission tax turned out to be not efficient, in general,
if both firms are supposed to produce in social optimum.

Under a pure permit regime, firms trade the licenses such that the final allocation
maximizes the joint profit under the scarcity constraint given by the limited number
of permits. If damage from pollution is low, and hence the corresponding number of
permits given out by the government is high, the permit policy leads to monopolization
of the market: the lower private cost firms buys all the permits since it can compensate
the higher cost firm for closing down. A permit policy can therefore lead to unfavorable
outcomes if the damage from pollution is low, and if the firms are free to dissipate the
number of permits they own. Underpollution, however, is not so much of a problem
in reality. If we assume that the damage from pollution is sufficiently high such that
even a monopolist would overpollute in the absence of regulation, the permit policy
is efficient if one of the firms has a technology bad enough such that it should never
produce in social optimum, regardless of how the steep social damage function is. .mzn
in this case, also the tax instrument yields the efficient outcome. If, on the other hand,
both firms are supposed to vnom.:nm in social optimum for some damage parameters,
permit trading does not always induce an efficient allocation. Too much production

will be shifted towards the low cost but worse polluting firm. Despite of this, a welfare
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comparison turned out to be ambiguous, in general. For, there nxmma.uwnw_:w_nma where

._5:, firms should produce in social optimum, but where the optimal number of permits,

though not being eflicient, leads to higher welfare than the optimal emission tax.
These results stand in contrast to those in REQUATE {1992] where tax and permit

policies were investigated for a different market structure. The firms set quantities

tather than prices, leading to softer competition. In that model the permit policy

turned out to be superior to the tax policy for a wide range of damage parameters s,
since the tax could not always prevent the socially inefficient firm from production. A
political recommendation in favor of one of the two pure pollution control instruments
has therefore to be handled with care. Not only does the choice of the regulating tool
depend on the economies’ parameters, that is, the firm’s technologic parameters and
the steepness of the social damage function, but also on how tough or soft the firms
compete. .

Subsidies on output, on the other hand, although being wwmmmm frequently in
order to m:w..pﬁmm the survival of ineficient industries in the real world, can be useful
combined with tradeable permits in cases where polluting firms compete imperfectly.
In particular, ::.&\ may cancel out the negative effects of monopolization generated by
tradeable permits.

We chose a very simple model in order to get first insights in an area which has
not been explored very much so far. Further research should inquire how the results
change under more general (non-linear) technologies, or in cases where firms can select
among at least two different technologies. For example firms could substitute permits
by buying scrubbers to reduce SO,. It is further important to investigate, whether
the results, in particular the efficiency result of the last section, do still hold when
more than two firms are involved. Finally, it would be interesting to know how the

proposed policy tools will encourage entry of new firms and/or R & D of less polluting

technologies.
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Figure 1: The quantities in social optimum as a function of s if A > 0. The solid line
depicts aggregate output which equals qi(s) for s < s and go(s) for s > 5. The dotted
lines depict q; and g, for s < s <3.
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Figure 2: The bold line denotes the market price as a function of r.
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Figure 3: The solid line depicts the optimal number of permits as @ function of s if

A>0 &
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Figure 4: Welfare as o funclion of s: solid line: social optimum, "big dashed” line:

permits, ”small dashed” line: tazes. Welfere under tazes differs from social optimum

only for s € (2,4). Parameters such that A >0 and g > 5.

34

0.Q36 0.044 0.052 0.060

0.028

0.020

Figure 5: Welfare as a function of s: solid line: social optimum, ”big dashed” line:

permits, "small dashed” line: tazes. Parameters such that A >0 and g < 3.
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