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Abstract

We consider a competitive industry with constant relurns to scale and pollution.
In a partial framework poliution control is implemented by cither charging an effluent
tax, or by issuing tradeable permits. The papei investigates the incentive to introduce
a cleaner technology under ,m:.__n_,.vo:nw. Neither diffusion of the new technology,
nor optimal agency- response happens immediately. In contrast to former research
this model pays explicit attention to the final output market, finding that it depends
crucially on the parameters whether permits or taxes provide stronger an incentive Lo
innovate. Moreover, the impact of optimal policy adjustment will be investigated. *

(JEL: 1123, L51) v oo .

Keywords: Effluent taxes, tradeable permits, innovation, incentives to innovate,
diffusion of technology. ; . A .




1 Introduction

.

This paper is aboul the value of a new technology in a world where production causes
pollution of the environment, and where these externalities are internalized by regula-
tory policies like emission taxes or tradeable permits. The paper buiilds on two branches

. of research. The first and older one originates in ARROW’s [1962] seminal paper who's

work has been extended mmmo::mzz by U>mﬁ:3,> and STIGLITZ [1980a,b]. These au-
thors investigate a single firm’s value of a :mé. cost :&:esm ﬁmn_.zo_omz contingent.
on the prevailing market structure. In these models there are neither (real) external-
ities, nor is there any kind of regulation. The second branch is.based on articles by

- DOWNING and WHITE [1986], and more recently by MILLIMAN and PRINCE [1989]

(for short: [DW] and [MP] in the remainder) who offer a verbal/geometrical analysis of-
a firm’s incentive to introduce a new abatement technology ::&n«.&:.m_d:o regulatory
policies as effluent taxes, .mz_vwm&mm, different kinds of permits, and direct control. .As
fashionable in the earlier pollution control literature these writers. no:omi_.w.m Sm:u:f
on the pollution sector :mm_mn_.:—m the outpus Em_._ae completely.!

In this paper we jointly consider both, the output market, and the v_o_r_:o: sec-
tor, and we find that most of the results found in [DW] and [MP] do not generalize if
the feedback on the output market is taken into-account. By taking a more global view
on the one hand, we sacrifice some generality on the other by assuming very simple,
i.e. linear technologies. Before an innovative technology is .iqcm.:nma_, all the firins’
are alike, producing with constant marginal costs ¢; and emitting the same pollutant
at a constant rate dy proportional to output. At this status quo the social ov.:SE: is
assumed to be implemented by an agency either sétting an emission tax, or issuing a
quota of tradeable permits. The output market as well as a possible market for vm::;m
are perfectly competitive. Then we let a single firm develop a new technology _m@%:m ‘
to a lower rate of pollution per output, d; < do; but-at the same time incurring a higher
marginal cost, ¢; > ¢o. Clearly such a technology would never be introduced in a laissez
faire world a la ARROW /DASGUPTA-STIGLITZ. Under a tax or permit policy, how-
ever, a competitive firm’s value to innovate is positive if'and only if ¢ + 7d; < o+ dp,
where 7 denotes the tax rate, or the price of permits, respectively. We investigate the
competitive firm's value to introduce this new technology under either policy, and we
characterize these values dependent on a criticaldamage parameter which determines
the steepness of z.n social damage function. This leads to a couple of surprising re-
sults'which cannot be obtained without paying explicit attention to the output market,
First we consider a -situation where only one firm has developed the new technology,

!In the following I refer to this method as partial partial analysis,




and the regulator does not react immediately on innovative activity. We find that in
such asituation taxes provide higher an incentive to innovate than-permits if the social
damage function ig sufficiently flat, or if it is suffieiently steep. On the other hand, for
an intermediate range of damage parameters the value of innovation is higher under
vc:::m., Moreover, for damage parameters sufficiently low the firm’s value of innova-
tion under taxes exceeds ::, wcem_ <.LE. of innovation whereas under permits the firm'’s
value of innovation is zero. “This no::am? -also from one of the basic results of ARROW
and DASGUPTA-STIGLITZ, stating that under constant returns to scale a competitive
firm’s value of a cost reducing innovation is always positive, but falls short of the social
value. Morcover, in the Arrow-Dasgupta-Stiglitz model without externalities, as well
as in the Downing-White-Milliman-Prince model without oulput markets, innovation
always leads to an increase in welfare whereas in the model considered here innovation
can even lead to welfare losses if :_m.cxpe.:s::nu are internalized by taxes. The reason
for this is that the innovator vovm_Zw serves too big a market share compared to the
social optimum.

Next we consider c:SSL agency response before the technology has vmﬁ_ adopted
by other firms. Conventional wisdom from "partial partial” analysis teaches that taxes
have to be cut, or the corresponding number of permits has to be reduced. Taking into
- account the output markét, this result generalizes only if the innovator engages in limit

. pricing. If, on the other hand, the innovation is drastic, i.e. the innovator’s monopoly
priceis less than the conventional firms’ marginal cost, and if the social damage function
is a:::,_c::% steep, the opposite holds. A similar result can be derived for _:\::;m.
the adjusted number of permits can be lower, equal, or higher than the original one.
After (optimal) agency response, the innovator’s values of the new technology coincide
under either policy. Finally, the innovator has no incentive to promote diffusion since
constants returns Lo scale cancel all the profits if at least two firms with the new
technology compete on ‘the c:..?; market. Also this stands in contrast to the findings
in [MP].

All these results strongly mcmmmmp that neglecting the output market may result
in dangerous simplifications and policy qmno_sz.n:am:o:m based on such anm_m have
Lo be taken with’ care;

L would like to m_:v:wmwmo from the beginning that I do not model how much effort
the firms invest in order to find a new-technology. In other words, the model does not
consider an R & D process, as for m.xw:i_@y;oﬁ, does it in his [1978] article. I rather
follow ARROW, DASGUPTA & STIGLITZ as well as GILBERT & NEWBERRY [1982] by
Jooking for the value of an innovation once it has been found or could be bought on

some market.

The next section contains 25 set up om the basic anm_ mmnros 2.2 considers

the social optimum before innovation, and its implementation by taxes as well as by
auctioned permits. In section 2.3 we n:w;im:\m the socially optimal allocation of
::i%:o: if the new technology is available. Section 3 considers' the competitive -
firm’s incentive to innovate under the different policies. We also investigate optimal
adjustment of the policy tools and look in what direction taxes or quotas have to be
ratcheted. In the final section we summarize and briefly address free permits. Simple
proofs are given in the running text, more technical ones are relegated to the Euv,m:&x.

2 The ,?ao&.m_

2.1 Basic Assumptions o . B

We start with an industry consisting of n firms producing vm:ana substitutes and:
generating the same kind of pollution. Let ¢; and e; denote firm i’s amount of output
and emissions, respectively. The firms have linear technologies represented by pairs
(i, di), where ¢ denotes the constant marginal (private) cost, and d; is the constant
marginal pollution such that e; = dig;. Total output and emissions are written Q = )
Sk, g, and E:= YT, e, respectively. . . , : ,
Consumers™preferences are given by a bounded downward sloping inverse demand
function P, where p := P(0) is the choke off _:.,m.nm. Assuming P’ < 0 on its support we
can define demand by D := P~} for all p € [0,p], and D(p) = 0 for p > p. For second
o_.n_mq conditions we ?Zrm_. assume that P is not too convex: ) ’ .

Assumption 1 3:, all g > c with P(q) > 0: "P"(q)q + 2P'(q) < 0.2 Moreover,
:E«la P(q)g=

To m<£:w3. utility and harm of output levels (q1,. .., ¢.) (which determine (ej, ..., e,))

to the society, we assume to have a social welfare function W which is mm&:g_w_ .
separable into consumers’ net surplus, production cost, and damage from vc:::o_.r

where the' latter is given by a social damage function S : IRy x IRy — IRy which

depends on aggregate emissions £ and a damage parameter s. Employing the usual

notation S)(E, s) := mm.mhmh., and so on, we make the following assumption.

Assumption 2 .&..m. is at least twice continuously differentiable w. r. to E and s; in’
(0, 3 the right sided partial derivatives ezist. i) S(0,8) =0Vs > 0. i) S(£,0)=0 .
YE > 0. :Q SW(E,s) 2 0 Vs > 0 and sirictly greater for E > 0. iv) 5;(0,s)
S$\(E,0) = 0YE,s > 0. v) Su(E,s) >0Vs > 0 and strictly greater for E >.0.. vi)
S1a(E,8) > 0 VE > 0,5 > 0. vii) lim, oo S(E,5) = lim, 00 Si(E, 8) = 00 YE > 0.

2In terms of elasticity, the derivative of the inverse demand function has elasticity smaller than 2.




So, S is increasing and convex in I and marginal damage increases in s. Although s is
an exogenous parameter of the model, , paramelerizing S via s allows us to characterize
the social optimum as well as re m:_aecc\ _E:CS contingent on the damage function’s

steepness. Then W is m.<o= g

fs::é,sm\c P(2)dz'= STE,8) = S eiqi - (2.1)

i

In a dynamic framework, (2.1) can be interpreted as the flow value of welfare. The total
discounted welfare in a time intérval [Ty, Ty] is then given by sﬂ. Wi(gs,...,qu,s)e""tdL,
provided that (qi,...,¢,) remain constant for ¢ € [T, Th].

2.2 Perfect Competition, mo.nm.m_ Ovﬁ,ﬁ-ﬁ: and its Implemen-
tation under Symmetry

In this section we assume that all .prm‘m:wzgvei firms are alike owning the same
technology (co, do). This may be the result; of a former diffusion process. Under perfect

competlition the firms price-at marginal cost such that aggregate output is Q¢ = D(cg).* .

Due to the externality this 9;8.:6 is clearly not efficient. The socially optimal output

Qo rather satisfies . ' 5
P(Qq) = co + doSy(doQo,8) » . (2.2)

e., price equals private marginal cost plus social marginal damage. The optimal

emission level is thus given by Ep = &10?,

Implementation by Taxes: It is well known from the literature that a perfectly
informed government can enforce the social optimum by setting a Pigouvian tax 7 per
unit of emission equal to marginal social damage:

= 5)(doQu,s).. . . @)

Then the firms’ :::m:_m_ cost amaount to- ¢y + 7do, and vmnmmna 83%:.._0: leads to
p= 3 + rdp, and DAS + Tdg) = Qo.

~::.u_m_5m:nm$o= by Permits: .As an alternative to a tax policy, the government
could issue a number L of tradeablé vn::;u such that L = Ey, assuming that also'the

market for permits is _WQFQ._.«\ no_:vn::é‘ This means that the firms behave as price

takers, and they buy the permits just in time as they produce a nci,mmvczm_:m unit of

3The allocation among the firms may not be unique. If the customers split up equally, each firm

has a market share of Qo/n.

output. Thus no firm can preempt the market by buying all the other firms’ permits

“in advance. This assumption is crucial for perfect competition. It stands in contrast to

the recently developed noncompetitive models of —Ezz; trading in z&zaz VON DER
Fenr [1993] and EB:E [1993a,b]. . .
If o(L) denotes the market price for _F::.pm the firms’ marginal costs are equal
to ¢ + Q:\Ee. The factor demand for permits, denoted by LP(a), is thus given by
LP(o) := doD(co + ds). Since D is downward sloping, so is hbﬁqv as a function of o.

The m:_vv:\ of permits is completely inelastic and given by. bm?& Ey. Hence, there

exists a unique market clearing price equal to g = S1(Eo, s). .
By virtue of the linear technology a permit regime in general generates capacity
constraints. It could be argued that this leads to nonexistence of Nash-equilibria in

pure strategies if one considers the market as a price setting game. Since we want to_

highlight perfect competition in this model, we assume an Arrow-Debreu world where
consumers realize only the lowest price. Thus a firm faces no demand when pricing
higher, and there is no :mm; for a rationing rule i in case that all 2_@ firms exhaust :F:
capacities.? ’

The literature often distinguishes between auctioned permits and free permits,
This distinction is somewhat Emm_mwm:_m. In both regimes the price for permits is
determined by supply and demand which are equal under both policies if firms are price
takers. So there is auctioning actually in both regimes (also the market mechanism can
be considered as an’auction). Thus, there is no big difference in-how the permits are
allocated. The difference consists in final profits since under a system of free permits®
the firms do not incur the cost of buying permits. For the most part of this paper we
discuss auctioned permits, i.€., the firms do not own an initial endowment of those.

This allows a better comparison to taxes. In-section 4 we briefly address free permits.”

2.3 'The Social Value of Innovation

In this section we assume that one firm comes up with a new technology (c;, dy). As we.
will see, it does not matter in this model whether the innovating firm is an incumbent
or an entrant. Before turning to the incentive to innovate under a tax or permit policy,
we characterize the social aptimam if the go,@tmm of technologies (co; do) and (cy, dy)

were available. To make the analysis interesting we make - .

>wmc§vemc= 3 . 4 A do  and S V co.

“This assumption can be .:5::2_ by the limit :.m::. of ALLEN and Heviwio :cma_ who show that
the market price converges in distribution to the competitive price in a Bertrand-Edgeworth price
setting game if the number of firms becomes large. . !

Phis is sometimes 2..?2.@; to as grandfathering (sce"T .m‘_,mz_;,wo [1985]). . 3
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Le., the innovator generates less poflutants per output but incurs a higher marginal

cost. Since we have constant marginal costs, and all the firms are alike apart from the

’ ::_:S::? we denote by ¢y the aggregate quantity produced by the converitional firms

with :i:.:_:mv. A:_,&ov aud by gy the quangity produced by the innovator.

,— hen, the vc:p_ planner has to mc_é the following program:

90+91 §
max W{qo, q1, ) = :Ex\e P(z)dz — S(doqo + d1q1,8) — cogo — €1q1 (2.4)

. 90971 q04491

2 0, q1 2 0. Let (go(s),q1(s)) denote the solution of Awt Further let

s.t. ec .

Qi(3) = qu(s) + qls), and By (3) = doqo(s) + diqi(s) denote the socially optimal

*aggregale output and emissions if the new technology is available. Finally we write

W (s) = W(qo(s), qi(s);s). The following proposition yields the properties of the opti-

mal solution:

Proposition 1 Let .
o dyer — 58 o . .
B= . . (2.5)
a) Q.v P, then for all s > 0 the new ?l.:a?.ew .@\:EE not be introduced.
b) If p < P, there are parameters s and 3, depending on cp, ¢y, do, dy, with 0 < s < 3 < 00
{3 < oo iff di > 0) such that the solulion of (2.4) is characierized by: ’

.

i) Vs e [0,s], we gel qo(s) > 0, qr(s) = 0. Qu(s) = qo?v is decréasing in s, and

cp — Cg

Si(B(s),9) < gr=y.

ii) Vs € (s,3), we get s_?v >0, qi(s) > 0. Moreover, qo(s) is decreasing, gi(s) is

increasing, (Q 1= ¢ o.v +qi(s) is constant in s, and P(Q) = v Marginal pollution

-ts given by

SiB(s),9) = 3= | | (2.6)

‘i) Vs > 3, we get nc?v =0, qi(s) > 0. @L ) = qi(8) is decreasing in s, and

1= ¢
do — dy

Si(E(s), s) >

iv) Moreover, Qi(s), Ei(s), and W (s) are continuous, £1(s), and W(s) are decreas-

ing in s,

v) Vs > s we have Q;(s) V Qd(s)-

6The other cases are more are less trivial.

vi) 35t > '8 m:ne that Ey(s) < Eo(s) for s A s* K h;,ﬁv > Fyo(s v..\,os, s > s*, and
Ey(s*) = Eo(s7).

Note that, according to b.ii), # is the social (i.e. the private plus the external)

marginal cost of production if both firms produce. If this cost is greater,than the choke

off price p (part a)), the new technology should not be introduced for any damage

" function S. If P < P (part b)), and if the social damage from pollution is low, clearly

the conventional lower private cost technologies should serve the. whole market. For
intermediate values of s, a partial innovation is socially desirable, and production should )
be shifted continuously from.the old to the new technology as s increases, keeping total -
output constant. If social damage from pollution is sufficiently high, the old pmar-_o_oww.
should be replaced completely by the new ene. These properties are displayed in
Figure 1.- The parts a) and b}, i)-iv) of Proposition 1 are derived by solving (2.4)
taking into account the Kuhn-Tucker conditions with respect to the constraints 20
and g; 2 0 (for details see REQUATE [1993a]). v) says that aggregate output does
not fall through innovation. This is certainly not surprising. [t may be surprising,
however, that emissions do rise if the damage parameter is sufficiently high (vi). The
intuition for this is as follows: since the only way to reduce pollution in this model
is to reduce output, Qo(s) is close to zero if $ is extremely steep. mwzno under the
new technology one more unit of pollution generates much more units of output than
before, the output ratio @(s)/Qo(s) becomes relatively large, such that also d;Q(s) >

- doQo(s). To put it another way, for s very large and Qo(s) very small, marginal utility of

consumption is close to its maximum, such that after ,==c§:o= the gain received from
more consumption more than outweighs the damage from one more unit of pollution.

v) and vi) will be proved in the appendix. .
Figure 1 about here.

Finally we define the social (flow) value of ~.§.S§:.§ simply by the difference of

the socially optimal welfare <w_=mm after and before innovation:
« q0(a)+1(2) , ,
Vo) = "7 Ple)dz = S(B1(5)9) ~ utos) = er(s)

\co.__..., P(2)dz + S(Eo(s),5) +c0Qols) @

1t

3 Incentives to Innovate under Regulatory Poli-
cies : o

If ¢; > co, and if there is jo,_.mm:_wzc:.,m::u have no incentive to come up with a new

discovered or developed technology. This is different if the industry is regulated by

7 .



taxes or permits. Throughout- this analysis we will assume that the status quo is such
that the regulator has established optimal tax or permit policies with respect to the
conveitional technology ?.ﬂ.:kcv. Although this is not completely realistic (see MARIN’s
[1991] criticism), this wmmc:.:én._: serves as a useful benchmark. As an alternative we
could assume that the regulator simply wants to meet a certain emission target. Our
EE_VJE includes this case, as _Ez.:::: I’ at the end of this section shows. :m:em the
‘status’ quo lax is given by E 3), the, iinm quo number of permits is hc?v = Ey(s). Of
course, these policies might not be cr::dw.. any longer as soon as some firm has come
up with a new technology. On the other hand, by at least 25 reasons it is reasonable
bo assume that regulating authorities are not able to adjust tax or permit policies
immediately. First, it takes tiine for the regulator to gather information necessary
for calculating the new c_.,:iw— levels. Secondly, decision processes take time in most
democratically governed societies (not only there).

Further it is assumed that the new technology will not _532_5_5; be adopted
by other firmns. (Under Bertrand noBvQ;_cE it is enough that one other firm has
adopted the new technology.) We handle diffusion on a very abstract level here. The
process of diffusion is not relevant and not the issue of this paper. There miay be even
several different ways one may think of: First, the new technology is available on the
market. For instance, firms could purchase a scrubber in order to reduce emissions of
50;. There could be uncertainty, however, about cost and bm:,c::,w:nm of the new
technology. Now one pioneering firm might have an informational advantage or might
be courageous and successful in introducing the new technology first. If it turns out
that the scrubber works properly and provides a cost advantage, other firms may follow.
Under perfect competition an incumbent competitor is even forced to follow quickly
since otherwise he would _.omm all demand if the innovator can produce at a _csaq. cost.
under the current policy. According to this story the time period where the innovator
faces a 8::55:5 advantage is likely to be small. mmnc:.:v\. we could imagine that the
innovating firm itself-develops the new technology which can be protected by a patent
for some time. In this nmmm.. the comparative advantage is likely to last relatively long.

‘Hence, we study first the incentive to innovate before taxes or permits have been
a&:v?a and before the technology has gm: adopted by any other firm. This s:: be
done in scction 3.2. Later in section 3.3 we consider optimal agency response and the
. innovator’s value of the new technology after ratcheting. If we talk of the firm’s value
of the innovation this is to be interpreted as the flow value at each instant of time. In
contrast, the total value of innovation, received by mimprm:m over Lime, will we briefly
considered in section 3.4. But before we do m:. this, we need some auxiliary results.

3.1 moim Oo:.mnmac:m Lemmas

et z be a tax rate or a permit price. An ::_o<w::m firm has a cost wn?w:pmma ; .::_
only if

crtadi <cotady. : 4 @1

Since o_.m innovator is the only firm m_:_d:._m the cost advantage we cannot wma:_:o
that the outcome will be perfectly competitive. Rather, the conventional firms will
take the role of a competitive fringe. Here we follow DASGUPTA AND m,EQEeN [1980]
by employing the standard Bertrand model which predicts that the innovator charges
the limit price co + 2dy and gets the whole demand. Um:o..m the tax or permit price for
which the two firms’ marginal costs break even by

be .. €1~ C0
Gl

=gl =g

Further, we denote by pJ(z) the innovator’s monopoly price under a tax or a v,m::;

price z, and by gf*(z) = D(p}*(x)) the corresponding monopoly dutput. If the innova--
tor’s monopoly price pJ(z) is smaller than the conventional firms’ cost ¢ + zdg, the

innovation is called s%@m:nz. following ARROW [1962]. Note carefully, however, that

the concept of a drastic i innovation is to be taken 3_.;2@? to the current tax policy

here. The following lemma states that the innovator m:mammm in limit pricing for low

taxes (permit prices), and in monopoly pricing for taxes Avm_.::e. v_,_nomv sufficiently

high. -

bm:..-:m 1 There is @ taz 7/, or a permit u:% a, xmuﬁan:e&? with v = o’ = ¢’ and
* < &' < (P— co)/do such that o

L e @tede for r<asa
. 4 pi(z)  for @' Sz <(P—co)/do . .

Proof: See the appendix.
The profit of the innovator under limit pricing is then given by

mi(e) = oo = ot oldo— ] Qo(s), (3.2)

and under :uczovo,_% pricing by s
mi(z) = ?Eev —ler+diz)lgl'(z) » - . A - (3.3)

The next lemma’ drives the main results of this _V%E. [t states that the profit of ::.
innovator as a function of the tax or permit v:? has a ::5:1 maximum,




Lemma 2 There is a unique taz rale 7, or permit price o, respectively, with v =

’

o' =" and £ < z* < 2’} which mazimizes 7(-), where =’ is given by hS:Sa 1.

Proof; Sce the appendix. |
, Migure 2 about here.

Whereas in a “partial partial” modél a tax increase O:E increases costs and lowers
profits for both, the inunovator and the non-innovators, here raising the tax (or permit
price) above the break-even level increases the cost advantage of ..rm innovator and
thus increases his profits up to some z*. For © > 2/, the firm m:mwmmm in monopoly
pricing. Iu that region a rising tax increases the monopolist’s costs, and thus clearly
~decreases his profits. :H is strictly less than z'; the profit falls even under limit pricing
for x € (z*, ).

In the last two lemmata the perinit price was taken as fixed. The third lemma
tells us what price will settle after innovation, contingent on the number of permits.

It is important to note that we still assume that all the firms including the innovator”

behave competitively on the permit market. The timing is as follows. The innovator
makes a decision ‘on the output market by announcing a price for the 85:5&3.:
Then both types of firms bid up thé price for permits on the permit market. When
the ::.o,\wpo_, makes his decision on the output market, he takes into account that the
permits market clears, Thus the ::_céson cannot preempt the market by buying all
the permits in ..:_S:.nm. o

Denote _Q B?v w:m = E;(3) the moem:% optimal emission levels »,5

§ = s, and s = 8%@2.3? w:nq the new technology is available.

Lemma 3 For each supply of permils L there is a unique competitive equilibrium on
the permits market given by a market clearing price oy(L), and an allocation of permils
(eo(L), (L)) among the conventional firms and the innovator,” satisfying:

i) there is L' < L suck that for limit pricing oj(L) is given by

ENM%HE .< o \3,. L>T,

SEH. b " for LelLT), 4 (3.4)

? mh.ﬁ!no > o for Le [l L), :

and for monopoly pricing, i.e. for L < L')® by the solution of

dy

q>wum=. the allocation of -,2,::3 among the conventional firms is not unique.
8At L’ the innovator switches from limit to monopoly pricing.

%o (e +o(L)dy), . . (3.5)

ii) (eo(L), ex( L)) satisfy P
eoll) = L L oefl) = 0 . i LxT )
ell) = oFhl  e(l) = 485k, i Le(LT),

eoll) = 0 . oell) = L ooif L<L.

Proef: See the wvvﬂi_x

~ The lemma says that if the supply of permits is sufficiently large, i.e. h > 1T, its
price stays below 0% such that the innovator cannot compete with the conventional
firms. Those buy all the permits, For L between L and T, the price settles at o’
such that the marginal costs of both types of firms break even. It may be surpiising
at first glance that the permit price is constant for a whole interval of permit quotas.
However, similar to the social optimum (cf. Proposition 1.b.i ii;- the marginal cost o..
both types of firms break even for a whole interval of different allocations of emissions
(production). Note further that for £ € [L, L] the allocation of permits and thus the
allocation of production among the firms varies with the number of permits. Although -
several allocations of g:::.m are consistent with o = 0%, and the price cannot enforce
a unique allocation of permits for L € (L, L), market clearing yields a unigue matching
between supply and demand of permits. For L > T the conventional firms hold all-
the permits, :-m.,m.::.ogno.. gets none. As L falls, the number of permits held by the
innovator rises. Finally, if L does not exceed L, the innovator gets all the permits,
engaging in limit pricirg for L2 L, and in Eo:ovc_w pricing for L < L/ (equ. 3 Sv i
These properties are a;v:&\mm in Figure 3. !

Figure 3 about here.

3.2 Incentives to Innovate and Welfare Implications under
the Original Tax or Permit Policies . .

In this section we investigate the incentive to innovate and look at welfare implications
when taxes and number of permits are on the. optimal levels before innovation, and
only one firm has access to the new technology.

3.2.1 Innovation under Taxes

szonm by 7o(s) the optimal tax policy w.r. 3 :.m conventional technology, satisfying
equation (2.3). :

MILLIMAN and PRINCE [1989] have been ?&.S_% criticized g MARIN :wmc_ for
assuming optimal regulation. MARIN argues that this is not realistic, and that thelevels .

of taxes or permits were set rather arbitrarily. This, of course, is not true, either. Even
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if _5:@ tools are not set optimally .:,_. general, they can often be considered as resulting
from a compromise r..;iﬂ.wc: environmental departments which prefer Em__ emission
taxes and industrial departments which prefer no or low emission taxes. Certainly
_c_v_c;:m, sometimes even bribing, plays an ::_51‘;:: role. ,
:cs:.iﬁ since we wanl to :..Sb:mn? whether the value of innovation under
:.m:_a..c_a, policy _va.r_z exceeds or ?zv .short of the social value innovation, we
need a’ criterion to measure this. Hence, as a benchmark, it is reasonable to look
what happens if the conventiorial industry is regulated optimally. Thus in the next
two subsections it is assumed that conventional industry is regulated by the optimal

‘emission tax or by the optimal number of permits, respectively.

Proposition 2 Under 1o(s), the competilive firm’s value of innovation is posttive if
and only if p < P, and 8. > s. The innovative firm serves the whole market.

Proof: See the appendix. N

I other words, if there is no fixed cost of innovation, the firm will innovate if and
only if a partial or complete ,:::.5.__?: is-socially desirable. This scems to be good
news” However, the innovator serves the whole market after innovation, irrespective
of this being, desivable, e, g =
implies that innovation always leads Lo a decrease of wellare if s is sufficiently close to

i, or ol e, 8 € (8,9). This is bad news since it

a For, by Proposition | the innavator should only produce a small share if s is greater

Lot elonie to g We state this by

Corollaey 1 I p < p, and s > 3 but s sufficiently small, decentralized innovation

leads to a deerease in welfare under the oviginal tax 1o(s).

One can show by examples that-it is not possible to be more precise than this,
i.e. il s is large, welfare may rise or fall through decentralized innovation via taxes. It
may even be the case that welfare decreases through innovation for each s.

3.2.2 Innovation under Permits

Here we consider the incentive to innovate under the originally optimal permit policy
Lo(s) = doQo(s). In contrast to an emission tax the market price for permits will
nrw:mm immediately after innovation m:_nm...:m demand for periits changes everi before
a policy maker adjusts :E E::?.n of permits. Lemma 3 implies that :_m value to
innovate is negative for L > h zZero for L € [L J and vo&:é for 5 < L. This in
turn yields the main mqm_::ai for the ?:oé.:@ result.

?Note that it does not matter whether :.o innovating firm is one of the EQ::.F:E or an entrant.

.Proposition 3 Under.the original permil policy Ly(s),

i) the value to innovate is negative for s < s,

i) there is an § > 3 such that the incentive to innovite is zero for s € [s,3), and "~

iii) it is positive for s > §.

Proof; Prop. 1.b.vi) implies that there is 3> § such that Lo(s s) = Ey(s) € [L, L] for
all s € ~ 5] (see Figure 3 By Lemina 3 the price for permits is m:_m:af equal, or
greater than o as Lo(s) > I, Lo(s) € l_ or Lo(s) < L, respectively (see Figure 3).

QED. - . ; o :
Figure 4 wvor@rmnm.

This result is bad néws, since for a considerable range of parameters the innova-
tor’s value of the new technology is zero, although m:::m_ or even complete innovation
is desirable from a social point of view. In particular, if research and development, of
the innovation requires a fixed cost, the innovation will not take place for s € (s,3). In
case that no fixed costs are incurred, or if the set up costs are already incorporated in
¢1 (e1 could :.:Ew the cost to install capacity of the new technology), and if we further
assume that a m:: will innovate whenever it is _Er‘?_,m:p between innovating or :op
we get, (with some _.mmnzm;_c:mv good news with the following Emzz

Proposition 4 Under the original permit policy hc?u Emewn_.n increases ::,aeg de-

centralized 5:3&;8: for all s > s.

Proof: See the appendix. e

3.2.3 Comparing the Values of Innovation

We now compare the firm’s different values of innovation under the two policies. In
the wo__os_zm we refer to the innovating firm’s value as the private value of innovation.
Assure that the innovator’s flow values of innovation, denoted by V= °(s) and «\?Z?%
for taxes and permits, respectively, are given by its profits, i.e. by V; :E Os) = w1(7o(s))
under the original tax 7o(s), and by V7" sy = q;n;hc?vvv under :E ‘original number

of permits ho.?v. ; ) :

m:.ovom_:o: 5 SES. the original taz QA&, or 5:?.. the original number o.‘. m&ﬁ:a
Lg(s), ﬂa%mnrem@. we: have

0= VP™™s) < Viuels) < Vf2*(s) - e (5

Cif 8 > s but sufficiently small.




So sufficiently close to s, under _:.:__.:m a competitive firm’s value to innovate is smaller
than the social value. Under taxes, on the other hand, it exceeds the social value. This
shows. interestingly that the DASGUPTA-STIGLITZ [1980b] result, claiming that the
social value of a cost reducing innovation always exceeds the firm’s value, fails to hold
if externalities are internalized by Pigouvian taxes. .

Proof of Tnoﬁomao: 5: The first inequality follows from Propositions 1 and 3.
For the second inequality it.is m:En_E: to-show that at s for the right sided derivatives
dVoe(8)/ds < d s::o (s)/ds holds. The e:<m_cvm theorem implies dV,..(s)/ds = Q. _,:
the appendix we verify that dV En_ (8)/ds >0. Q.E.D.

The next theorem mrcsm, however, that the relationship Emv does not hold in

general.

Theorem 1 Suppose the original policies 1o(-) and hc: are still valid. Then there
erists an interval (s,,s,) of a.a::&a paramelers, with s, > 3,'° such that

i) for all s € (s,,8) the u:eim valye of innovation is higher under vmzzam than
under tazxes, i.e.

Vitt(s) < VI(s) . - . : (3.7)

NQ for ,== s € (3,8,), and for all s > s, we have
:ETL > Vi (s) . , . (3.8)
i) For s = s, and i sy the values coincide.

I would like to ‘emphasize that this result cannot be obtained without paying
attention to the output market. “In particular part ii) stands in stark contrast to the
findings in [MP]. Before proving the result the following lemma is helpful. It states that
after inhovation the permit price falls below the original tax whenever the innovator
engages in limit pricing. For s sufficiently high, on the other hand, the price for permits,
o1(Lo(8)), exceeds the original tax. and przm also rises compared to the permit price

_vmmc.d innovation. ) F

Fm:.::m 4 i) For all's for which the :5353 engages 5 :3; pricing under the

original tax policy ﬂc?v we have:

o1(Lo(s)) < To(s) . | o w T, | a.s.

ii) There is s* > 3 such that for all s > s*:

a1(Lo(s)) > mo(s) . .. R S . - (3.10) .

19T his means that complete innovation is optimal on (84, 53).
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Proof: See the appendix.
~ Part i) of the lemma is Q.:E:_% not mz::_m_:m if there is less demand for
permits, one should expect the price to go down (note that 7o(s) is ‘also the price for
permits before innovation). But what does the price drive upwards _n s is _mqmn and,
hence, Lo(s) is small? Actually the explanation is'simple: For s mcz_n_a__:% high the
innovation is drastic, and the innovator engages in Bczovo_% pricing, which is lowyer,
than ¢y + do7o(s). But if the monopolistic innovator wants to produce significantly
more than the whole Em:mE did before innovation, he possibly needs more permits.’
But there are ne more. This causes the price for permits to £O up. . }
Proof of Theorem 1: Recall that ' is the tax rate where the innovator switches
from limit to monopoly pricing. Let s’ = rg _.T.Lv. Further recall that 7* (= o*) is the
tax (permit price) which maximizes the innovator’s profit. Let s* := o (), ..:z_ .
1= (01 0 Lo)™'(0") be the corresponding damage parameters. By Lemma 4.i we
have oj(Lo(s")) < :.,? ). By virtue of Lemma 2 we get s* < s** and 3 < s* < g\
Hence 71(1o(s)) adopts its unique maximum at s*, whereas m(a;(Lo(s))) adopts its
unique maximum at s Hence mi(o1(Lo(s™))) > mi(ro(s**)), and by continuity of .
a(-), 7(-), and m(-) we have 5?: (Lo(s))) > mi(7o(s)) for a whole interval. Since
by Proposition 5 we have m{0;(Lo(s))) < m1(70(s)) for s m:?ﬁniq close to 3, the
functions m(01(Lo(s))) and m;(7e(s)) must intersect at some point, say sq. By part
b) of Lemma 4 we have a;(Lo(s)) > 7o(s) for s sufficiently high. For those s the

innovator engages in monopoly pricing. Thus the marginal cost under vm::.;m is mnawpmn

than under taxes and, therefore, the -profit of the (monopolisti¢) innovator is lower
under permits than under taxes for those sufficiently high values of 3. By continuity,
mi{o1(Lo(s))) and my(ro(s)) must intersect at a second point, say s, This 85138
the proof. The argument is illustrated in m_,.m:nm 5. QE.D. ‘

‘igure 5 about :ﬁm.

. Riinning several nxwiv_mm on the computer, I found that for s sufficiently high
the social value of innovation always exceeds :_m. firm’s value to innovate under taxes

‘(and by Theorem L.ii, also under permits), | was not able to prove that this holds true

in general. Hence 1 can only make the following conjecture.

Conjecture 1 If the social &S:Em \.SS:S. is m:.?,en::e steep, the sacial en?n of
S:oea:ez exceeds the firm’s value to innovale under either policy..

Zz.c:mr standard in the literature of vm:._w_ m:&%m_m, some more %E.mm éco-
nomists refuse to determine optimal emission _E:.F via social damage functions. They
rather prefer to work with exogenously given emission targets, They argue that damage
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functions in terms of money A.m::c.. be determined, but that scientists should determine
emission targets which are just on the limit 10 be acceptable (for example a critical
pollution level of a lake just below the level where all life dies). Although I do not
share this view at all, one can carry over the result of Theorem 1 to a model with
" exogenously given emission targets: )
Theorem 1% [Charges and’ memaum&m >vvncmnr_ m:vvoﬁ Ey is a m_<n=
emission target. Let aﬁncv denote ::. tax which _:.v_m:.rim this target before in-
novation, and Ly = Ey the ao:avvc:%:m‘:.::vn., of vm:::.m. Then there are always
targets [y > By > [y, such that i) FW all E > E, the private value of innovation is
-negative under either policy, ii) for L € ( fh& and for all £ < Ej the private value
of innovation is higher under taxes than under permits, iii) for all E € (Ey, E3) the
value is higher under permits than under taxes, iv) for E; and Ej the values coincide.
Ta see this simply take for each Ey the damage function for which Ey(s) is the

corresponding optimal emission level.

3.3 Optimal Agency uwmm.vmz.mm

In this section we examine the, Eevaqanm of the optimally ratcheted tax, and the
::,:.u_:z_;:.n number of _:.::;v tespectively. In particular, we ask whether the new
tax ::EE:S;V the social optimum, whether :_m tax decreases, as one would expect
from [MP}, or whether it rises. The same we do for permits. After that, we will
investigate the :.:cs».;: s gains or losses from adjustment.

3.3.1 Optimal Tax >&=§3m=~. wmmo..m Diffusion

- Since we assume that .mmm:n% response aid diffusion happens after some time lags, we
denote by Ty, the length of the institutional time lag, and by Tpy, the length of the
time lag for diffusion. These lags are mxomo_a:m_.% given,

Let us suppose first that T, < Tpy, that is, the regulator may react on the
innovation before the new technology has been adopted by other firms.
" Denote by 7(s) the new optimal tix after innovation but before diffusion. If
innovation is not drastic relatively to the new tax, for s > m, .:A”& satisfies

w+m(s)do=P(Qus)) . . Lo (@3.11)

Otherwise it is implicitly given by

P (11(s)) = P(Qu(s)) . - , ey

Proposition 6 Let Ty, < Tpp. . Then Vs > 3, 1/(s) implements the social optimum.
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Proof: See the appendix.

For s € (s,3), marginal-damage is constant in social ovﬁ::::r and hence the
optimal tax had to be constant. Thus the conventional firms’ and the innovator’s
marginal cost would coincide. If we assume that customers split up equally among the

firms in case that all the firmis charge the same (competitive) price, the social optimum -
cannot,be achieved in general for'all s € (s,3). Here the first best policy could be

approximated by charging 7% — ¢ for s close to s, charging 7% + ¢ for s close to 3, ahd
¥ for s somewhere in the interior of (s,3) (see Figure 7 below). This is similar to.
regulation of wm%.:a:mo:n Bertrand duopoly, investigated in REQUATE [1993b].

If agency response can be nxvmn:& after some time, the innovating firm is not
only interested in the current value of innovation, but has to take into account also
the future value after taxes have been adjusted. Hence we investigate first whether the
tax will rise or fall when being optimally adjusted. The intuition Eww, suggest that a
tax cut is always welfare improving since the innovator generates less pollutants per
unit of output. Al least this has been found in [MP]. In this model this is not true in
general as the following v..bvc&:o: shows.

Propaosition 7 .m%ﬁemm s> 3,
i) If the innovation is ot drastic w. r. to T0(8), i.e., 3 (r0(8)) > co + qc?v&?
the tax &maxmammm through adjustment, in particular:

q.o?v > 7p(s) > 7. . : (3.13)

ii) There is always an s* > 3 such that for all s > s* we have 1(s) > To(s), and the

innovation is drastic w. r. to the original and the adjusted taz.

Proof: See the appendix. . , , L
The second part is certainly surprising and contrasts from [MP]. The intuition

of this is the following. The higher is s the greater is the difference between the

conventional firms’ cost, ¢y + 7o(8)dp, and the innovator’s monopoly price. Thus the
innovator produces more than optimal under the old tax. Hence, to Smpo.d the mon_m_
optimuny the tax has to be.increased.

The converse of ii) does not hold, that is, a drastic innovation will not necessarily
lead to a tax increase. (For a numerical example see REQUATE [1993c].)

3.3.2 The firm’s value of innovation after tax adjustment;

In the "partial pastial” analysis of [MP] the innovating firm always gains from a tax
cut. In our model the conventional industry acts as a competitive fringe. Hence a tax
cut'not- only lowers the innovator’s cost but also the limit price ¢ + 7dp, and thus may
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be unfavorable for the innovator. On the other hand, a tax cut is clearly favorable for
the innovator nnder a drastic innovation since lower taxes lead to lower marginal costs
and thus increase monopoly profits. The next result characterizes the regions- where
:E._::oﬁpcq gains from. S:_ES:W_ and where it does not.

Theorem 2 i.ﬁ.a exists an ..:?2;.; (8¢,84), with s, > 3 for which optimal tax ad-
Justment is favorable for the innovator. In this region ratcheting resulls in a tax cul.
On the other hand, for all s € (s,5c) and for all s > sy, tar adjustment decreases the
innovator’s profit. (For s = s, and s = s4 profits will not be affected.) Moreover, the

innovalor engages in limit pricing in a neighborhood of s., and in monopoly pricing in

a neighborhood of sy.

Figure 6 about here.

The _:ccw is driven by Lemma 2 and P.ovcm:._oz 7 and goes m::__mq_z to the orie
of Theorem 1. Hence I only sketch the main idea which can be 3—;:8; from Figure 6:
Tax adjustment leads to a tax cut for s not too high. Each tax policy 7o(s) and 7;(s)
adopts the profit maximizing tax rate 7* for different values of s, hence the maxima of

.al..&@: and m;(r(s)) must wm.‘pa_ov:& for different values of s, Thus the two curves

m1(7o(+)) and m;(7;(-)) must intersect once in the range of limit pricing. Since .EA.V.E:_
71() intersect in the range of monopoly pricing, 3?.& ) m_z_ 3?.; )) must intersect
a second time for high values of s.

Also this result cannot be obtained without taking into account the output mar-
ket. It follows that the political coniclusion from [MP] that innovators wmm.zxmq to
engage in lobbying for a tax cut, cannot be drawn.in general! For a ‘certain range of
parameters - where innovation is non drastic - the innovator, if asked, would oppose
optimal agency response, although this would result in a tax cut."' On the other hand,
there is always a range of parameters where the innovator favors ratcheting, and where
limit or monopoly v:nEm may _.wvva:. Not surprisingly, the innovator would oppose
agency response which results in raising-taxes in the range of parameters where the
::6<m,,:c=_ is drastic, and he/she enjoys Eozﬁ‘%e_w power,

w.w..m Tax Adjustment after Umm.zmmos

:5__% we briefly consider the case where Ty, > Tpr, or where there is a second ad-
._:m::m:e process after diffusion. Suppose the new technology has been adopted by the
other firms, or at least by two firms, such that perfect competition has been restored.
Denote by Qr,p(s) the socially aptimal output if only the firms with technology (cy, di)

HThus the all American phrase " [ hale fazes” has to be reconsideted.
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produce.” Then for each s there is clearly always a tax 7 imv cv:::: E_w..:.,n_v\ to the
diffused technology, satisfying
?E& = $1(diQ10(s),9) - . e E (3.14)

Assure, however, that complete diffusien is socially optimal only if s > 3. For s €
(s,3), Proposition 1 is still valid and only partial innovation would be optimal. Firms,
however, have to switch technologies under an emission tax if they want to stay in the
market. Note further that for all s > 3 we have 7yp(s) > 74(s). This is because the
innovator as the only firm always wants to price higher than the competitive price before
diffusion. Hence, the regulating tax has to be lower than under petfect competition.
Interestingly, Proposition 7.ii implies that the new "competitive tax” 71,p(s) will be
higher than the former tax ﬂcA ) if s is sufficiently high. This is an other conclusion not
to be obtained without paying attention to the output 58,_8._ It follows that, if the
institutional lag is shorter than the time of diffusion, and if s _m _w_.mm. the tax will rise’
twice, whenever optimally adjusted. For s sufficiently close to 3 3, on the other hand,
first the tax goes down after innovation but before diffusion, and then it rises again

. (see Figure 7). o :

Figure 7 about here.

3.3.4 Adjusting the Number of Permits

In contrast to taxes, permits have to be adjusted o.._C once as the following result’

shows:

Proposition 8 If there is no fized cost of innovation, and the firms innovate whenever
they are indifferent between doing so or not, then, regardless of Ty, < Tpy or Ty, 2
‘oL, for all s > 0 the social optimum is implemented by issuing a number of permits
equal to the socially optimal pollution level, i.e. Li(s) = Ei(s).

Proof: The v_oom follows almost immediately from Lemma 3. Q.E.D.
Note that before diffusion, for s > 3, only the innovator serves the whole market,
possibly by charging the monopoly price whereas after diffusion perfect competition

‘rules the market. Why do nevertheless both market structures induce the social -op-

timum? The answer is “by virlue of the market: price for permits”. Since the supply
of permits is constant, the market price for permits always induces the Eo:ovo_.m:n
innovator to supply the right c:mi_@

. We'saw in the last section that .pmx adjustnient may result in a rise as well as
in a decréase of taxes. General wisdom from “partial partial” analysis teaches that
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the ‘number of permiis has to he cut down after innovation. Propositions 1.vi and 8

- however, imply i ia : j i . ,
d mmediately t » adjus : i

) y imply y that ::.,ﬁ::a.ba permit policy, denoted by £;(s, may

go up or down: . .

Corollary 2 There is an s° such that ?AA.& < Lo(s) (Li(s) = Lo(s), .\L?v > Lo(s))
. 0 . 1] . p i ' ’
as s < s (s = 8% 8> 5°). The innovator engages in monopoly pricing for s > g0,

3.3.5 Gains for the ~==o<m.:.“vo-. from Permit Adjustment

In comparison to taxes, the results under permits are ?_Ecms reversed. Since the A

permit price equals o for s'¢ [3,3] by Lemma 3, the profit of the innovator. continyes
to be zero for those s.. Since for s greater but sufficiently close to 5, the number of
.vc:_:?., will be A_,mm:nmm such that the price rises, the innovator gains from ratcheting
For large s, on the other hand, the number of permits is to be increased such’ that ::“
price goes down, which is good for the monopolistic innovator. Note that for s > 3 Exmm\
as well as permits implement the social optimum, and the market price for permits
denoted by o;(L(s)), and the adjusted tax, 7(s), must be equal. Hence, after ov:.smh
agency response, the profit of the innovator under permits is the same w@::mmm taxes
Thus, E arguing similarly as in Theorem 2 we get: .
Theorem 3 There exisls an interval (s,,s;), with s, > 3, for which optimal permit
adjusiment decreases the innovator’s profit. In this region 3:.\;:.@ resulls in decreqs-
-ing the number of permits. On the other hand, for all s °m (3,3.), and for all s > g
permit adjustment increases the innovator’s profit. (Fors.= s, E.& 8 =gy vﬁa\:m E&\N
not be affected by adjustment.) Moreover, the innovator engages in limit pricing in q
“neighborhood of s,, and in monopoly pricing in a neighborhood of sy. (See Figure 8.)

. Note that s; coincides with sy from Theorem 1 whereas s does not necessarily
coincide with s,. . i

Figure 8 about here.

3.3.6 Ranking of the Values of Innovation after Ratcheting

Since after ratcheting but before diffusion, the new optimal tax 71(8) and the market

price for permits o4(L;(s)) coincide as we have seen in the last vm_,pmqm_o_: also the

values of r:.os.io: coincide. Since those are zero (or almost, zero under taxes) for all

s € (s,3), after ratcheting the private value of innovation under taxes and vmq:.:m. falls

short of the social value fof all s '€ (s,3), and also for some s > 5 but sufficiently close
“to 5. Whether this holds true also for very large values of s, we do not know.
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After diffusion, trivially the private values of innovation under taxes and permits
are zero, and hence they also coincide. This is so because perfect competition cancels

all the profits. .

3.4 The Total Values of F:c«&.&o: . s

For the firms the total value of innovation rather than the flow value matters if they
have to decide about introducing a new technology. To calculate this value we have to
integrate over time, discounting future profits 3\, some rate r. Thus the social value is
given by
, - .. poo ’ g ) ; .

Vyoel(s) = \o Viee()e™"dt = Vyoel(s)/r SR €51
where we assume that further innovations happen so far in the future that we can’
neglect their impact on welfare. In case where Tiy, < Tpy, e.g: if the innovation is

protected by a patent and ratcheting happens before the patent expires, the firm’s total

. value of innovation under policy. pol € tmsm?vmﬂq::& is given by: .

~ . TiL Tpe . o
poly . = pol0y .\ —rt 1t <ﬁo~.~ Tt .
7o(s) | \c V{ (s)e™"'dl + b 4 {s)e™"d 3
== ([ = e ] VP (s) 4 [T = e Tor] v () (3:.18) .

where S‘&b and Vf °h! denote the firms’ flow values before and after wmmsavn_.mmvc:mm,. '
respectively, but before diffusion. If Tp, < Ty, the value reduces to ﬂ\\u&?v =
JTou Su&.ﬁmvmv:&. Since the flow values differ only before w.mmsn% response and dif-:
fusion, Theorem 1 carries over to the total values ﬂ%n and ...‘E;

‘Proposition 5 holds for Ty, and Tpy, sufficiently large. In other words, if s is large.
m:o:m:. such .:..ma innovation is (at least partially) desirable but not too large, and if .
possible R&D costs of the new gorsc_cmw do not exceed the social value, there are
always adjustment lags 7., and patent lengths Ty such that, under the tax palicy a
firm invests into innovation if this is desirable. Under permits, on the other hand, a_
firm never develops a new technology if this incurs a ‘positive fixed cost and if s < 3.

In case that the value to innovate under taxes ezceeds the social value before
Si.m:bm and falls short of it after ratcheting, one might be tempted-to endogenize
the reaction lag H_:.,q and maybe also the patent length Tpy,, such that the innovator’s
value coincides with the social value. On the other hand, once the innovation has been
introduced, it is always optimal to adjust taxes or permits as fast as possible. Knowing
this, firms, therefore, might never innovate although this would be socially mw:_sw_.
Thus one might suggest the government to better committing itself to rules rather than -
pursuing a discrete adjustment policy (cf. KYDLAND and PRESCOTT [1977]). This,
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.

:cs:.ﬁ.? is not a first _:JP solution, either. : would be better to adjust. as early as
- possible and to reimburse the innovating firm for its fixed costs of innovation.'? These
‘considerations suggest that further researchis necessary to explore more sophisticated

incentive schemes in order 1o induce lechnological change.

4 Conclusions L : : .

We analyzed a mudel where a competitive industry with polluting firms is Em:_w:& by

either effluent taxes or auctioned permits. One firm develops a new, cleaner oma_.:e_omw

We :.S#:mw..ﬂ_ the incentives to innovate under either policy, assuming that neither’

diffusion nor policy adjustment happens immediately. We saw that taxes provide
Em_.c_,.. an incentive to innovate than permits for damage funttions sufficiently flat
or sufficiently steep. But there is also an intermediate range of slopes where permits
always yield higher an incentive to innovate than taxes.

We further investigated the impact of agency response. Tax adjustment results

in a tax.cut for innovations that are non drastic. For drastic innovations the tax may

-rise if the damage function is sufficiently steep. Similarly, the number of permits to

be issued has to be reduced for non drastic innovations. For drastic innovations and
:::m:.w_ damage m:nmo_m::% high it has to be increased. .

Also the E:oé::m firms’ interest in optimal agency response is m:::m:ozm. For
damage functions sufficiently flat or sufficiently high the innovator opposes optimal
agency response under taxes, but would support it under _uo::;m For an intermediate
range of slopes the opposite-is true.

We concentrated.on auctioned permits only because a comparison to taxes under
.\:mm vo::;w is a bit o:::umamc.:m, for, the firms’ additional profit depends crucially
on the number of incumbent firms. Since the price for permits goes down through
innovation for s sufficiently small, a firm’s incentive to innovate is smaller under free
permits than under auctioned permits. . ww Lemma 4.ii, on the other hand, ::u price
for permits goes up for s sufficiently large. Hence for a certain range of vmq.ﬁ:m,m?
where ::. innovation is drastic, the incentive to innovate under free permits is even
higher than under auctioned ones. ‘The difference between those two permit regimes
vmno:.mm small, however, as the number of m::m goes to infinity since than the initial
endowment of permits goes to zero. .

Higher incentives to innovate under taxes, raising taxes, issuing more permits
after ratcheting, mz& firms rmzam tax cuts, all these results cannot be derived in the

12T his, of course, causes moral hazard problems under asymmetric 5?5&.5: since the innovator’

is El_:oa to o<2.m::m its cost.

"partial partial” frameworks neglecting the outpul market.

Certainly, not all of the qualifications in the model Enmm:p& here are completely
satisfactory yet, leaving room for further research. Confiing to _Eamq technologies, for .
instance, might be criticized by at least two reasons. First it is not always realistic to
assume that the innovator is able to serve the whole market. This criticism, however, -
in the same way applies to the Arrow-Dasgupta-Stiglitz’ model, and to the best of
my knowledge there is no literature so far concerned with incentives to innovate under
increasing marginal costs. mmoosm_w. firms may be able to reduce emissions by in.:..._.m:m
further costs without affecting the output level. Assuming abatement technologies of
this type, however, also results in wrm:.ao:w:m the assumption of constant marginal
costs, The difficulty here is to find a simple way to classify m=.=o<.y$<a technologies
that are nonlinear (or the corresponding nonlinear reduced cost functions). There is
no straightforward ranking from low to high costs, or low to high emissions as done here.
T am currently working on this problem. .E:w:% what I called optimal agency response
is only optimal in a static sense but may not be optimal in a dynamic framework. Our .
results suggest that :;28:603_.Enn_;?w schemes other than pure tax or _um:ia
regimes might prove more appropriate in a dynamic framework. Also this I have to

leave for [uture research. ‘ ) .




A Appendix

Proof of wwovo,m.mﬁas 1

decreasing,'® i) implies that @(s) =

we write Wi(Qo(s)) := J&°
- OW(Qo($))/8Qu(s) =

v),vi): Ad in Since Qi(s) = Qis), and Qo(s) is strictly
Q > Qo(s) for 3 € (s,5). Now let s > 5 Then
@ 3 EN = 3(diQo(s), 8) ~ e1Qo(s). Differentiating yields

AQQ?: = dSi{d;Qy(s

)s8) —¢r > o — cp + do Sy (doQo(s), 5) —

@m.:.«:@o?v,& > co — ¢1 + (do ~ d7)S1(doQo(s),8) > 0, where the second equality
follows by substituting P(Qo(s)) from (2,2). .

Ad vi): i) implies that Ey(s) =

Eqg(s) for s < s. Let 5 be.defined by m%.wv =

Ei(3) = diQ. Then we get $y(di(,5) = (P(d;Q/do) -
Sv\ﬁ&c —dy). Since 813 > 0, and Lo(s) is strictly decreasing, we obtain 3§
Eo(3) > Ei(3).

> 3:implying
Now we show that Ei(s) > Ey(s) for s sufficiently high. Abusing

co)/do > (B~ co)/do = (cf — .

notation we write W (E, s) =

W 1(Ey(s))/(0E)

Sm\.: P(2)dz — S(E, s) ~ $-E. Hence

P(Ba(e)/ds) — (A17)

d151(Eo(s),s) - Ev\.&,

If Eo(s) > Ei(s) for all s, then the terth in braces would always be negative. 1:;_5.?
Eo(s) satisfies: Sy(Ey(s),s) = Tu Ame

v -~ ae_ /do. mz_um::;_:m ::w into (A.17) yields

' _ mE%;.S (di/do) - Em%v\& co—cr <0
=3 &cEQ&&\&L di P(Eo(s)fdo) < doey — dico = p(do — dy) (A.18)
m:.. if s goes to infinity, Eo(s) goes to zero. Thus P(Eq(s))/d; goes o.o pforj=01
Hence, the L.H.S. of A> 18) converges to Ee ~ dr)p, contradicting > 5. Q.E.D.

Proof of Lemma 1: Denote 7

co + 7'do = P(g{(7')). On the other rw:m P(q7(r')) satisfies the f.0.c. for monopoly:
P(ql")+ P'(q7')qi" ~ c1 — 7'd) = 0. Combining we get co+7'do+ P'(qF )qr — ¢ — r'dy = 0,
thus 7/ = (¢; —co ~ HAQEQL.\E@ —di) > (¢] -
in 7, it remains to mroi :So p™(r) < co + 7dp for 7 sufficiently high but smaller than
(P —co)/do. Note :Sa
monopoly price is smaller than 5, we get p™(7)

="(p — c)/do. By mom::._o= of 7 we have

co)/(do — d1). Since p(7) is increasing

< P = co+ Tdy. By continuity of p™(-)
Q.E.D.

y the innovator erigages in limit pricing.
[eco—cr + l&e —di)}D(co + 7dy). Differentiating

we also mmﬁ P™(7) < co+ 7do for 7 smaller than but sufficiently close to 7.

Proof of Lemma 2: For, 7 close to 7t
Hence the profit function is 7(7) =
w.r. to. T yields

w(r) = (do = di) D{co + 2,5 + (e~ ¢y + 7[do — di])do D'(co + do) .

13716 see this, differentiate G.,mv w.r.to s, yielding Q) = memmwwﬂ <0.
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=co + Tdp > ¢r ¥ 7d;. Since for any marginal cost ¢'< 5 the

“This gives () = 0 and ='(r

be .V 0. The second derivative is
7(1) = doldo — d1)[2D'(co + 7do) + [ = (1 — c0)/(do —'d;)]do D" (co + 7d0)] .

If D"(p{r)) < 0, the second derivative is negative. If :o&.. note that Assumption |
::v:mm pD"(p)+2D'(p) < 0..Note further that 7 = (p— n&\&o. and Eon. —dreo)/(do~

d) = p, Ermam P is defined in P.ovo_w_:o: 1. This yields:

n'(r) = do(do - dr) [2D'(p(r)) + (p — D)D" (p(7))]
< do(do ~ dr) [2D'(p(7)) + pD"(p(r)] <O . - .

Hence the profit function is concave for 7 < 7/ and continuous at 7/. On the other
hand, the profit function is clearly decreasing for 7 > 7/, since there we move within

the monopoly region. Hence there must be a unique maximum 7* € (7

at 7'. Note that 7 need not be differeritiable at 7'.

be, '] possibly
QE.D.

Proof of Lemma 3: We proceed indirectly. Suppose first o < o*, Then"
¢ +odp > co + ody, and the conventional firms serve the whole market, thus holding
doD(co + ody) > doD(co +-a*dy) = L. Now

< and the innovator share the market.

all the permits. This implies L

let 0 = o®. This yields ¢; + od; = co + ody =
Let a, with 0

market shares of the conveational firms and the
get for the permits: L = doaQ + di(1 — ) =

eo(L) ="doa) = Lm This term is nonnegative for L = 4,0 =

&=|m~
er(L) = L — eo(L) =

p. Thas the conventional firms
I, and 1 — a be the
innovator, respectively. Then we
(do = dy)aQ + d;Q. This implies
L. This implies

di(do§ — L)/(do — d;), which is nonnegative for L < dQ =

E:w:z assume o > o%. Then ¢; + od; < ¢ + odp, and_the innovator engages in

limit pricing for ¢ greater but close to o”

¢ (clearly, the innovator’s monopoly price

is m«nﬁ.mq than the limit price, if ”rm conventional firms’ and the innovator’s cost are

close). Hence L = Eb?e + odp) < d; D{co + Q:&cv =

5@ = L. By rm.::.gw.w there

must bé a permit price ¢’ where the limit ?o:::o&&; price equals the monopoly

price, ie. o'+ o'dy = p™(c; + a'dy).
increasing in o there must be L' such that L' =
L =d;D(co+ody) for L > L > L' and L =diqg™(c;
the proof. Q.E.D.

Proof of mvwchm::c: 2: Proposition 1 impli

Since limit and monopoly prices are strictly
Rs NuAnc + Qicv =
+a'dy) for L < L'. This no::u_apmw

dig™(cr + o'd;) and

ies .w_Ech?v 8) = (¢1—co)/(do —

dp). Since Qo(s) is strictly increasing it follows that 7o = Si(doQo(3),8) > (¢ —

¢)/(do — di). Q.E.D.

Proof of Proposition 4: case a) s < 3 (recall that

implying Lo(s) € Qb ).

9 o L-di@ - dO-1L
\,_ Ple)dz = S(Ls) = |au = s ot

. 25

Employing rn:::w 3, we get:

3 is defined by Lo(3) = L),
Wi(L) ~ Wo(L) =

L/do _ : L
l\,w P()dz + B(L,s) = co




= /¢ P(z)dz — zﬁ h_ 0. :
T g o\ ;

The last equality follows after some manipulations and by virtue of (doc; — dyco)/(do —

dr) = p. The last m:m._:.w_:k follows since p = E.m:um_b\mc.g P(z).
case b) s > 5, implying Lo(s) < L. Then  W;(L) - Wy(L) =

Lid co Lid; & ~d
[ playds - T - ,; L= e g
. ,\P\ko A v i Ra &c .\B\&o TANV z &=&~ N\ .V
LNTL L] _.do—djf ! 1 L .
() [-H-Ateafl ) > 0 ase
@G~ &%) " da T g wl\P\g) o) > 0 QED
Proof of Proposition 5: Write G(s) = sn?V Using 7o(s) = 51(Qo(s),8) =

{(P(Qo(s))~co)/do, we can 35:8 (3.2) into G(s) = “=4(P(Qo(s))~5)Qo(s). Differen-
tiating we get G'(s) = ATAQc 8),8)Qo(s) + P( @c?vv!w\v.@c?v. Since Qo(s) = @
and thus P(Qo(s)) = ? we get G'(s) = .ﬁlahﬁx@c?vv@o?v@c (8)>0. QED. -
Proof of Lemma-4: i) For s € [s,3] we know from Lemma 3 that o(Lo(s)) =
o < 1o(s). For s > § we have 1o(s) = Sy(doQo(s) Lv [P( h\&o 8_\&c > [P(L/d1)~-
co}/do = o(Lo(s)), where the last equality follows from Lemma 3. _
ii) For s sufficiently high, 7o(s) and Lo(s) are such that the innovator engages in

monopoly pricing. Hence the permit price satisfies
‘ P(Lo(s)/d1) + P'(Lo(s)/dr) - (Lo(s)/d;) ='c; + od; .

o .w.vv - m&\&o_ the vm:.::.vlnm o is greater than the tax if
P (Qu(s)) — et P (52) B p(u(s)) -

Since ﬂo?v _

dy

7= dy o do
o P(£006) " P(@als) , o [ Lols)) Lols) & G el
“ dy - do +é d; di Vmﬂl&[c.Uv dod;
o doP [2Qi(s)) — diP(Qo(s)) + P Ll)) doLold) | 5 gy

! i .‘5 . E &~ &
* Now for s intreasing, No?v as well as Qo(s) go to zero such that under Assumption |
the LHS goes to p(dy — di), which is clearly greater than the RHS since 5 > 7.
" Proof of Proposition 6: By Lemma 1, 71(s) has to satisfy (3.11) for values of
s greater but sufficiently close to 3. This holds up to some s' = (r;)~'(+'). For s > ¢/,
-71(s) satisfies (3.12). We are done if we can show.that.7/(s) > 7%, since then none
of the conventional firms interferes. Indeed, close to 3, 71(s) satisfies co + 77(s)do =
3@1% = ¢ + d151(d1Q(s),8) > er + d;j7% = cg + dor®®, where Sy(d;Q(s), s) > rhe
follows from Proposition _..v.ms.. Since p(t) is continuous at 7/, and 7 is increasing by
virtue of (3.11) and (3.12); it follows that ry(s) > 7%, Q.E.D.

2%

Proof of Proposition 7: ad i): Note that in :;m case the innovator sets
Q1(7) = D{co + rdy) and that Q1(7o(s)) = Qo(s). Then we get

: Qols) -
W(n(s), ) = \c " P(2)dz = S(di1Qols), s) — c1Qos) -
Differentiating nrmm.axvmmmmwos with respect to the tax yields:
OW (ro(s), $)/07 = [co + ._.o?v..&a.l d151(d1Qo(s), 8) — ci] - Q4 (m0(s)) .

Since Q4(7) is clearly negative for Q(r) > 0, it suffices to concentrate on ‘the term

in brackets. But since 7o(s) = Si(doQo(s),s) > ,m._T:Ocﬁ&,.& the term in brackets

is greater :5:.8 — ¢1 4 70(8)|do — d] which i in turn is greater :::_ zero by virtue of
70(s) > [e1 — co)/ldo — dj].  Q.E.D. o
ii): Observe that limg_o .m._«Am_.& = 0 implies :::. Vs 2 0 we get To(s)

(P~ co)/do (there is always some production). By Lemma | there exists an s wzaamszm

large such that p™(7o(s)) < co + 7odg. Now consider the change in welfare if we raise

the tax at 7 = 79(s): - . v o S
IW (ro(s &\?. [B7 (ro(s)) — di1S1(d1q)* (7o(s)), ) ~ al- en_,?c?: .

Again, ¢ () is clearly negative. To show that the term in brackets becomes negative

for s sufficiently large, observe that 74(s) converges to (p — ¢o)/do if s goes to infin-
ity. Hence the innovator’s cost converge to.cy + d;(P — o) /do < P (this follows from

rearranging p < p). Hence the monopoly price pJ*(7o(s)) is always bounded away from '

P which in turn implies that the monopoly output ¢j*(7o(s)) is always bounded away
from zero. Since p}*(7o(8)) — ¢y is bounded by 7 — ¢, and since by >wmc5vso= 2.vii),’
S51(E, s) becomes arbitrarily large for s sufficiently large, the term in brackets becomes
negative for s sufficiently large. That the innovation is drastic w. r. to the original tax

follows immediately from part i). That it remains drastic under the new tax follows.

from Lemma 1. Q.E.D.
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