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The Nucleolus of Homogeneous Games with Steps

J.Rosenmiiller and P.Sudhélter

Abstract

Homogeneous games were introduced by VON NEUMANN-MORGENSTERN [15] in
the constani-sum case. PELEG [7,8] studied the kernel and the nucleolus within this
framework. However, for the general non—constant—sum case OSTMANN [ 6] invented
the =ap=m minimal representation, ROSENMULLER {10} gave a second characleriza-
tion and SUDHOLTER [ 14] discovered the "incidence vector", Based on these results
PELEG-ROSENMULLER [9] treated several solution concepts for "games without
steps". The present paper treats the case of games "with steps”. Tt is shown thai with o
suitable version of a "truncated game" the nucleolus of a game is essenlially the onc
obtained by truncating behind the "largest step”. As the fruncated version has "no
steps", the case "with steps” is reduced to the one "without steps" — which is {reated

in[9].
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Section 0
Homogeneous games

The material of this paper is organized as follows. SECTION 0 serves as an
introduction to the theory of homogeneous games and provides the necessary concepts
and notaiions. SECTION 1 deals with certain families of representations of
homogeneous games “with steps". These families put an increasing amount of weight at
the players within the lexicographically first minimal winning coalition (Theorem 1.11).
As a consequence, it turns out that in games with steps, the system of minimal winning
coalitions cannot be (weakly) balanced (Corollary 2.6). This is of course important in
context with the structure of the nucleolus; thus SECTION 2 discusses some simple
properties of the nucleolus. However, Corollary 2.6 is not sufficient to explain the
structure of the nucleolus of a homogeneous game "with steps". Therefore, SECTION 3
explains the "reduction theory™ of the nucleolus. First, a {runcation procedure is
necessary. This, after some preliminary work, is described by Definition 3.6. Lemma 3.7
explaing the nature of the truncated game. Finally, by Theorem 3.8 and Corollary 3.9
we collect the material available so far and prove that the nucleclus of a game with
steps reduces to the one of the truncated version. .

This section serves as an introduction to the theory of homogeneous (simple) games. All
of the material presented may be found in the literature, see e.g. OSTMANN [6],
ROSENMULLER [ 10], SUDHOLTER [ 14].

Let B = {1,2,3,...} denote the "universe of players". For the "grand coalition" we choose
some "interval" = [a,b] = {i€M | a<i<b}. P =P(M) = P([ab])={S]|5CO}is

the system of coalitions. If
viP R v(#)=0

is a mapping on B, then (QR,v) is a game; somewhat sloppily we refer to v as to "a

game". v is simpleif v : P — {0,1} holds true.

Unions of coalitions and players are written SU i instead of SU {i}; S + T and § 41
denotes disjoint unions. Similarly, i < T denotesi < j(jeT) (S, T€P, i, jeq).

Q&m:u&ﬁﬁmmwgmﬂ W= W) = {SER |'v(S) = 1} is the system of winning

coalitions while
Wo=Wov) = {SeW | v(T)=0 for %mmv

is the sysiem of minimal winning coalitions {"min-win coalitions"),

. Q. o
A vector M = (M hen ma... is taniamousnt to 2 function on P ovia M(S)= £ M;
i€§
(5 €B) (thus, it is 2 non-simple "game") and hence called a "measure" (M is additive).
Games and in particular measures, may be restricted on subsets T C$, the notation is

<_How E_H ieg

Je@ =v(TNS) (Sep)

<_ a@ = ¥(5) (S€R(T));
the version lving on P(52) and the one living on B(T) are not distinguished. We
tolerate v, .
g
I M is & measure and ) > 0, then (M,}) is a representation of v if
1 M(S) A
0 M(S) < A

v{8) =

. " y . M .
holds true, in this case we write v = v e Of course, integer representations are of parti-

cular interest.

A measure M is said to be homogeneous w.r.t. A €R,, (written "M hom MY if, for any

TP with M(T) > ), there is § C T with M(S) = A,

A geme v is homogeneous if there exists a representation (M,A) with M hom A and
v(9) = 1. (The definition is due to VON NEUMANN-MORGENSTERN [15] )

We assume all representable games to be directed, i.e., there exists a representation
(M,)) such that i < jimplies M; > Mj (i,jeq).
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Thus, the "strong" or "large" players (the ones with big weight M;) are
enumeration (or "index"). In particular, if I(S) = max {i|i €S} for S € P, then (8) is

the "weakest™, "smallest”, or last player in S.

Whilz niayers are ordered according to "size™, coalitions are ordered lexicographically.
In particular, the lex-max min-win coalition is the lexicographically first minimal
winning coalition; in a homogeneous game with a homogeneous representation (M,))
this coalition is sometimes denoted by S50 or SO} (an interval with measure
M(S™) = A).

Players i and j are of the same iype (written i ~» jor i ¥ i), if, for all §CQ — (i+]),

v(S+i) = v(8+j) holds true. A representation (M,)) is symmetric if i ~ j implies
Mi=M; (i,jef).
Player i €Qis a dummy if v(SUi) = v(8) for all S€P. All dummy players are of the

same type. Note that the game is assumed to be directed; thus, the definition of types
induces a decomposition of Qinto intervals

. Q=T 4.+ Tr
of players of one type. i € Ty is also expressed as "i is of type p"; thus
R {10t}

denotes the set of types. If dummies are present, then r is "the dummy type" and, in a
natural way, type p is "stxonger" than type p + 1 (p € R-1).

We shall refer to "dummy" as to a character that may or not be attached to a player.
There are two further characters, "sum" and "step", which we are going to explain now.

To this end, fix a non-dummy player i € Q.

Among all min—win coalitions containing i, let L{!) be a one with minimal length, i.e.

I(LW) = min {I(S) | $21, S € Wn}.

Then
C = [ (LMY + 1, b]

is the domain of i and MU} = g_ 02% i's satellite meosure.

W W
. Lo
\
T T3 » T
Fig.1

Now, if M (CWH) > My, then i is 2 swm ("his character is sum"), since he may be
replaced in a min-win coalition by & coalition of smaller players, his weight being the
sum of the weights of the smaller players.

: { :
In this case, we call vi}) ;= «r ¢ the satellite gome of 1 (2 homogeneous gamel). Also,

" (1) i . 0 o : i
50 = mﬁm is the coalition of i’s satellites; this is the lex—max min—win coalition of vi¥),

Otherwise, if M) (CM) < M;, then iis a step. In this case his ("pseudo") satellites are
the members of his domain, i.e., we put 51 ;= C),

"Sum" and "step" arz possible characters of a player — like dummy. From this, there
reselts o further decomposition of Qinto the sets of characters

Q=Y+ 0+ 4,
where = X{v) = {i€ 0| is a sum}, 1= I{v) = {steps} and A= A(v) = {dummies}.

T as well as A may be empty while IT is not.



Remark 0.1: The following is well known (OSTMANN [6], ROSENMULLER. [10],
SUDHOLTER [14]).

i

The smallest nondummy player is always a step. Its domain may be the empty set.
If v is a constani~sum-game, then the smallest nondummy is the only step.

A homogeneous game has a unique minimal representation (M,2) (e.g., in the sense
that (M,}) is integer and M(f)) is minimal), this representation is symmetric and
attaches weight 0 to dummies.

A pair (M,)) is a homogeneous representation of v, iff there exist real numbers
A2 0 with &y > 0 (i €10), Aj = 0 (i € %) such that

M= & (ied)
My = A+ M(SW) (ieZUID)

holds true. (4&; (i €9Q) is the "jump at i".) The unique minimal representation is
obtained by putting A; =0 (i €A), Ay =1 (i€ll), _

Let j € and let i €CY be a nondummy w.r.t. vl (suitably, we write i f AV :=
A(v8))). Then i has domain, satellites ete. w.r.t. vl let Cld), ML) denote his
domain and satellite measure w.r.t. vi), Then

CW =\ {CI | je X, ieCW, i ¢ AN}
M® = max {Mtd) | jeT, 1€CO), i gAN}

holds true with an obvious interpretation of "max".

Ifi ¢ SO, then i€ Tiff i € 3 for some j € SO,
Also, i € Aifi €AY for all je SO,

Let j €SO and let 1* = I(8*). Then C=[I»1b]. S™ N I is the coalition of
"inevitable players" (i.e., those that are present in every min-win coalition). If all
players in S} are steps (inevitable), then v is the unanimous game of the members
of §* (with minimal representation (M,}) = (1,...,1, 0,...,0; X).

N’

X

Apart from the inevitable players, no further steps occur in S,

7. In every homogeneous representation (M,)) of v, sums of the same type have the

same weight. Steps of the same type may have different weight, but then they
appear or do not appear simultaneously ("as a block") in every min-win coalition.




, Section I
Monotorne representation

Representations of homogeneous games are essentially defined by prescribing the
"jumps" at the various steps. This section serves to study the consequences if the jumps
are considered to be (positive) affine functions of a real paramsier.

Lemma 1.1: ("small steps belong to i’s domain")

Let v be a homogeneous game and let i < 7 be two players of different type. If 7£ 3,
then 7€ C),

Proof:

By induction on the number of iypes. If there is just one type, nothing has to be
proved. .

Otherwise, let 5™ be the lex-max min-win coalition. T cannot be an inevitable player
(since i precedes him and is of different type). Also, 7 cannot be one of the sums in 50,
Hence, 7 # ), and if i € SO the proof is done.

If i £ SO, then consider, for every sum j € S®) {he satellite game vl In at least one of
these satellite games, i and T are of different type. Since r £ I, we have 7 £I0). By
induction, r € Cth3). Since

cw = \J ok,

our claim follows.

Definition 1.2:

rmn.m. reftand i < 7 €IL We shall say that 7 is the nezt siep followingiifi and 7 are of
different type and there is no step in [i+1, 7~1].

Lemma 1.3:

Let (M,A) be a homogeneous representation of v. Also, let i € @ and let 7 €2 be the next
step following i. Denote the jump at i by A; (thus, A; = 0if i € E).

Then there is 0 < ¢, €M and C = {€1)1eprar,bp O € €1 €M (€[ 741,b] ) such that

b
(1) Mi=Ai+ M+ 3 o My = 4y + ¢ M, + CM.

l=141

Proof:

By the recursive property of M we have

M = A + M(SW)

and by Lemma 1.1 we know that 7 & Gt holds true.
Now, if 7 is the first (targest) player in S), then we are already done.

Otherwise, the first player in S has to be a sum and 7 is in his domain (Lemma 1.1).
wmm;&:m his weight by a sum of weighis of his satellites we observe players entering
that are either sums preceding r, 7 himself and possibly smaller players ~ but never
smaller players without 7 (again by 1.1). .

Proceeding this way, we replace the weight of all sums preceding 7 by a sum of weighis
of smaller players. Thus, eventually the largest weight occurring in our sum is the one
of v — and necessarily with a positive coefficient. q.ed.

b
m: ¢; My is not necessarily the weight of a coalition (we cannot
Lt

Note that CM = .
necessarily write "M{T)" for this expression). For, although some M;j (j < 7} is 2 sum of
smaller players weights, these smaller players must not necessarily be available in SCX ~

henee the above mentioned process does not necessarily generate a coalition.

Nevertheless, the term CM as it involves weights of players smaller than 7 looks rather
similar to a sum of weights of smaller coalitions, Conveniently, we shall therefore write
7 < C to indicate that C = {€1)1¢nss,1 i an integer vector with coordinates indexed by
players smaller than . This will be important beginning with Lemma 1.8.

2y ; _— 0
Similarly, we write C ¢ G to indicate that C = (e1)yeoq) € EWA .
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Definition 1.4:

Let v be a homogeneous game. A family of representations
(M(2), X(2), e,

is said to be affine, if there are constants A; >0 (i €IUA) and By > 0 (iell) B;2 0
(i € A) such that M; = M;(a) satisfies

(2) Mi=Aja+B; (ien)
(3) M; = Aja + B; + MW(SM) (en)
(4) M = MO(SM) (iex)

that is, the jump at every step is a ("positive") affine function on R,,.

Remark 1.5:

1. For a €R,,, (M(a)), A(a)) is a homogeneous representation.

2. By induction it is easily seen that there are vectors E, F ¢ sm such that F > 0 and
(5) Mi= M;j(a) =BE;a+ F; (ieq),

hence
) M(a) (5) =2 B(S) + F(S) (S€P).

Thus, an affine family of representations is equivalent to an affine mapping from R,,

“into the homogeneous representations of v (regarded as a subset of sbv.

For short, we shall write (M(- ), A(-)) to indicate an affine family of representations
(an a.fr.).

3. mw:w::m measures, lex—max—coalitions etc. do not depend on a. Therefore, it makes
sense to state that, for somei€A,

(M@}, gi(+))

is an a.fr. of the satellite game vi¥ ete.

-11 ~

Definition 1.6:

Let v be homogeneous. An a.fr. (M(-), A(-)) is said to be monotane if, for every i € N of
type p, the constants A; and By as required by {3) satisfy

7) >ww>a (i<reqinm)
B, P
i 4

® FEFR (leow).

A monotone (M(- ), M+ )) is strictly monotone "at i € 11" if (7) and (8) are strict inequali-
ties and { is not of the type of the smallest step.

A monotone (M(-), A(+)) is strictly monotone if it is strictly monotone 2t some i €11
which is not of the type of the smallest siep.

Note 1.7:

For nonnegative reals a,b,c,d with b, d > 0 and m, n € l§ it is clear that

)

=
oo

(9) max (§, §) 2 R—-48 2 min (

MNow, since (8) is required for all j, 1 € OW), it follows at once thai for sl coalitions
§T ¢ CO

Aj + B(8), B(T)
(16) i+ N@Maaw.

In addition, if one inequality in (9) is strict, then so are all of them. Thus, if {8) is strict
for all j, 1 in some CU), $hen so is (10) for all §,T ¢ CW,

The same holds true if instead of coalitions §,T ¢ (¥ we use vectors C = MEVKQE and
D = ﬁbbﬁﬁg and D == E;ancv with coordinates ¢y, dy €My — i.e., C,D € CY), 2 notar
tion we have introduced with 1.3, The analogue to (10) is

(1) BFor 2 BF-




-12-

Monotone representations emjoy a certain monotonicity property: essentially the
quotients www are increasing with weights (i.e. from the right to the left).

Now, since the weight of a sum averages smaller weights we cannoi expect that
quotients increase while i moves through sums (from right to left) —in view of Note 1.7.

However, (8) ensures that there is a significent jump in the quotient af every step and
that, thereafter, the quotient stays at least above all levels that have been attained by

previous steps.

That is, from step to step the quotient increases significantly (from right to left) and in
between it does not fall too rapidly.

‘Thus, we imagine the following picture

E
i/F,

1 »

- . .
o o o o e i .
b ot s T T I e e

a it n 1 n n (15t Step)

The following exhibition serves to clear up this intuitive idea.

Lemma 1.8:

Let v be homogeneous and let (M(:), A(:)) be a monotone a.f.r. Let i €I and let j,1 be
of smaller type. Then .

13 -

In addition, if (M(- }, A(-)) is strictly monotone at i €1, then (12) is a strict inequality
for all ! following 7 which are of smaller type.

i SRR X
LITO0N

If i is the smallest step, then there is nothing to prove.

If j and 1 follow behind the next step o the right of i, then (12) follows from (11) and
Lemma. 1.1, since the next step is in i’s domain and thus 3,1 are in i’s domain C(1),

We shall consider the case that j] < 7 where 7 is the next step to the right of i, and
thus, j and | are sums (the remaining case will be clear; alsc the statement concerning
strict inequalities is analogous).

Now writing M = M(a) = aE + F we obtain by Lemma 1.3 with suitable c,d €,
CDcCw . ,
M; = ¢M, + CM

(13) My = dM, + DM .
(As 7 < C,D it follows that C,D ¢ C by 1.1).

A similar relation holds true for E,F, a.g.
Bj = cEy+ CE
Fj = c¢Fy + CF

i

and the same for 1,d,D.
Hence, in order to prove (9), we come up with

As + By Ay + By + CE, eE, + DE I
Bi + F; " By oF, + CF 2eF, + DF = Fy

since 7 € ClY and CE, DE ete. are multiples of weights smaller than 7. q.e.d.
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Theorem 1.9:
Let v be homogeneous and let (M{- ), A(-)) be 2 monotone a.f.r.. Also, let 7 € T and let
1 € Q be of smaller type.

Then, for all i €

o
v
e L

(14)
holds true. The inequality is strict if BouonoEa;w is strict &% 7.

Proof:
Assume first of all that i is a step of the same type as 7. Then i and 7 have the same

satellites and domains, thus, in view of (7), it {ollows that

E; A+ MMOA:" A+ GMO..:“ _E B
muw .mw -+ m‘ e - awHuM~

the last inequality using Lemma 1.8.

Next, assume that 7 is the next step following i €L (— the remaining cases will be
omitted).

Choose ¢,, C according to Lemma 1.3 such that 7 < C and
M; = ¢, M, + CM.

Then
Ei=cE,;+ CE
Fi=cF;+ CF
and E E, + CE __cA; + cE mE + CE JE)
=C 1
Fi TR, + CF T ¢By + ¢ 2F)
where again the last inequality is established by Lemma 1.3. q.e.d.

Clearly, Theorem 1.9 resembles the statement suggested by Fig.1.
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Corollary 1.10:

IE(M(: ), A+ )) is 2 monotone a.fr. of a homogeneous game v, then

(15) Frflgm  Gesum.

o
LXODL

Ifi €If then C = §® and E; = A, + B(SW), F; = B; + F(5W), hence

(16) @, me Lt wmmc .w w m%ww

follows from Definition 1.6 (formula (8)).

Now, let i €22 Suppose first of all, that there are no sieps to the right of i apart from
the smallest one, say ro. Then, Mj iz a multiple of qu. Ei is a multiple of ma etc.

Hence, an equation holds true in (15),

Wext, assume that the largest step to the right of i is not of smallest type. Call this step
TEIL

Now, let
O = 8+ R

be the decomposition of i's domain into the satellites and the remainder. Then consider
all players of 7°5 type: by Lemma 1.1., they are in C and since "steps tule their
followers" (OSTMANN [6]) they must appear in S&). For simplicity we treat the case
that 7 is alone in his type only.

Thus, with a suitable d, € K and suitable integer vector D, v < D, we have
M(SU) = dM, + DM.

From this, we conclude first of all:

E(S") dE, + DE _ dA, + dE(S®) 4+ DE

17 B mﬂﬁ&
(7 = 3F-TDF = a8 dF(S™ F DF

N
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by Lemma 1.8. Finally, we come up with

. E(S®) | E(SW w o
(18) Hmmuwmaww e nm*maw. q.ed.

Essentially, Lemma 1,10 can be visualized by inspecting Fig.2. In fact, for any interval
of players of the form [i,j] the quotient

E(li,j
F(31,;

ranges between the one supplied by the largest step within this interval and the one of
the second largest step to the right of this intervall (more precisely: the smallest

member of the second largest type) (cL.Fig.3).

S R e ]

..:l.,l.\.q.nhL..H...,\ ......... - ¥

1
i
[
CTTTT T
!
|
|
|
!

-
{
b ¢ ¢ e o e ]
|
!
J

Fig.3

In particular, the quotient E([1,]) / F([1,i]) is seen to decrease (strictly) at every
step.

In particular, if we have a game without dummies, and at least two steps of different
type, we may construct strictly increasing affine families of representations. In such
representations it turns out that, with increasing parameter, an increasing amount of
weight is accumulated on the lex-max min-win coalition.

—-17 -

Theorem 1.11:

Let v be homogeneous and (M(- ), A(- )) an a.fr.. Define

@“%:.lﬁq

@gua%a.

L I (M(-), M) is monotone, then Q is a monotone increasing function in a.

(19)

2. I {M(-), (- )) is strictly monotone, then so is Q.

Proof:

Clearly (omitiing the argument a)

20 ~M{SON _ aB(§(»)
e 9 = Bty = o

In order to show that this is (strictly) monotone, it suffices to show that

(21) ﬁmf, m%uw A.v.v E(D)

holds true. S

Both sets are intervals and S® does not include all steps of the second largest iype

Thus, in a strict a.fr., (21) is a strict inequality, g.e.d
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Section 2
The nucleolus: preliminary results

From now on we shall always assume that any homogeneous game under consideration

has no dummies.

Therefore, the smallest player is always a step (SEC.0, Remark 0.1.1). Following the
tradition of SUDHOLTER. [14] and PELEG-ROSENMULLER [9] we speak of a
homogeneous game "without steps" if the smailest player is the only step. Note that for
games “without steps" the representation is unique up to a multiple and that
constant-sum games are games "without steps".

Definition 2.1:

) F* = FHQ) = {x el | x(@) = 1)
. is the set of pre—imputations. Also
@) F= F(Q) = {x € F¥Q) | x> 0}

is the set of pseudo imputations.

The nucleolus of a game was introduced by SCHMEIDLER [12], see also MASCHLER-
PELEG-SHAPLEY [5]; usually, it is defined with respect to a set of payoff vectors.
Tentatively, the pre-nucleolus #*(v) is meant to be the one defined with respect to &
* and the pseudo nucleolus #(v) is meant to be defined with respect to 4.

In [12] it is shown that the pseudo-nucleolus consists of a unique pseudo imputation v
= y(v) (also called "the pseudo-nucleolus of v"}.

Note that in our context of homogeneous games, we assume neither superadditivity of v
nor do we exclude singletons to be winning coalitions. However, even if single players
form winning coalitions ("are winning"), we do not encounter additional problems, for
A* and A are equal, as is stated by the following lemma.

~19 —~
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For any game v on R and x €] let us use the notation e(S,x) = v(8) — x(S) to denote

the ezcess of x (at 8). Also let

{(3) p= p(x,v) = max {e(S,x) | Se P}
and
(4) A= H(xy) = {5€P | e(8,x) = ulx,v)}.

Now, we have

Lemma 2.2:
Let v be a homogeneous game. Then A*(v) = A#{v).
Proof:

Since FC F*, it suffices to, given any x* € F* with negaiive coordinates, comstruct
x € Ssuch that

(5) px,v) < p(x¥v)
holds true.

To this end, fix x* € ¥ and define

(6) Pi={ief]xt>0}, N:={icQ]|xt <0),

we assume N # 6. Pick x € #B5uch that the following conditions are satisfied

1) 0¢x < xt (icP)

(e) 0= x; (i €9-P).

Now, consider 8 € 4 (x,v). ¥ P ¢S, then 0 > e(5,x) = px,v) is verified at once. As
e({i},x*}) > 0 (i € N}, we are done, since (5) holds obviously true.

If, on the other hand P C § prevails, then let §-:= §U N, Clearly
) v($ 2 (8)

since any homogeneous game is monotone. Moreover
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x*(8) =x*SNP)+ *N)
= x*(§ NP) + x(P) - x*(P),
{since x*(N) + x*(P) = 1 = x(P)), and thus

{5 ==zZF) -7 -5}
10) = (x luﬁ. (P~S)+x{(PNS)
= (x - x*) (P - 5) + x(8)
< x(8)
(observe (7) and (8)). Combining (9) and (10) we obtain
e(S-x*) =v(§) ~x*(8°)
2 v(8) - x*(§")
> v(8) - x(S) = e(S,x),
which 304.8 (5), _ g.ed.

According to KOHLBERG [ 4], a collection
B= AW?....M%V ) Wa o W 3. = O...va
of systems of coalitions is called a coalilion array if Bo contains oi«. singletons and

Bi+.+Bp=P

holds true.

Given a homogeneous game v on 2 and a pseudo imputation x € %, a coalition array
B(x,v), e, ,
Bo= Weﬁxv. B,= W_ANQV,:.. Bp= Wuﬁn?v

is specified as follows:

L Bo(x) = {{i} | xi =0}
(1) 2. e(S,x) = const (S€B;(x,v)) (j=1,..,p)
3. e(8,x) < ¢(T,x) (S€Bj(x,v), T€Bjulx,v) (j=2,..p)

o O =

A coatition mﬂmw has property I' i, 8,.,. allgef1,..,p] and y € EQ satisfying
. . Lo.a
(12 7920 (5€\J B)
(13) v =0
it foilows inat
() = (s€ 2 By)

holds true.

A coalition array has property ITif, for all q € {1,...,p} there is a system of coefficients

cg >0 (5¢ .m~ Bj)andcg20(S€ moumcnr»wﬁ
jer =

(14) Y esig=1g.
mmw.wm“,

q
This means in particular that hf\o B; is weakly balanced.

The above exposition follows KOHLBERG [4]. For our purpose we quote some of his
results as follows,

Theorem 2.3: ([4])
1f v is a homogeneons game, then
; H(v) ={xeF| B(x,v) has property I}
= {x € F] B(x,v) has property If}.

Again, it should be noted that the sssumption v {({i}) =0 (i€ {i.e., there are no
winning players) can be dropped without destroying the proofs.

Theorem 2.4:

Let v be a homogeneous game and let

ko=max {i€Q | {i} € W™}

be the smallest winning player {max § = a~1).
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.u. I x = b then
Uv) = (hed) (0 1= boatl)

2. If k < b, let 7 denote the homogeneous game on {2 = [ k+1,b] which is obtained
by dropping the winning players. Also, let ¥ = »(¥) and
Go=1-uD,7)
{15) %= (@ye s, Diolgeny Ub) [ (k+H1-0) &+ 1.

eV
s+l-a times

Then ¥(v) = %.

In other words, the pseudo nucleolus of v is obtained by computing the one on ¥, then
assigning & to the winning players and finally rescaling.

Proof:

The case s = b and & = a~-1 is trivial; so we have to concentrate on the second case for
a<{K<h.

Consider the coalition array F(%,v), we would like to show that it enjoys property L.

9]

To this end, fix q €[ 1,p] and let y € R satisly (12) and (13).

First of all note that y; > 0 for j €[a,s]. For, in view of e(%, {j}) = 1 - & =
2,9)

Ty 4FT It turns out that {i} € Bi(%,v). Thus, y is nonnegative on [ a,x] .

Next, if y([a,5] ) = 0, then clearly y(S) = 0 for all S mmwﬂ Bj(%,v); this follows by the
fact that ¥ is the nucleolus of ¥.

Finally, if 0 < y([ a,&] ) =: B, then define

Awmu w”" Aw.z._nrﬁmﬂ.:;%v.fm@mv 3

- 23~

1t is not hard to see that ¥ indeed satisfies (12) and (13) with respect to the game ¥
and, say, q = 1. This is a contradiction to Theorem 2.3., since ¥ is the nucleolus of ¥ ~
hence this case cannot occur and we have finished our proof. g.e.d.

The last theorem shows that we may disregard the case that winning players are
present. )

Hence, from now we shall assume that all homogeneous games under consideration have
no winning players (i.e. M; < A (i €0) for any representation (M,A) of some v).

Consequently, the prefixes "pre" and "pseudo” may be omitted, thus & is the set of
imputations and » = v(v) the nucleolus.

Remark 2.5: (KOHLBERG [ 4], Theorem 1.4)
Let « denote for the morment the last player who gets a payoff with the nucleolus, i.e.,

(17) k=max {i€Q| v; > 0}.
Then {SN[a,x] | S€ A(x,v)} is strongly balanced.

If v is a homogeneous game "with steps of different type" (other than the smallest
nondumimy that ig), then it can be inferred easily, that W™ cannot be strongly balanced

(see also Remark 5.4, in (PELEG-ROSENMULLER [ 9]).

Now, in view of the exhibition presented in SECTION 1, we can easily show that W=

cannot be weakly balanced. In fact, we show a bit more:

Corollary 2.6:

Let v be a homogeneous game with steps of different type (no dummies, no winning
players). Then 1g, is no linear combination of (1g)geyym -
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Proof:
Let (M(-), M-)) be a stricily monotone a.fr. and suppose that, for som

coefficients (cg)geyym » We have

L tala=1n.
mmmmsmm Q

Then

(18) M(a) (@) = mwﬁs cg M(a) (5) = A2) mwan%a cg -

Now, D ¢g is a constant, thus (18) contradicis Theorem 1.11. which states that the

quotient % is 2 strictly increasing function, g.e.d.

Section 3
The nucleolus for games with steps

As we have mentioned, we will from now on only deal with homogeneous games without

dummies :nf winning playess.

The behavior of the nucleolus for games"without steps" has been described in PELEG-
ROSENMULLER [9]. Here, we want to tackle the same problem when steps are
present.

There is an inductive procedure involved in our method which (unlike the method of
satellite games as explained in SECTION 0) uses a truncation procedure cutting off
smaller players. To explain this version of "truncated games" we have to shortly recall
the theory of the incidence vector of a homogeneous game (without steps), as developed
by SUDHOLTER [14].

To this end we fix Q= [1,n] (!) throughout this section and focus our attention (initially

only) on a homogeneous game v without steps. Let (M,)) be its unique minimal repre-
M

sentation 8o that v = v IE
Next, consider 5 € W™ and let ¢ = I(5) again denote the last player in S. Suppose j €S is

such that
@) (34 €S, 8~j+[tr1n] €W.

Then jis expendable; we may replace him in S by an interval of smaller players, thus
generating a coalition

(@) pi(S) 1= 5 = j + [1(S)+1,]

where t is uniquely defined by M([1(S)+1,t]) = M;. This procedure is based on the
BASIC LEMMA (ROSENMULLER | 10] ), see SUDHOLTER [ 14].

On the other hand, let T € W™ and suppose that r ¢ T satisfies
(3) [r+1, (T)] ¢ T.
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Then r is the last dropout (see ROSENMULLER [10]) and there is a unique
€ [r+1, I(T)] such that

{4) HT) =T + 1~ [, {T)]

is min~win. That is, ¥ inserts the last dropout and cuts off an appropriate taii of T as
to generate a min~win coalition. And thus, p; renders j o be the last dropoui if he is
expendable in §.

Clearly, if r is the last dropout in T, then (he is expendable in ¢T) and)
(5) pr(AT)) =T

Similarly, if j is expendable in § then (he is the last dropout in pj(8) and)
(6) HApi(8)) = 8
‘holds true.

According to SUDHOLTER [ 14] we have

Lemma 3.1: (cf. [ 14], Theorem 2.3, Definition 2.4)

Let v be a homogeneous game (without dummies and winning players). Assume that v
has no steps and is not the unanimous game of the grand coalition.

Then there is a unique sequence §y,...,5a of min-win coalitions defined by the following
procedure.

1 8= 53

2. For every k € [1,n-1}, the system Sy := {S; | i €[1}], k is expendable in m&:m
nenempty.

& Among all 5; € 8y with minimal length 1(8;), let m»c be the one with smallest (frst)
index.

4 Sy = nﬁmmcv.

2 O s

Definition 3.2:
Let Sy,...,5q be given by Lemma 3.1. Then

L= LW = (4,....05) 1= (1{S1),-.-,1(Sn))
is the incidence vector of v.

The incidence vector characterizes v uniquely (Theorem 2.10 of [14]). (The term
"incidence vector" can be defined abstractly.) .

Given the incidence vector, the game v can be obtained by "reversing” the procedure of
Lemma 3.1. In other words, the sequence 5;,...,5n can be constructed in a unique way
and, since we are dealing with a game without steps, the unique minimal representation
is obtained at once.

Let us shortly describe this "reversal procedure™.

Given £ = { M) = ({,...,&n), the staircase corresponding to £ ") (and hence to v) is the
vector

7 = x(v) EN®
given by _
) me=min{§ | j<k<4} (k=1,.,n)
(with the convention that min @ = 0). If 7 is regarded as a function of k, then it is
monotone and can be identified as a "quadratic step function" since the heights of
jumps and the length of plateaus are equal (see [ 14], SECTION 8). E.G., if £ equals

(8) £=(3,7,6,5,7,7,7,8)

then
7 =(3,3,3,5,5,6,7,8).

Thus 7 appears as a staircase with square steps that vary in height and width simul-
taneously (and with appropriate view, £ decreases on the plateaus of 7 but dominates ,
cf. Fig.4).
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n W >~ U O N
1

Fig.4

{On the other hand, m denotes of course the minimal length of a coalition in Sy ~ifwe

view Lemma 3.1).

Now, define the selector to be the vector w= oX¥) = w which is given by

(9) wy = min {j | § = m}

{agsin min § = 0). Then wselects the appropriate index ig in the formulation of Lemma

3.1. More precisely, given £, the sequence Sy,...,8q &8 specified by Lemma 8.1 i given by
1. 8y = [1,4]

(10)
2. Sku = Sg —k+ :ew + 1, feyy] = EAmeV.

~99 ~

E.g., in the example suggested by (8), we obtain
w=(1,1,1,4,4,3,2,8)

telling us that, e.g., in the fifth step of the construction suggested by Lemma 3.1 we
have to render player 4 to become the last dropout in Sy...

Remark 3.3: ([ SUDHOLTER [ 14])
Let (M,}) be the minimal representation of a homogeneous game with steps; assume
Q=[1,] and write M = (My...Mn). Let N := (My,..,Mn,1). Then v is an (n+1 -

person) onommsmoE game without steps and (M, )) is its minimal representation.

Intuitively, if we add a player of weight 1, then his weight can just be used to close the
"jumps" that appear at a step (cf. SEC.0).

Definition 3.4:

Let @ = [1,n+1] and let { be an incidence vector (of a hom game for n+1 players with-
0 o
aﬁmgv&.hm,amﬁw,su.?m:.::83.3&miimgmésgNu%:mzz:m?msg

A £ < &

0
(11) 4 = I's k< 4y €0, M<K

K+l otherwise

(m €No+1is the staircase corresponding to £1)

Remark 3.5: ’

2]
£} is an incidence vector.

Proof:

This follows immediately by the observation that ME enjoys a corresponding staircase,
namely
0
(12) = (ka7 ) k+1)
(1]

where "min" (= 1) has to be taken coordinate-wise.
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Definition 3.6:

Let v be a homogeneons game {with steps) on Q= [ 1,a]. Let 5 €] 2,n] . The truncation
of v at &, 7 is defined as follows.

1. Let (M,)) be the minimal representation. Let (M,A) be obtained by Remark 3.3 and

ieb ? be the incidence vecior of ¥ = <~wm.,

2. Let £ €0+t be the truncation of 2 at « as defined by 3.4. ¢ generates a homogeneous
a0 O

game V on [ 1,6-+1] with minimal representation (M,)), M € js+1,

3. ¥ is the game which is (minimally) represented by

M= m%m_.:..%m.av =M
[ 1,4

Dot

= A.

Note that homogenecus games without steps indeed attach weight 1 to the smallest {wo
players (w.r.t. the minimal represeniation). Of course the one—{o-one correspondence
between homogensous games aud incidence vectors is heavily used {cf. Theorem 2.10 of
SUDHOLTER [ 14]). _ ,

Our first aim is to obtain some insight into the structure of the truncated versions. The
following lemima is an attempt to describe the min-win coaliticns of some ¥,

To this end, let us slightly augment our notation:

HSeW™(v) and r £8, r < I(8), (x is any dropout), then:

(13} %{S) 1 = (SN[ 1,-1]) + [1V] € Wo(v).

Thus, ¥:(8) is the lexicographical first min—win coalition among all coslitions T with
TN{Le-1] = SN{1r-1].
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Lemma 3.7:

Let v be a homogeneous game (on 2= [1,1] ) and let x €[ 2,n]. Then 9%) has the follow-
ing properties.

—

1i€[1,k] is astep of ¥, theniis a step of vori . On the other hand, if i €
¢ 13

[1,5] is a step of v, then he is a step of v{®),

2. S C[1,s] and S € W"(v), then S € W(§(x).
3. IS ¢[1,5] and S € W(¥*) ~ W(v), then £ €S and S ¢ W(v).
4. IS ¢[1,x] and S € W(¥), then S + [s+1,n] € W(v).

5. I S2[1,k] and S €Wn(v), then [1,5] € W™(¥®) and #) is the unanimous game of

[1.4]).

6. HSeW™(v),S ¢ [1,k],S3[1,4],and, with r = }([1,6] NS°), &(S) C[1,5-1], then
SN[1,x] € Wo(wtv).

Proof:

) [s]
1. Given v, let £ €l** be defined via 3.6.2. In view of Chapter 2 of [ 14] , it is known
13
that player i is a step w.r.t. #%)iff £;,; = x+1. In view of Definition 3.4, this leaves
two alternatives for {;,p: either 4,y = n+1 —in which case i is a step of v.

Or else 73 2 &. But then (see (12)) #{¥ = x and i v
. ﬂ K,

The reverse statement is seen analogously.

2. To prove the second statement, assume that, on the contrary, for some S C[1,x] it
turns out that 5 € W™(v) and § ¢ W=(¥().
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Clearly, since in this case £, = £;, 5 i3 not the lex—max min-win coalition of v. Hence,
there exists the last dropout of §, say r £ 5, 1 < I{8).

Now, among all § with this property collect those with minimal lengih i(5). And,
among all those with minimal length, choose the cne with maximel last dropout r. Call
these now 3 and r again.

Define

{14) T = &5).

Then, because 1(T) < I{5) holds true, it follows from our choice of § that

(15) T € Wo(v) N WAH),

Next, we know that the procedure indicated by Lemmsz 3.1 {and Theorem 2.3 of [ 14])
yields two min-win coalitions of v, say mwo and Sy such that player r is expendable in

mwa and
ﬁmu Sra = ﬁxﬁm#evﬁ ﬁmn:v = mmu.

MMore precisely,

{30 zmmcw =min {i{S) | S3r, SeW(v}}=m

and .

{18) (Srss) = min {I(S) | S3r,Ser+1, SeW™(v)} = by
while 81, [ 1e-1] = SruNf1-1]

is also. true. Clearly, mmc € W=(¥) in view of (17); in fact it follows from (17) that
ﬁ.mmaw < XT). However, xmwou < I{'T) is impossible in view of our choice of § and 1. But
_Am»b = (T) implies via application of ¥ (cf. (14) and (16)) that }(Sr.;) = ¥§) holds
true. .

In this case, (18) shows that § € Wo(%), and we have completed our proof of the

second stalement,

3. The third statement is verified by a sequence of analogous argument.
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. Follows from the definition of £.
5. A trivial consequence.
6. Follows from Definition 3.6 and from 1. g.e.d.

We are now in the position to tackle the nucleolus of a homogeneous game with steps.
To this end, in what follows £ = 7 (v) denotes the first (largest) step of a homogeneous
game v, i.e.,

(20) r=min {ieQ]iellv)}.

Similarly, 7 = 7(v) is the smallest player of the type of 7, i.e.,

(21) ﬂuawxﬁmb:«..&.

Note that [ 7,7] consists of steps that appear as block in any min-win coalition if they
appear at all. Of course 7 = 7 will frequently happen.

Theorem 3.8:

Let v be a homogeneous game on @ = [1,..,n] and let 7 = 7(v) be the smallest player
of the largest step’s type. Let v = y(v) be the nucleotus of v. Then vy, = ... = vy = 0.

Clearly, we have to treat the case of a game v with steps of different type only. Then,
Corollary 2.6 shows at once that v, = 0 is necessarily true. The problem is that 2.6
cannot be employed immediately in order to prove that all players behind the first steps
get zero at the nucleolus ~ here we have to fall back on a truncation.

Proof:
Assume that, on the contrary, there is x €[ 7+1,n] such that

Viag 2 o 20> 0= Uy = .. = 1y,

The proof proceeds by treating various cases separately.
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Ist CASE: Assume that there is a coalition § € . (1,v) such that TS5,
[7+1,5) ¢ 8.

This case is of course easy: define an imputation x £ Fvia

vy . i€[1,7] Ulsel,n]
(22) - Xi= Vit 3 v i=rt
m.w i€[mel,&]

and observe that p(x,v) < s(v,v) while § ¢ A (x,v).

Because "steps rule their followers", no min-win coalition has larger excess at x than at
vand § has 2 smaller one —~ this contradicts the fact that » is the nucleolus.

This finishes our proof for the 1st CASE at once.

We may now assume that no § of the kind treated already exists,

Then A = A(v,v) allows for a partition, say

Awwv M= M. + .\m‘
such that
, o= {s€ M| [rx] (59
(24)
M= s € K| [r,6] €8}
holds true,

Both sets are nonemply since the nucleolus of a game s contained in the kernel ([ 12] ).

Now, we turn to the truncetion 90 of v at k which, for short, we abbreviaie by
F oo 6,

By Lemma 3.7, we know that 7 is 2 step w.rt. ¥ and, "in ¥", v may or may not be of
the same type as « (see 3.7, No.1). i

Accordingly, the next two cases ireat these two possibilities. The easier one, in which 7
and & are of different type, is considered first.

=185 =

2nd CASE: Let us treat the case that T K.
v

This means in wmﬁ that 7 is the smallest player of the largest step’s type also in ¥! (see
3.7, No.1). ,

First of all, let us define a mapping
(25) CUE L A= WO(v)
separately for S € A and S € A

1. For S € A, define
(26) S*:=8N[1,1].

Indeed, S* € W™(v) is true since "step r rules his followers" — thus the smaller players

to the right of 7 (of x, since S € J£.) cannot appear in a min—-win coalition without 7.
Hence a min—win coalition has to be contaired in S*. It cannot be properly contained
since S € .

2. For S € A,, define
(27) §* is the lexicographically first coalition in W™(v) which satisfies
s¥n{1,r =8n[L,].

Because of the decomposition (23) and (24), §* cannot cut into [ 7,x], thus 1{(5%) > «
and [ 7,}(S*)] ¢ §*

From our definition of $* we conclude:
(28) S*N[1,6] € W=(¥).

Indeed, for S € . this follows from 3.7, No.2, and for S € ., this follows from 3.7, No.6.

Furthermore, it is seen that
(29) SN{1,k] =S*N[1,4]
forall Se 4.
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The final conclusion is straightforward:
By KOHLBERGs result (Remark 2.5) we obtain & set of nonnegative real E_Buﬁm
(eg)ge 4 such that

(30) oo s lsnf1, = o
By (29),
(31) mMu.\&nm Hm* 1K = I

This, in view of (28) means that 1fq ([1,4] is the grand coalition in ¥ 1} is a linear

combination of Cmvmmenwa?v. Since ¥ has steps (at least 7), this contradicts

Corollary 2.6.

3rd CASE: Now we ireat the case that 7 N
v

Again, we want to construct some contradiction between 2.5 and 2.6 ~ however, as we
are not in the position to claim that ¥ has steps, the procedure of the case has to be
modified. We will eventually consider the truncation v = #0010 for some & 2 & and in
this truncation (30) and (31) will have appropriate analogues,

To this end, let us proceed by several sieps. The first step is to define the eritical
player" &7,

13t STEP (of the 3rd CASE):
As 7 is the smallest player of his type “in v", there is T € @é?v such that 7 € T,
r+1¢7T,

Since 7~ &, it follows necessarily that T N{#,n] #§ - otherwise T would be min-win in
¥

¥ (No.2 of 3.7) and separate 7 and 741

Now, choose T to be lexicographically maximal with the above properties, (i.e., T€7T,
7+1 ¢ T, TN[kn] £6, T € Wo(v)). Then we have, in addition

Again, among 2ii coslitions with these properties, choose the one with minimal length.
Defice ‘

(34) &= 1% (T)) = min {I(8) | S € Wn(v), 7+1 €S}

Now, &’ 2 & holds true. Indeed, otherwise 7 ~ & would be violated by No.6 of 3.7.
v
Consider now the truncation of v at x'+1, say

v o= Glor)

By No.6 of 3.7 and (34) it follows that T N [1,0+1] € W™(v’), and as 7+1 ¢ T, 7 and

741 are of different type in v*.

Thus (see No.1 of 3.7) it turns out that 7 is the smallesi player of the largest steps type
wrd. v, ie, .
) =7(v) =7

Therefore, we shall now concentrate our efforts on v’ and try to imitate the procedure
of the 2nd CASE,

2nd STEP (of the 3rd CASE):

Consider any coalition § € /4, such that [x+1, 1(8)] ¢ &. Such coalitions exist: we may
generate them from arbitrary elements of , by successively involving the last dropout.
We claim:

(35) 1(8) > & for all §withSe A, [s+1,1(8)] ¢§.

Indeed, if for some 5, (35) is violated, then consider

~{r41} + {&+1,..(T)}.

v
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This is a winning-coalition of v which satisfies
U(8) = v(8) = v < US) < 1~ pr,v),

contradicting the fact that v is the nucleolus of v. . m

3rd STEP (of the 3rd CASE):

~ We can now repeat our argument, as presented in the 2nd CASE, but for v'. m

Again define *: A(v,v) — W™(v):

For € A.:

{36) §% = 8N{1,7]

and §* € W¥(v) follows exactly as in the 2nd CASE, while §* N{1,s'+1] = SN{1,s+1]
is trivial. . |

For § € J, , choose §* € W™(v) to be lexicographically maximal with

(37) s¥n{1,7] =8n{1,7] .

Then S*N{w*+1] = SN| a,+d follows from (35). Again, in view of No.2 and No.6 of
3.1,

(38) {S*N{1L,041) | S€ A} W), d

Next, by Remark 2.5, we find coefficients ?mvmm _ Such that

(39) o /s lsn[1e T o

But for S € .4 it is clear that S*N[1r*+1] = SN{1,k] (cf (36)).

Fortunately, for § € 4, (35) and (37) yield §* N[ L,x'+1] 2 [#+1, #°+1]. Thus, from
(39) it follows that )

(40) g R TN S| Rl FRTNSIL

But, in view of (38), :,8 contradicts Corollary 2.6. ’ g.e.d.
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Corollary 3.9:

With the notation of Theorem 3.8 the vector (y(¥0)), 0,...,0) is the nucleolus of v.
b vy Tines
Proof:

By Theorem 3.8 »(v)j = 0 for all j > 7(v). Thus #(v} is the nucleolus of the game

twﬁza 7(v)+1,b]) (where v = <Hw\,J This game obviously coincides with the truncated
game F0ON with b-r(v) additional dummies. q.ed.
Example 3.10:

Consider the pair :
(M,)) = (12,10,5,3,2,2,1,1;22)

and the game v = %V\,H. Puta=1b=8ie, 2= {1,.,8}.

Then it is easy to se¢ that players 3 and 8 are the steps of v. Thus, according to
Theorem 3.8, we have 7(v) = 3. Writing coalitions as 0~1 vectors is instructive, thus
from the following sequence of min-win coalitions (cf. Lemma 3.1)

$1=(110000000)-
-8,=(011111000)
S3=(101110000)
Se=(100111111)
$5=(101011100)
S6=(101101000)
S7=(011110110)
Sg=(101011010)
Se=(011110101)

The coalition Sy at the
origin of this arrow is
used to construct the
coalition S3 at the to
of the arrow via Eamuw.

1

i

we obtain the incidence vector £ of ¥ = tw,a (cf. Definition 3.6):

1 =(2,6,59,7,6,8,8,9).

Now the truncation of ¢ at 3 is (2,3,3,4), which generates (1,1,1,1;2), thus the truncated
game v can be represented by (1,1,1;2), showing that all players are of the same type.
Corollary 3.9 at once enables us to write down the nucleolus of v:

- (4,44,0,0,0,0,0).
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