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Abstract

This paper considers first best allocations in an economy where a consumption good
is produced using labor. Production results in pollution, which is a public bad.
Pollution abatement can be achieved either by restricting production output or by
using labor. We consider how the first best allocation varies with population size.
Consumers are unambiguously worse off when the population is larger. However,
surprisingly, there is no single optimal policy on how pollution and labor should
vary with population size. For standard models of preferences and technology it
might be desirable either to increase or to reduce emissions and/or labor, depending
on parameters. Despite such ambiguity in the first best level of emissions, the
Pigouvian tax which implements the first best is a non-decreasing function of the
population size. We conclude that, since the comparative statics of the first best
are so ambiguous, sensible debate on environmental policy cannot proceed without
a careful determination of actual preferences and technology.
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1 Introduction

In typical neoclassical growth theory with an exogenous population growth rate
and without technical progress, an economy can approach a steady state growth
in which per capita consumption is constant, and aggregate consumption grows
without bound. This is in stark contrast with a Malthusian view of an economy in
which the presence of some fixed factor(s) would not allow sustainable growth in
aggregate consumption (see Malthus (1798), book I).

In this paper we consider a variation on the Malthusian theme, in which even
though there are no fixed factors, consumers are worse off in larger populations due
to the presence of pollution. We model pollution as a public bad which is generated
by the productive sector of the economy.

Previous authors have alluded to the issue of population and pollution, but
work in this area is far from complete. Keeler, Spence and Zeckhauser (1971) state
that no steady state equilibrium exists to an optimal pollution control problem
with exogenous population growth. Gruver (1976) states that “the relationships
between population growth and pollution are important and hotly debated”, but
considers an optimal pollution control model with a fixed population size to avoid
complications. Tahvonen and Kuuluvainen (1993) consider a growth model with
pollution but with a single representative consumer. To the best of our knowl-
edge the only growth model which considers both, population growth and pollution,
has been recently published by Gradus and Smulders (1993). In contrast to the
Keeler-Spence-Zeckhauser model where pollution is a Sflow input of production, in
their paper pollution results from the stock of production capital, but the negative
externality can be mitigated by abatement capital. In apparent contradiction to
the statement of Keeler et al., Gradus and Smulders focus on steady states. The
existence of steady states in output and consumption in their model, however, de-
pends heavily on the special functional form of pollution as a function of capital and
abatement.

In general, the role of a growing population in a world where production gen-
erates pollution does not seem to be well understood yet. Hence, as a first step
and for the sake of simplicity we do not consider a growth model here. Rather, we
present a comparative statics analysis of an economy in which population is treated
as a parameter. This simplification still leaves interesting results. Although it might
be desirable to discuss such ideas in the context of a growth model, this would re-

quire making some assumptions about technological progress and the dynamics of



pollution decay processes which would be quite speculative.

We consider first best allocations, as a benchmark of what might be achieved.
Of course the public bad aspect of pollution may make it difficult to obtain the first
best! In our economy identical consumers can supply labor to produce a consump-
tion good. Production results in pollution. Pollution abatement can be achieved by
supplying additional labor.

A first best allocation involves trade-offs between the benefits of consumption
and the disutility of supplying labor and of experiencing pollution. Since pollution
is a public bad, in some sense its cost rises when the population is larger. In the
next section we show that consumers are worse off when the population grows. In
section 3 we consider how first best consumption varies with the population size.
Although per capita consumption may fall or rise in general, we give conditions on
preferences and technology which guarantee that consumption per capita decreases.
In section 4 we consider how the first best levels of pollution and per capita labor
depend on the population size. We find that the dependence is very sensitive to the
nature of preferences and technology. Such ambiguity makes it difficult for policy
makers to decide on appropriate environmental targets! In Section 5 we consider a
Pigouvian tax. We show that the optimal emission tax rises as population grows
under mild conditions on preferences. Section 6 concludes. An appendix contains
more general results than in the main text, as well as the solution of several examples.

2 A Model

We consider first best allocations in an economy with n identical agents who have
convex preferences which depend on a consumption good, labor and pollution. Pref-
erences are represented by a quasi-concave utility function U : (g, 1, E)— U(q,lE)
which is assumed to be strictly increasing in the consumption good ¢, and strictly
decreasing in labor [, and pollution E. We also refer to pollution as emissions. For
simplicity, and to obtain more crisp results, we onl y consider symmetric allocations
in which each agent gets the same amount of consumption good and supplies the
same amount of labor. We model pollution as a public bad, so that each agent also
suffers from the same quantity of pollution.

The consumption good can be manufactured using labor as an input. This
process results in emissions of a by-product which is a pollutant. Labor can be used
to abate emissions. With the symmetry restriction, technically efficient production
can be represented by the transformation function T(ng,nl,E) = 0. We assume

that the transformation function is homothetic, so that efficient production can also
be represented by T'(q, 1, E/n) = 0.

Let V, be the utility of each consumer in the symmetric Pareto efficient
allocation'. That is,

Vo= max U(q,l,E) st. T(q,[,E/n)=0

9.l,E>0

Let gy, 1, be the first best levels of per capita consumption and labor, and E, be
the aggregate emissions. Note that the first best utility level would be independent
of the population size if there were no pollution. However, we will show that with
pollution consumers are worse off when the population is larger.

For the remainder of the paper we assume that the technology can be repre-

sented by a continuous production function f, such that
9< f(I,E/n) (1)

which we assume to be strictly increasing in both labor and emissions. It is conve-
nient to define per capita emissions e = E/n. By monotenicity, at a Pareto efficient
allocation we have g = f(l, ¢).

Our first result, which is quite general but not very surprising, is that con-
sumers are worse off if the population is larger.

Theorem 1 The first best utility level, V,,, is non-increasing in the population size,
n. If fo(1,0) = oo for all I then V, is strictly decreasing.

Proof: Consider m < n. Since f is increasing in emissions we get S, Exfm) >
S, En/n) 2 gn. So gu,la, E, is feasible with m people. Since V,, is optimal given
m, it follows that Vi, > U(ga, L., E,) = V,.

If fe(1,0) = oo then emissions E, are strictly positive. In this case f(1,,, E./m) >
f(la, Enfn) > g,. So there is some g > gn such that g,1,, E, is feasible with m peo-
ple. Since V,, is optimal V,, > U(g,lay En) > U(guy In, Ep) = V. 0

In the next two sections we examine the properties of the first best allocation.
In particular, we are interested in what direction per capita consumption and la-
bor, and aggregate emissions change in response to popuation growth. One would
suspect that per capita consumption decreases in n, and indeed, we will show that
this is the case under some regularity conditions on preferences and technology. It
would also be interesting to know what policy implications can be drawn with re-
spect to environmental and labor policy, e.g., in the face of a greater population are

'There is a symmetric Pareto efficient allocation because preferences are convex.
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tougher environmental standards required, and/or should more effort be expended
in abatement activities ? In section 4 we show by examples that the answers to such
questions depend critically on the exact preferences and technology. Perhaps sur-
prisingly, it can even be the case that environmental standards should be weakened
when the population is larger.

3 First Best Consumption

The first order conditions for the social optimum are most conveniently expressed
by:

Qﬁﬁﬂi_ m«—_ m.—u

T Ulge b By) el En/r) "
Ui(gns bns Bn)

’ luQaAﬂ.—_h:.m.av Wi b:a.m‘.a\_‘:v ﬁwv

g = .\.:a_m.:\-uv A.:

We make the following assumption:
Assumption 1 f is twice differentiable, monotonic, concave and satisfies fi. > 0.

Note that we allow for constant and decreasing returns to scale. When there are
constant returns to scale the deterioration in first best utility as population grows
is not due to some fixed factor?

Theorem 2 If f satisfies Assumption [ and U is concave and additively separable
(i.e., Uy = Uig = Uyg = 0), then first best consumption qn is decreasing in n.

Recall that monotonic transformations of utility represent the same preferences. So,
for example, Cobb-Douglas and CES utility functions are covered by the theorem.

Proof: The result is a consequence of a more general result (Theorem 6) given
in Appendix 2. There we weaken additive separability into a condition requiring that
the cross effects are not too large. On the other hand, we have to impose a joint
condition on preferences and the production function which automatically holds for
additive utility functions, and production functions satisfying Assumption 1.

If labor does not affect the consumers’ utility and is supplied inelastically we
can show that under fairly general conditions first best consumption decreases. For
this purpose we make

2One might think of the environment as a fixed factor. However, in example 4 below the first
best emissions increase without bound as the population increases.
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Assumption 2 The consumers’ preferences are represented by a twice differen-
tiable, quasi-concave utility function U : (q,E) U(qg, E), satisfying U, > 0,
Ug < 0, and

UpUg —Ugl, > 0 (5)
UeeUy - U,gUg < 0 (6)

Note that the conditions (5) and (6) imply that the utility function is quasi-concave,
but not all quasi-concave utility functions satisfy these conditions. With this as-
sumption both, consumption and abatement, would be normal goods if the consumer
were a price-taker for these goods.

Theorem 3 If labor supply is inelastic and Assumption 2 holds, and f is a strictly
concave function of pollution only, then the first best per capita consumption is
decreasing in the population size.

Proof: See Appendix 2.

If Assumption 2 is not satisfied, it can happen that first best per capita con-
sumption increases with population size. This occurs for example 4 of table 2 in
the next section. In that example, both emissions and consumption increase with a
larger population.

4 First Best Environmental and Labor Policy

We now consider how the first best levels of labor and emissions vary with pop-
ulation size. The choice of these levels depends on standard economic trade-offs.
If population increases but the aggregate level of emissions and per capita labor
are held fixed, then per capita consumption falls (see (1)). Consumption could be
increased by increasing emissions. It would be desirable to do so if the extra utility
from consumption compensated for the additional pollution disutility. If, on the
other hand, the disutility from pollution were high, it might be desirable to main-
tain the emission level, but for the consumers to work more to increase production
and/or reduce pollution. Table 1 presents a taxonomy of various pollution and labor
policies in response to an increase in population. We use the notation E' and I’ to
denote the signs of changes in the first best levels of emissions and labor when the
population becomes larger.

It is not possible to tell in general whether emissions should be reduced or
increased as population increases. It is equally ambiguous as to whether people

7



E'<0 E'>0
I' <0 | Make love, not pollution (1,3) | Relax, and don’t worry (2b)
I'>0 Conservation (2a) Bountiful (4)

(Numbers in parentheses refer to examples listed in table 2)

Table 1: Environmental and Labor Policies

should work harder or relax more. Table 2 presents examples of utility and produc-
tion functions to illustrate this. Apart from exam ple 4, all other examples employ
quite standard utility and production functions, widely accepted as typical in the
literature. Examples 1 through 2b have Cobb-Douglas preferences in consumption,
leisure and abatement. In example 3, utility is additively separable into a concave
function of consumption and into convex disutility in labor, and emissions, respec-
tively. Production functions are Cobb-Douglas, CES, or Leontief. The examples
are solved in Appendix 1.

Example Ulq,1, E) f(l,e) Parameter restrictions
1| ¢>(I-1°(E - E) Ifef 0<a,f,7,60<1
2 ¢"(1-DE-Ey|(P+e)*| 0<apr<l,0<p<l1
2b | (1= D)P(E — E) | (I° 4 e2)'1* 0<a,f,7y<l,p<0
3| 2¢°-3P-2E" | AP [0<a,6(<1,B,7>1,A>0
4| (¢—1)/(E-1)* | min{l,e) ¢.E>1
1> 0 is the per capita labor endowment.
E > 0 is a pollution level at which consumers die.

Table 2: Examples

For example 2a, when population increases it is optimal to restrict emissions
and for consumers to work more. We refer to this policy as the “Conservation”
policy. Conversely, in example 2b when the population is larger it is optimal for
consumers to enjoy more leisure but at the same time to cope with more pollution
(to support production). We refer to this as the “Relax, and don’t worry (about
pollution)” policy®. One could also call it the “traditional growth economists™

3This is a bit loose since the optimal pollution level may be fall short of the real or laissez Jaire
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policy, since standard growth theory models ignore pollution and predict that labor
will be reduced by virtue of technical progress.

Note that the only difference between examples 2a and 2b is that the elasticity
of substitution between labor and emissions is greater than | in the former, and less
than 1 in the latter.

In example 3 the optimal policy is to work and pollute less. This results in
lower per capita consumption. We refer to this as the “Make love, not pollution”
policy®. The counterpart to this policy is obtained in example 4 where it is opti-
mal to increase both labor and emissions as population grows. We refer to this as
the “bountiful” policy. Note, however, the preferences represented by the utility
function in example 4 have a special feature. Consumption is extremely inferior
against abatement. These preferences are such that consumption would be a Giffen
good in a standard model of budget constrained choice, with prices for consumption
and emissions. So here, even though consumption becomes sociall Y more expensive
through population pressure, the first best level of consumption goes up as pop-
ulation rises. In the previous section we have shown that this cannot happen if
consumption and abatement are normal goods, and if there is no disutility from
working (Theorem 3), or if preferences are additi vely separable (Theorem 2).

Finally, example 1 with Cobb Douglas preferences and tech nology represents a
kind of knife-edge case where labor per capita and aggregate pollution are constant,
independent of population size. Such a scenario would be convenient for policy
makers since constant emissions over time are much more easily implemented than
those which require continual adjustment of standards, effluent taxes or tradeable
permits.

If the reader studies the proof of Theorem 6 in Appendix 2, she or he will sce
from the formulas for I, and E!, in particular from the numerators given by (29)
and (30), that there is not much hope to find simple conditions for labor per capita
and aggregate pollution being monotonic in n.

5 Implementation by Taxes®

Assume now that there is a competitive output market for the only consumption

good, with output price p, and a competitive labor market with wage w. The

pollution levels.
4Assuming that more love does not increase population endogenously!
SWe are grateful to Edward Morey for suggesting this section.



government sets a tax T per unit of emissions and redistributes tax revenues lump
sum to the consumers. Consumers also receive the profits of the firm, denoted by
7. Then the household maximizes U(g,,E) over q,1s.t. pg < wi4 x4+ ,._.m_ leading
to U;/U = p/w. The firms maximize n(lL,E) = pf(l,E[n) — wl — TE/n, giving
fi=w/pand f, = r/p.

From the first order conditions of the social optimum, in particular from (2)
it follows immediately that in order to implement the social optimum the regulator
has to set the tax in the following way.

Qh.ﬁﬁ:.h.: H.L :J
Qaﬂﬂfm.: _m....u

In the following we show that under mild restrictions on preferences and tech-

Tn = Hn:_ﬂ m_.:....,_.; = -n

nology the emission tax is increasing as population grows,

Theorem 4 If U is concave and additively separable, and the technology satisfies
Assumption I, then d1/8n > 0.

This result is a corollary of the more general Theorem 7 in Appendix 2, which
employs weaker but more technical assum ptions on the preferences.

Analogously to Theorem 3 we make a statement about the model with inelastic
labor supply:

Theorem 5 If labor supply is inelastic and Assumption 2 holds, and f is a strictly
concave function of pollution only, then Or{dn > 0. If f has constant returns to
scale, i.e. [" =0, the taz does not depend on n.

Proof: see Appendix 2.

So, whereas we cannot tell in general whether emission quotas should be in-
creased or decreased as population grows, at least we can say that the under fairly
general conditions the social price for pollution, reflected by the optimal emission
tax, goes up if there are more people. This immediately implies that, if the number
of firms rises proportional to the population, each single firm emits less. Whether
the aggregate emission level, which is implemented by the optimal taxes, goes up or

down, of course, remains ambiguous.

6 Conclusions

We have shown that consumers are worse off as population grows in the first best
outcome of an economy with a pollution externality. This result is quite Malthusian
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although there is no resource limit in the model presented here. The deterioration
is not due to resource scarcity. The environment is in some sense a scarce resource.
However, in example 4 emissions increase without bound. To the extent that envi-
ronmental externalities are important, our result is at odds with the predictions of
neo—classical growth theory, which suggests that balanced growth is possible with
no deterioration in consumer well-bej ng.

We would like to offer advice to policy-makers concerning desirable pollution
levels depending on population size. However, we have shown by example that
optimal policy depends critically on the nature of preferences and technology. So
no general advice can be offered. [t may be desirable to allow pollution levels to
increase as population grows. Conversely, it may be better to reduce pollution levels,
and to promote more labor intensive and cleaner production.

We have only considered first best outcomes. There is a rich literature on
decentralized methods of attempting to achieve these in the static setting consid-
ered here. There remains substantial work to be done on decentralization if one
recognizes the dynamic aspects of population growth and environmental processes.
A dynamic model could also include accumulation of capital, which might compen-
sate for increased population pressure. Verification of this conjecture would be an
interesting next step.



Appendix 1 - Examples

This appendix gives the solutions of the examples presented in the paper.
Example 1 : Since utility is increasing in ¢, the production constraint will

bind at the first best allocation. Letting A be the multiplier on this constraint the
first order conditions are

oGO
In
Bu b,
ulh.. . m-
Yu _ Mg,
B R

=1 mmv.

n

These are sufficient given our convexity assumptions. The labor and emissions which
solve the first order conditions are

ab
Mol 5 o
af
B ey

The first best labor per capita and aggregate emissions are independent of the pop-
ulation size. Consumers are worse off in this example solely because per capita
consumption, f(l,, E,/n), falls with n.

Example 2 : The first order conditions for this example, which are sufficient,

are

“l: = A (8)
Bu E)*

e = e (5) 0
n : wl_

% = An~?ES! “.._+Amsmv (10)

p11/e

& ~n+AW: ; (11)

Although there are no closed form solutions for gy, I,, and en, One can give
fairly complete characterization, as follows. Dividing (10) by (9) gives

.UA...F_FV Haruﬁ.@av?_ :

B(E - E.) N

(12)
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i i e

Dividing (9) by (8), and substituting for ¢, using (11) gives

B2+ (Eq/n)
i FE

= je-1
="

Multiplying by al'~*/8 gives
I+ Esn™? (E/1,)"™' _a

wlna _W d

Now use (12) to substitute for n=* (E,/I,)*" to give

h- o | m.- a

Nf__a WM|_W3|W ’ :“.:

This equation shows that at the optimal solution I, and E, are inversely related®.
That is, if per capita labor, I, increases with n then aggregate pollution, E,, de-
creases, and vice versa.

Now it is a matter of determining which of labor or emissions increases with

the population size. To do so, rearrange (12) to give
BE:(E - E.
Y (T = 1)

=n"

If 0 < p <1 then the right hand side increases with n. This means that E,
must fall with n, since E2-Y(F — E,) is a decreasing function of E, for values less
than E, and E, and I, are inversely related. That is, the first best level of pollution
falls and the per capita labor rises as the population increases if p is between 0 and
1.

If p <0, then the right hand side of the last equation decreases with n, and
so the first best level of pollution rises with n and the per capita labor supply falls.

Example 3: The first order conditions of social optimum imply

By = Kon" (14)

a_ %= [E L=
= o3
where K is a constant depending on a, b,c, A, a,f3,7,6,( (we omit the formula), and

the exponent of n is given by

1
€= - 0=ah -
af(

®Note that I/(T—1) is increasing in [ between 0 and I.
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€ is negative, if 22520 5 | & af¢ < 1(f — ab) & a[B¢ + 78] < 4B. But this
holds since o[ + 6] < a - max{8,7}(¢ + ) < max{f,v} < y8 since 8,7 > 1, and
a,6,( <1,and § + ¢ < 1. Since E, is decreasing, and since 8 > aé, it must be the
case that I, and hence also g, are decreasing,.

Example 4: In this example, the utility function does not depend on labor.
The problem of solving for the symmetric Pareto efficient allocation is

g—1

(E-1)

H_%Nx s.t. ¢ < min{l, E/n}

Providing that n > 2 the optimum is E, = 2n — | and h=g¢g.=2-1/n
Note that emissions increase without bound as the population increases.

Appendix 2 — Generalizations and Proofs of the
Comparative Statics Results
We will first present more general versions of Theorems 2 and 4, and then jointly

prove both of them. For this purpose we make the following assumption which
generalizes Assumption 2 to the case of three commodities.

Assumption 3 The consumers’ utility function U is twice differentiable, mono-

tonic, quasi-concave and satisfies:

A = U Ui -UylU, >0, (16)
B = UylUg-UglU,>0, (17)
C = Uggl,-UgslUg <0, (18)
D = Uy, -Uuli<0, (19)
G = UyUg-UglU, >0, (20)
H := Ugl -UglU, >0, (21)

A-G+B-D<0, (22)

A-C+B-H<0, (23)

The inequalities (16) - (23) are a subset of sufficient conditions for consumption,
leisure and abatement of pollution to be normal goods if the consumer were a price-
taker for these goods.
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Theorem 6 If U satisfies Assumption § and [ satisfies Assumption I and if each
feastble triple (q,1, E) satisfies the following joint condition:

AM.HEQ@ b c-qﬁq;.“m.. 3 Atcuw.:‘ o qu..cﬂav.b <0 1 AMAH

then g, is decreasing in n.

If U is additively separable, Assumption 3 will be satisfied, and (24) will reduce
to UnlU, fg < 0 which obviously holds. Thus Theorem 6 implies Theorem 2.
For the optimal tax we get:

Theorem 7 If preferences satisfy Assumption 8 and technology satisfies Assump-
tion I, then dr/dn > 0.

Note that we can dispense with the joint condition (24). Theorem 7 also
implies immediately Theorem 4.
Proof of Theorems 8 and 7: Denote by ¢/, I, and E} the derivatives with
respect to n of q,, ., and E,, respectively, Differentiating (2), (3) and (4) with
respect to n we get:

@ = il + f.(nE. - E)/n? (25)
~Ug/Uq + n(Bg, + Gl = CE)U? = fal', 4 fo(Ein — E)/n? (26)
(Bq, — DI+ HE,)[U} = ful, + fi.(Ein — E)/n? (27)
Using Cramer’s rule and rearranging we get:
q, = JIN , I =KIN , E.=LIN,

where

J = nf.E(CD - GH)+ nU,Ug(Df, + nH )
HUFE(H[fiefe = feef) + nClfuf. — fiefi)

+nU2Us(fuf. — fiefi) (28)
K = nE(AC + BH) + nU,Ug(Af. + nH)
+Qaumﬁ_:-ﬁnn = _—‘_—Qbuw = uqucmtﬁ? HNGW

L = nf.E(AG + BD)+ UE(f} - fuf..)
+Q._u.m.?_m—.‘.=b = fief) + Alfeefs = fiefe] = Df.e — nGfi.}
+n’UU(D — Afy + U2 fu) (30)
N = n{fon(AG + BD) + n*(GH — CD) + n*f(AC + BH)

15



YU A(Sfeefi = fiefe) = fee D
+nB(fufe = fie i) = nfie(G+ H) - :nﬁ.?_
HULIfi = feeful} (31)

First we show that N is negative. To see this observe first that (22) and (23)
imply that GH — C D in the second term of (31) is negative. Moreover, Assumption

1 implies
Jfeehi = fiefe <0, (32)
Jufe=fiefi < 0. (33)
JeJu—fi 2 0 (34)

Using (16) to (23), and U, > 0, U; < 0, and Ug < 0, it can be easily checked
by inspection that all the other terms of (31) are negative.

The terms of the numerator J all are positive by (16) - (23), and (32) - (34),
apart from the second one. Now Df, + nH f; < 0 is equivalent to Df./n + Hf, =
Dfg + Hfi < 0, which is condition (24). This proves Theorem 2.

Since the optimal tax has to satisfly r, = f., we get

Eln-E
= fiely + feo _ =2 _ .
Substituting from (29), (30), and (31) into (35) and rearranging we obtain:
T = M/N (36)

(35)

where
M = n. :x—ﬁw.*' mt- * —bn%n = .Wnnsﬁh_ + sﬁnu:mgb — Q:_
+:._QM—\:.....?..‘M - .‘.un...ﬂ;_ " _c..ﬂnn + 3.:;:.&
+QN—QW + Qnm\-n_:.nn.‘.: = bun:_ AM.J_
By inspection one can check again that each term is negative by (16) to (23), and
(32) to (34). Since M and N are negative, 7, must be increasing. This proves
Theorem 4. a]
Proof of Theorems 3 and 5:
Since labor is supplied inelastically, we abuse notation by writing f(e) for
f(l,e), where [ is the per capita labor endowment. The first order conditions for
Pareto—optimality yield

Y o .8
U~ [(Eun) =
gn = J(Ea/n) (39)

Differentiating both equations with respect to n yields
_ WUaety + Use E})Ug — (Uyseq), + Uge EL)Uk I s T.‘ m.,__
"o

[Ug]? Iz e __.3”
¢ = LlEin-El

By rearranging we obtain

- ﬂc::m o Sms_ :

Ue]? e
UseUg — Uggl, f” — ' ! DS
_ 7 N 7N ] R A T2 O i
i E
Bl L Ay
o Iz + 53 (41)
Eliminating E/ and solving for ¢ yields
y el 4w
P s (12)
V+ 3 |W-
where
Ve o Uiltls = Uil ;

W = UgUg-Uggl, .

V and W are positive by assumption. Since f' > 0, J" <0, it follows that ¢' < 0.
It is clear from (41) that the sign of E' is ambiguous. This proves Theorem 3,
To prove Theorem 5, we differentiate r(n) = f,, which gives

r_ o m“._a - m..-
LS I e (43)
Now substituting from (42) into (41) and solving for E! yields
e[
R A [ T T 0
Substituting this expression into (43), yields
v 1V | EW 1
™=, _ e Sm_ 7] (45)
where
0= ;s______ 1 i »
= gElvr 4w (46)

Now since V > 0 and W > 0 by Assumption 2, Q is negative if f” < 0. Since the
term in brackets from (45) is positive, the tax is increasing if [" < 0. If f" =0,
obviously ) = 0. This proves Theorem 5. ]
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