Abstract

Homogeneous games and weighted majority games were introduced by von Neumann—
Morgenstern (1944) in the constant-sum case. Peleg (1966, 1068) studied the kernel and
nucleolus for these classes of games. The general theory of homogeneous, not necessarily
congtant-sum, games was developed by Ostmann (1087a), Rosenmiiller (1982, 1984,
1987), and Sudholter (1989). Peleg-Rosenmiller (1992) used it to discuss several solu-
tion concepts for homogeneous games without steps. A reduction theorem for the nucle-
olus and kernel of homogeneous games with steps was proved by Rosenmiiller~Sudhélter
(1992) and Peleg-Rosenmiiller~Sudholter (1992) respectively, Based on these resulls,
this paper shows that the kernel of each homogeneous game is star~shaped and that the
kernel of a weighted majority game arises {from the one of a certain homogeneous game
in a canonical way. The weighted majority game occurs as a reduced game of this ho-
mogeneous extension. Moreover, the kernels of partition games turn out to be single-
tons. . .



0. Introduction

Two classes of simple games, the weighted majority games and the subset of homoge-
neous games, are considered in this paper. A simple game is a cooperative multi-person

game in which each coalition either wins, i.e, obtains a fixed positive payoll, or loses,

i.e. obtains no payoff. If it is possible to separate winning coalitions from losing ones by
assigning non-negative weights to the players such that the aggregated weight of each
winning coalition exceeds or is equal to a positive level, whereas the weight of each lo-
sing coalition is less than the level, the game is a weighled majority game. The vector
which consists of both, the level and the weights, is a representation of the game. 1f, in
addition, there is a represeniation such that each winning coalilion contains a
"smallest" winning coalition, i.e. a minimal winning one, with a weight exactly hitting
the level, then the game is homogeneous. For the explicit definitions Section 1 is
referred to.

The terms "simple", "weighted majority", and "homogeneous" were introduced by von
Neumann-Morgenstern (1944). They, however, were dealing with constant-sum games
only. Both, simple and weighted majority games, appear in many applications of game
theory (see, e.g., Shapley (1062)). Concerning the structure of homogeneous games
Isbell (1956, 1958, 1959) and Peleg (1968) in the constant-sum case, Ostmann (1987a),
Rosenmiiller (1982, 1984, 1987), and Sudhélter (1989) in the general case, should also
be mentioned,

Sections 1-4 are organized as follows. Section 1 presents the notation, partially adopted
{from Peleg-Rosenmiiller-Sudhdlter (1992). Moreover, necessary foundations and results
concerning weighted majority games and, in particular, homogeneous games are
summarized,

In Section 2 the main result of this paper, Theorem 2.3, is stated and proved. 1t turns
out that the kernel of a homogeneous game is star-shaped and that the center of this
set coincides with the normalized vector of weights of the minimal representation. Peleg
(1966) proved the same assertion for a subclass of the homogeneous constant-sum
games — the partition games -, but his proof cannot be generalized to the class of homo-
geneous games or even of those with the constant-sum property in an obvious way.
Basically, it is shown that the maximum surplus of one player over another is atlained
by a minimal winning coalition as in the just mentioned paper; but the approaches are

totally different and the characterization of homogeneous games via "incidence" vectors
(see Sudholter (1989)) plays an important role in this paper. Additionally, the kernel of
a partition game, indeed, is a singleton as proved in Section 4.

Section 3 shows that the kernel of an arbitrary weighted majority games is a "canoni-
cal" image of the kernel of a homogeneous game called homogeneous extension. There-
fore it is sufficient to restrict the attention to homogeneous games in the class of
weighted majority games with respect to the kernel.

Finally, at the end of Section 4, some illustrating examples are presented.



1. Notation

During this paper let i = {1,2,3,...} denote the universe of players. Finite subsets of N
are called coalitions, intervals are subsets of U {0} of the form

[a,b] = {i€WU {0} | agig¢b},
where a, bel U {0}.

The grand coalition is an interval Q = {4 = [1, n).
If

v: 2(52) = {0,1}, v(¥) =0,
where

2(Q) = {S| 5¢9,

is a mapping (the characteristic function) then (£, 2(€1), v) is a simple =.6c;o,= game.
Since the nature of 2 and #(£) is determined by the characteristic function, v is called
simple game as ‘s@:. A coalition S € Qs often identified with the indicator ?:@o: 1,
considered as n~vector. A coalition S is winning, if v(S) = 1, and losing, otherwise. The
set of winning coalitions is abbreviated by Wy.

In a monotone simple game all subcoalitions of losing coalitions are losing as well. I
each proper subcoalition of a winning coalition is a losing one, then this winning coali-
tion is called a minimal winning (min-win) coalition. It should be noted that a mono-
tone simple game is completely determined by the set of min-win coalitions, denoted by

m To simplify matters we exclude the "degenerate" monotone simple games having

no winning coalitions at all,

Let v be a simple game. The relation $ € 02, defined by i £ j, if v(SU {i}) < v(S U {i}),
for all § ¢\ {i,j} is called desirability relation of v (see Maschler—Peleg (1966)). Note
that < is & relation w.r.t. players which can be generalized o coalitions (see c.g. Biny

(1985)).

Ifiw~j(ie i4jandjgi), theniand jare interchangeable or of the same type. A
monotone simple n-person game v is an ordered game il its desirability relation is
complete. An ordered game is a directed game if additionally

nin-14.%1

is valid. Concerning this notation it is referred to Ostmann (1987b), Ostmann (1989),
and Krohn-Sudhslter (1990).

If a simple game is ordered, it is always assumed that it is directed since this can be
enforced by just renaming the players.

A weighted majority game (with n players) i5 a simple n-person game having a
representation (A m), i.e. a level A ¢ R, and a vector of weights - a measure - m € suc

such that

1, ifm(S) 2 A

§) = .
V) 0, ifm(8)< A

Here, we use m(S) = .Mm m;j (S € 9) and call m(S) the weight of coalition S. Clearly
ie

i 4, ifm; < my(i, j€N), is valid in thiscase and thus v is directed by monotonicity and

the above assumption. That is to say, there exists a representation (Am) of v such that

'

i < jimplies mj > mj (i, j€).

wc is said to be homogeneous w.r.i. A€ R, o — written m hom A - if, for

any T CQ with m(T) > , there is S ¢ T with m(S) = .

A measure m € R

A weighted majority game is homogeneous if it has a homogeneous representation. That
Is a representation (Am) with m hom A and m(£) 3 A. We write

£(S) = max §

for § €0, sometimes calling this the length of S. Note that in a directed game v, {(8) is
a "weakest" player of coalition § w.r.t. the desirability relation.

Let v be a directed game. There is a unique min-win coalition with minimal length.
This coalition is an interval of the form [1,t] and the lexicograghically maximal (lex—
max) min-win coalition of v. Player i € s a null player if v(SU {i}) = v(8) for all 5 ¢
§, and a winning player, if v({i}) = 1. Moreover i is a veto player if each winning coali-
tion contains this player. Clearly winning players are interchangeable as null players
and veto players are. Types of players establish a decomposition of .



There is another decomposition of 2 in the case of a homogeneous n~person game v into
sets of players of equal character. Let (A;m) be a homogeneous representation of v,
There are three characters, called "sum", "step", and again "null player". The defini-
tion of a null player was given above and remains unchanged. So the two others have to
be defined. Fix a non null player i € @ and consider the minimal length of min—win coali-
tions containing i, say

¢®); = min {{(S) | i€Se Wy}

The domain of i is
cuk

i

{et41,n].
Player i is a sum, if
m; 2 m(CH)

and otherwise i is a step.

A sum can be replaced in at least one min-win coalition by a coalition of smaller
players, the weight being exactly the sum of the weights of these smaller players by the
homogeneity of (\;m). On the other hand, "steps rule their followers", i.e., whenever a
smaller player - a player with a larger index - is a member of a min-win coalition, any
preceding step also is a member.

Note that a winning player may be sum or step, whereas a veto player is a slep. A
homogeneous game may have no null players or sums (e.g. the unanimous game of the
grand coalition) but steps are always present. The smallest non null player is always a
step. To simplify maiters, we say that v is a homogeneous game without steps if this
player is the only step. .

Now the necessary definitions concerning the "(pre~)kernel" are recalled. Let v be a
directed n-—-person game.

Definition 1.1: X* = {x € Rn | x(Q) = 1} is the set of pre-imputations. For
different players i, j €52 we write

Ty={ScO|ieSFj}

Let
e(S,x,v): = e(5,x): = v(5) - x(8)

denote the excess of S CQat x €Rn w.rt. v,

The maximal excess of x €Rn w.r.t, vis
x): = p(x,v): = max e(S,x);
x): = w(x,v) e (S)x);
and
sij(x): = syj(x,v): = max e(5,x)
SeTyy

is the maximum gurplus of i over j. d

The corresponding systems of coalitions reaching maximal excess or maximum sarp’
are given by

P(x)= D(xyv)={SCN] e(S,x) = u(x)}
and

Dij(x) = B(xv) = {S€Ty | e(Sx) = s3(x)}-

The pre-kernel of v is given by
MK (v) = {x €X* | syj(x) = sji(x) (i,j €D i #k)}.
The kernel is the set

F(v) = {x €X* | x; 2 v({i}) and (s3(x) ¢ 851(x) or x; = v({j}))i,j€ i # j}.

The kernel was introduced by Davis~Maschler (1965), see also Maschler-Peleg-Sliap
(1979), Maschler-Peleg (1966, 1967), and Peleg (1966).

It is obvious that a game which arises by dropping some or all null Emwos inkeits ¢
directedness, the weighted majority property, and the homogeneity respectively. Mo
over the (pre-)kernel of the new game arises from the original one by dropping
corresponding zero components of each element, Therefore only directed games itk he
nutl players are considered from now on.

By Corollary 1.7, Theorems 2.1 and 2.2 of Peleg~Rosenmiiller-Sudhélter (1992) we «
assume that veto players and winning players are absent, Then the pre-kermel &
kernel coincide. The reduction theorem (Theorem 4.5) of the same paper allows to



strict the attention to homogeneous games without non interchangeable steps in the
homogeneous case. Therefore we assume from now on that each considered homoge-
neous game is a one without steps of different type, without null players, without
winning players, and without veto-players. To the end of this section some important
assertions and definitions concerning homogeneous games are recalled.

Remark 1.2:

1

A homogeneous game v has a unique minimal representation - ie., an integer
valued (%) representing v such that m(€2) is minimal among all integer represen-
tations of v - which is automatically homogeneous itself (see Ostmann (1987a) and
Rosenmiiller (1982)). Moreover m; = ij, iff i and j are interchangeable and my 2
fitk o (3, K €9, k < n).

Let (A;m) be a homogeneous representation of the homogeneous game v and Sewy
If the length of S is minimal among all min-win coalitions, then § is an interval
[1,£(S)) and thus the lex-max min-win coalition. .
‘The set

{ieQ]| Spi<t(8)}
is the set of dropouts of 8. If § is not the lex-max min-win coalition, then § possess-
es dropouts, In this case the last dropout is denoted by

1(8) = max {i €| i dropout of S}.
Clearly there exists a unique t € [r(S) + 1, £(8)] such that

p(8): =SU {x(8)} \ [t, ¢(8)]
is a min-win coalition. That means, @ inserts the last dropout and cuts off a tail of §
to generate a min-win coalition. The aggregated weight of this tail coincides with
the weight of player (S) by homogeneity. If o is the number of dropouts of S, then
p™(S) - i.e. the @ iterate of ¢ applied to S — coincides with the lex-max min-win
coalition.
To define the "inverse" map , let j < £(8) such that

[i,£(S)] CSand S\ {j}U[£(8)+ 1,n] €Wy

Then jis expendable in S, i.e. replaceable by a "tail" [£(S) + 1,t]. To be more pre-
cise, t is defined to be the player such that

pi(S): =8\ {jJU[L(8) + 14

is & min-win coalition. Again the aggregaled weight of the tail coincides with the
weight of j.
Clearly
Px(S) (v (5)) = 8, if § is not lex-max,
and
@ (pj (8)) = 8, if j is expendable in S.

Let k be a player of the homogeneous game v such that all persons 1,...,k are mza,m.

Then there exists a sequence of min-win coalitions Sy,...,9k. € WD such that the

following conditions are satisfied:
(i) 5y is the lex—max min~win coalition,
Sl = {8 | ie[1,j], j€Si} # 9 for each j€[LK].

(iii) Sju = pj(Sio), where ig is minimal w.r.t. Sio € S and

£(Sio) = min {¢(S)| S €8}, for each j€[1,k].

This theorem follows directly from Theorem 2.3 and Definition 2.4 in Sudhélter
(1989).

Moreover, let j € [1,k+1], ro = (8;), and t; >...> 1q = 0 e defined by
{ri]i€[la~1]}

is the set of dropouts of coalition §j. Then

L(p"(S;)) = min {£(8) | 15, | £SEWS, £(5) > rg)

min {£(S) | ;g€ S € W}

for each g €[1,a-1] (for a proof it is referred to the same paper).
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2. HBlar-Shapedness

figentl thal each directed game is assumed to be a game without null players, without
witplig players, without veto players, and ~ in the homogeneous case — without steps
A dilferent Lyp.

i 4g the abmo of (hig section to show that the kernel of a homogeneous game is
sbar-ghiaped. This assertion will be a consequence of Theorem 2.3, in which it turns out
thih the maximum surplus of i over j (i,j € Q) is attained by at least one minimal
winglng conlitlon. Peleg (1966) showed the same assertion for certain pairs (i,j) in the
witantesum  case. However, his approach cannot be generalized to arbitrary
hispgrasous games and the "theory of incidence vectors" (see Sudhélter (1989)) is

vesply weed dnthis paper. At first two lemmata are needed.

Lo 2.1: If v is a directed game and x € P25 (v), then P (x) ¢ Wy,

Pronfi By Lemma 1.4 and 1.5 of Peleg~Rosenmiiller-Sudholier (1992), see
also Peleg (1989), we know that x 2 0 and x; 2.2 x, holds true.
Assume, on the contrary, that 4 (x) contains a losing coalition, say
T. For each winning coalition S we have

e(S,x)21-x() =0
and
e(Tx) = ~x(T) ¢ 0.

Thus e(T,x) =0
and xj = 0 for all i € T by the assumption. Moreover the excess of S
must vanish thus x(8) = 1 for each 5 ¢ Wy,

Consequently each player i with xi > 0 must be a member of each
winning coalition, thus i is a veto player which is excluded.  q.e.d.

Lemma 2.2: Let i and j be different players of the ditected game v and
x € 2% (v). Then

(a) sij (x) 2 p(x) =

and

11 -

(b) s4(x) is attained by a min-win coalition or by a coalition of the
form S U {i}, where S € W™ is a coalition with maximal excess

and £(8) < i; formally written

Dii(x) N(WIU{SU {i} | Se Z(x)N W™, £(S) < i}) #0

holds true.

Proof: (a) Take any minimal winning coalition T with maximal excess. If
j# T, then

e(T U {i},x) 2 u(x) - xy,

thus assertion (a) is true. If j€ T, take any k €2\ T -0\ T 44
since v is assumed to have no veto-players — and observe that
there is a coalition S¢ & (x) with ke§, j¢#S. We can assume
w.l.o.g. that § is a minimal winning coalition (otherwise take any
minimal winning subcoalition of §). Then, again, .

(S U {i}.x) 2 Mx) - x3
holds true. .
(b) Take any T € @yj(x) and define

T = Tn[1,i~1].
If T € Wy, choose any minimal winning subcoalition S of T and
observe that
e(S,x) = xi = e(S U {i},x) 2 e(T U {i},x) 2 (T,x) 2 p(x) ~ x3,
thus S € P(x) NWT, £(5) < i, j£5 and the proof is completed.

If T ¢ Wy, then there is a min-win coalition TU {i} ¢SCT and
e(8,x) 2 e(T,x), thus the proof is finished, q.ed.

Now the main 82:.9:_ be formulated and proved.
Theorem 2.3:  Let v be a homogeneous n-person game, x € J (v), and i,j different

players such that min {i,j} is a sum. Then s;j(x) is attained by a
min-win coalition.
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‘The prerequisite "min {i,j} is a sum" means that if the first step does not coincide with
n — but is interchangeable with n by the absence of steps of different type — then it is
excluded that both i and j are interchangeable with n.

Proof: Assume, on the contrary, si(x) is not attained by a min-win
coalition, i.e.

Dij(x) VWD = 0. (1)
Therefore

sij(x) = mx) = xi @

by Lemma 2.2. Let t be the index of the last non vanishing component

of x, i.e.
X1 2.2 X > 0= X4y =005 X (3)

For each coalition § € Wy there is a unique t(s) €S such that
SN {1,4(8)) (4)
is a min-win coalition — i.e. this min-win coalition arises from the

winning coalition by dropping "superfluous” small players.

For each T € W let o(T) € M U {0} be minimal such that ¢®*)(T) has no dropout

k > max {jt}. .
Define
§ = SOHED 5 11,48))

for each § € W,. We conclude

e(5,x) = 1-x(8) ¢1-x(8N ?.me ) (by (3))
= 1-x(§) wyey O
= ¢(§,x) .
and thus
M= {SE D(x)NWD |o8) = 0} # 0 (by (5) and Lemma 2.1). (6)

Two subsets of #are defined as follows:
M= {S€ A| [min {i,j}, n) NS =0}
M= {S€ A| [min {i,j},max {jt}] €S}

i

]

=13 =

1st STEP: M= MU Lrand L-$0¢ A5

Indeed, as soon as the equality is shown, it is easy to deduce the second part of the
assertion, Take S € . If S € ./ ¢, then there is a player k £ 5 — since § cannot be the
grand coalition by the absence of veto players. In this case the "balancedness property
of x" applied to (k, min {i,j}), ie., 8 .0 (i = Smin {i,j} © guarantees the existence
of T € P(x) with k €T, min {i,j} # T. By definition T € 4 thus T € 4 - holds true. In
each case J - is nonempty. But 4 0 is valid as well, which can be seen by
distinguishing two cases: If t < min {i,j}, take S € A with ¢ (S) is maximal. Clearly
£(5) > ¢ holds true. The case S€ - cannot occur since then T : = p, AEGV exists and

e(T,x) 2 e(8,x) = p(x), thus £(T) > {(8), T € 4 a contradiction.

If t > min {i,j}, take S € £ - and observe that there is T € @(x), min {i,j}eT, k¢ T lor
each k €8, Cleatly T¢ £+, .

To show that A= A *U 4 il suffices to verify that there is no coalition § € A such
that

S N{min {i,j}, n] #90¢# [min {i,j}, max {jt}] \ 8 9
is satisfied.

Assume, on the contrary, there is a coalition S € J with property (7). Four cases are
distinguished:

() i<jt<j
Ifi€S then j€8S by (1). Since t < jthereis k €[i,j] with k ¢ S by (6).
Then S U {k} \ {j} is winning (since j ¢ k) and contains a min~win coalition T
containing i (see (4)).

Now
X(T) € x(8) + xx < x(S) + xi (by (3))
hold true, a contradiction to (1).

Ifi ¢S and j €S, then the observation that S U {i} \ {j} is winning yields a
contradiction in the same way as before without using i < j.

Ififg$ and j£S then there is k € § 0 [i+1,n] (by (7)). Again a contradiction is
obtained by considering SU {i} \ {k} without using t < j.



(c)

(d)

- Tl

We can assume w.L.o.g. i € 5, thus j €5, since all other cases can be treated in the
same way as in (a). Again thereis k €[i+1,4] \ § by (7).

Since sjk(x) = sij(x) it follows that Dj(x) ¢ P (x), thus Dyj(x) N A# s?«.@y
(6) and xx > 0).

Take T € P xj(x) N A and observe that in case i # T a contradiction is obtained
analogously to the last subcase of (a). The case i € T cannot occur since then

e(T,x) = p(x) > p(x) - xj = s3j(x) (by (2) and x; > 0).

t<j<i
Property (7) directly implies j £ S, [j+1, € (8)] €8, £(S) 2 j+1, thus £(8) <i (by
(1)). Take T € @ (x) N WY with £ (T) < i such that ¢ (T) is maximal with these
properties. Since all steps — they are interchangeable - either occur as a block or do
not occur at all in a fixed min-win coalition (by "steps rule their followers"), the

last player £ (T) of T must be a sum ~ clearly £ (T) < n by definition. Therefore
£(T) is expendable in T and a min-win coalition

R=p, ?33&
is obtained. It is obvious that
#x) =e(Rx)  (by £(T)>1),

thus either i € R — a contradiction to (1) - or £ (R) < i - a contradiction to the
maximality of £ ('T).

j<iandjét:
If j ¢S then there is k > j with k € 5 (by (7)) and wlog k < t+1, since
[t+1, £(S)) ¢S whenever £(S) > ¢ by (6). If £(S) > i (implying t 2 i), then the
consideration of a min-win coalition contained in SU {i} \ {£ (5)} again yields a
contradiction. If t ¢ £ (§) < i, then we can proceed in the same way as in the last
subcase of (c) by choosing any T € @ (x) N W§ with £(T) < i, j # T such that £(T)

is maximal. If £(S) < min {i,t}, assume that £ (S) is maximal with these E..o_éaem
and take any T € & with £ (S) ¢ T, £(S) + 1 € T. There exists k € T, k > {(8), such

-15 -

that
R=TU{(85)}\ [kn] €W} (see (4)).

Thus

Xy(s) > x(T Nik,n]) (since T € ). (8)

But — by homogeneity -

Q:=S\ {£(S)}U (TN{kn])eWy
holds true. Consequently (8) is, indeed, an equality and Q€ A4 L(Q) > ¢ (8).
Clearly Q satisties (7) and thus ¢ (Q) 2 min {i,} is impossible as scen above. But
¢(Q) < min {i,t} contradicts the maximality of ¢ (S).

If j €S then there is k €[j+1,t] \ S, thus there is 5 € A k €5, ¢ § which is
impossible by the first part of (d).

From now on let i,j be chosen in such a way that i + jis minimal with the desired
properties. Moreover write k := min {i,j}.

Let § € ¢ with r : = 1(5) maximal. Then
Lp(S)) =t and p(5) € A~ (9)

2nd STEP:

Recall ‘that r(S) denotes the last dropout of S which exists because S cannot be the
lex~max min-win coalition. Since r < k is valid, i.e. r+j < i+}, there is a min-win
coalition T € @yj (x) by the minimality of i-+j. By the balancedness property of x,
namely p(x) = 8j:(x) = srj(x), coalition T has maximal excess, thus T € A - by the first
step.

If ¢ (T) > r, then there is R € @(x) with ¢ (T) £ R, k €R, since Te F(x)N 2, (1)
Again by the minimality of i + jand ¢ (T) + k < i+]j we can assume w.log. that R
EW" and R € A * is valid. Now, the existence of R contradicts the maximality of r.

Therefore £ (T) = r. We conclude

x 2 x([L (0 (9) +1,£(8)]) (bySe A4
and
xe ¢ x ([L(p(8)) +1, £(8)]) (by T € Aand homogeneity),

thus the assertion (9).
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3rd STEP: Now the proof can be completed. Let S be the coalition of the 2nd A () rrm€S:
Step and again r = r(S). Moreover, let £o := ¢ (Skn) and If r = 1, we obtain a contradiction analogously to (b). Therefore ry > r is assumed.
k=1>.>Ta=0 9 Choose R € A with rry £ R, r €R. The exislence of R is guaranteed by the
be defined via {ry...,la-} i8 the set of dropouts of S. - for the , minimality of i + jand the balancedness
definition of Sk. it is referred to the third part of Remark 1.2, By ‘ px) = 8r, o{x) = B, (%).
construction and this remark we have ¢ ! !
ran £ P(Skn) 3 1p (10) R cannot be a member of  °, since otherwise - by ¢ (R) » ¢ (T) > r (see (11)) -
and there is a coalition containing k and not £ (R) with maximal excess, which can be
L(@MSka)) = min {£(S) | rp,i £ S EWD, £(S) > rpu} chosen to be min-win by k + ¢ (R) < i+ This contradicts the maximality of .
= min {{(8) | 1p€S e WY} i1 .
e I o (1) Therefore R € J * holds true. Let (A;m) be the minimal representation of v (see Re-
for all F€[0,0-1]. matk 1.2),
Let f be defined by < rgr and let Now we have
T = 11 (S). m([r+1, £(8)]) = mp ¢ my; b < x (by (9) and Remark 1.2)
I'hiree cases are distinguished: and
, mpy 2 m  (by Remark 1.2).
(a) f+l=a:
. i i ble in §, we conclude
Then r ¢ £(p (T)) = £(8)) (12) Since k is not expendable in S, we con

holds true, where S, is the lex-max min-win coalition. w([£(5) + 1] < mru

thus £ (i (R)) ¢ r is valid. Now, rr.; cannot be a dropout of ¢ (R) (see (11)). Since 1t

But ¢ (S1) = min {£(S) | S € Wy} ¢ L (9 (S)) = 1 (by (9)), thus (12) is an equality. , . is expendable in ¢ (T) but not in R, the inequality
Consequently ¢(S) is minimal such that k € 8, thus k is expendable in § by ‘ . 13 L(p(R)) > L{pXT))
Sudholter (1989), a contradiction to the 1st Step. Therefore we assume [ + 1 < « is satisfied. Thus
from now G m([¢(p(T) +1, L(R)])  =m([L(@XT)) +1, L (p(R))]) 2 m;
but .
ik . b m([£(e (T) +1, (R)) < m({L((T) +1, )
Then iy €9 (S) and L (p(T)) 212 1. : ¢ m({r+1,n} ) = my,,
By the minimality of £ (¢ (T)) - see (11) - and (9) we obtain ry = r. Now — by
= 1, (5 -
homogeneity — ¢ (T) has to coincide with £ (8), thus { = 1, but k must be o m((e+1, E(S)) + m((£(S) + Ln]) = e
expendable in T by (11), thus in §, a contradiction. , < My 4 Mk = My .

{mg,
a contradiction. q.e.d.
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This section is concluded by formulating and proving the explicit results concerning the
star-shapedness of the (pre-)kernels of homogeneous games.

Corollary 2. If the assumptions of Theorem 2.3 and x, > 0 are satisfied, then
sij(x) > p(x) = x4

and
Dij(x) CWg.

Proof: Again

Xp 2.2 X > 0= Xy =00 = Xy

Thus ¢ = n. The second assertion is directly implied by the first one and Lemma 2.2.

In order to verify the first assertion, a part of the proof of Theorem 2.3 has to be
repeated: Start again with the 1st Step - only parts (b) and (d) have to be taken into
consideration —~ and observe that all comstructed contradictions to (1) are also
contradictions to (2), if ¢ = n. The 2nd Step and 3rd Step can be left unchanged. q.e.d.

Proposition 2.5:

(a) _The (pre-)kernel of a homogeneous game v is star-shaped with center
m/m(f), where (M\;m) is the minimal representation of v.

(b) The normalized vector of minimal weights m/m(Q) is an extreme
point of the convex hull of 22% (v).

Proof: Let y = m/m(() and 7 be the index of the first step. Then
i = Yan =00= Y

is valid (see Remark 1.2). Clearly y is a member of the kernel of v (see
e.g., Peleg-Rosenmilller (1992)). Let x € 2% (v).

ad (a): It suffices to show the following:
I, j€9,i#j and min {i,j} <7, then
s1j (ex+(1-¢)y) = ¢+ 83j(x) + (1=c) 81 (y) for all c€R,
0¢cgl,

Lemma 2.1 implies  u(y) = ¢(S,y) forall SeW}.

o

-10 =

Theorem 2.3 directly shows

8ij(y) = u(y), Dy(y) €WS
Take any min-win coalition § atiaining s4j(x).

Then sij(ex + (1) « y) = (S, cx + (1-¢) y) = ¢ s4j(x) + (1<) sij(y)-

ad (b): It suffices to show:
HHX: W w.: :-Gb X=Y.

Let xp 2 yo. Then x; 2 yyforalli } .
Assume x; > yi for some v > k 2 1 and all i > k. Choose a min-win coalition

S € Dni(x) - S exists because k is a sum (see Theorem 2.3),

Then the coalition S U {k} \ {n} contains a min~win coalition T with

T=(SU{k}\ {a})n[1, £(T)]
by (4). Clearly player k is a member of T. Therefore the balancedness of x implies that
xk 2 x(SN{k+1,n]) - x(TN{k+L,n]) -

2 y(8 N [k+1,n] ) = y(T N [k+1,n] )
= yk (by the homogeneity of (A;m)).

An inductive argument finishes the proof, q.e.d.

Corollary 2.6:  Let v be a homogeneous game minimally represented by (Am). If x is
a member of the kernel of v other than m/m(f)) with a non vanishing
last component, then there exists y € & (v), yu = 0 such that

(i)  xisa convex combination of y and m/m(S)
and ;
(i) all convex combinations of y and m/m(f) are elements of
the kernel .
hold true.

The proof is a direct consequence of Corollary 2.4 and Proposition 2.5 (b) and therefore
skipped here.
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Up to the end of this section it will be shown how different steps can be avoided: the
steps can be collected to one player and all elements of the kernel can be treated in the
same way resulling in the kernel of the new game. To be more precise, let v be a
homogeneous n-person game and 7 be the first slep, i.e. nv.v 7 and 7-1 4 7. Let w be
the simple T-person game, defined via

v(S), il 7 ¢S
w(SU[rn]), ifreS

Let (;m) be the minimal representation of v. Then mq = m ({r,n]) and

Am.wd m..m.:‘r_ N .%«C. , 1) is the minimal representation of w, i.e., w is a homogeneous
4. a. 18

game without steps (see Ostmann (1987a) and Sudholter (1989)).

w(§) =

Remark 2.7: It is well know (see, e.g. Maschler~Peleg (1966)) that the pre-kernel
of a game is a finite union of polytopes. Let v be a homogeneous
n-person game and i be the normalized vector of a minimal weight.
i

P (v) = rm pi
iz

for some polytopes P! (i € [1,f]) and some r €N, then P! can be
enlarged to a polytope Py containing M as an extreme point and no
other extreme point with a positive last component such that
P! ¢ P ¢ 24 (v). To see this take any extreme point x from P! other
than i with a positive last component and observe that

(148) « x -6 =1 x14,
where § is defined via x4*® = 0, is a member of the pre-kernel by

Corollary 2.6. By the same result the straight line connecting x4+
with i belongs to the pre-kernel. If y is in P! then the triangle
CH ({y.x,m}) (CI denotes the convex hull) is contained in the
pre~kernel by 3385.2_ 2.5, Therefore again Corollary 2.6 directly
implies .
CH ({y, x1%, }) ¢ 725 (V)

holds true (see Figure 1). Indeed, CH {z, &} ¢ 2% (v) , since &y 2 0
(for each z € CH {x,y}).

y z 148
m
Figure 1

Lemma 2.8: K (v) = {x €RY |xy=..= xp and (Xy,..., %51, X[7,0] ) € K (W)}

Proof:
1. Ifx€ K (v) and xy = 0, then (x},...,x:1,0) € K (w).

2. Ifx € J(w) and xq = 0, then (Xg,...\Xso, 05 .+ +,0) € F(v).

neved

A proof of these assertions — even without Theorem 2.3 - is straight forward and

therefore skipped. The proof is completed with the help of the preceding corollary and

proposition. Let (A;m) be the minimal representation of v and x = mmm.,g.

Then y € R, defined by
xp,i<r71
yi=
X =x([rn]),i=17

is a center of J¥ (w). If CH(M) denotes the convex hull of M CR™, then

H(v) = CH {a,
(v) pvw« A% {a,x}
8 p=

and
H(w) = f\ CH G.

by Corcllary 2.6 and Proposition 2.5 and the proof is finished by construction.  q.e.d.
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3. The Weighted Majority Case , ) »
is a J:E.Ew_ roB.omm:ao:m representation of a superadditive (n+14m(§2)-A)-person
Each weighted majority game is assumed to have no null players, no winning players, WMHEMoM_Mm_M”M“WmMMM M.m”,“m mﬁ_mvmwmﬂamn directly using, e.g., Em E.o.n&s:w of testing
and no veto players (see Section 1). . st ; y Sudhélter (1989). Clearly ~ by Definition 3.1 - ¥ is a
. geneous extension of v. q.e.d.
It is the aim of this section to show that the pre~kernel of each weighted majority game Theoram 3.8: . Lat § b .
coincides with the "relevant" subset of the kernel of a homogeneous game with a larger - et ¥ be a homogeneous k-person extension of the weighted majority
number of players. This homogeneous game, a "homogeneous extension" of the original ) %
one, is not uniquely determined and can be chosen superadditively. Here are the details. , AK(v) = {xe®" | Ax.mﬁkkov € 2K (V)}
. -n times
. . e is valid.
Definition 3.1: Let v be a weighted majority n—person game. A homogeneous
k-person game ¥ with minimal representation (Af) is a Proof: Let (A :
homogeneous extension of v, if the following conditions -are ' et (Ai) and (m) be constructed according to Definition 3.1.
satisfied:
) - Note that S € W, implies m(S) > A and thus m (SU [n+1,k-1]) 2> X Conversely, if
(ii) fy = 1for i € [n+1,k]; SeWs, then i (SN [1,n])2 A = (k-n), 1 (SU [1,n]) is even, and X ~ (k-n) is odd.
(i) fitg is even fori€[l,n}; Consequently we have m (S U [t,n]) 2 A.
(iv) M= A-m ([n+1,k-1} ) is even; This motivates the definition of two mappings
(v) (Xm), where m = (fty,...,ffin), is a representation of v.
o 2([1,n) ) = 2([1,k]), S = S U [n+1, k-1
It should be noted that a weighted majority game is the reduced game (in the sense of and
v 2([1,k]) = 2([1,n]), $ - 8O [L,n].

Davis-Maschler (1965)) of each of its homogeneous extensions w.r.b. © and all

pre-imputations with vanishing components for players i £ :
These maps have the following properties

, Lemma 3.2: Each weighted majority game v possesses superadditive (a) vog=id
homogeneous extension without steps. : (b) o(S)EW; iff SEW,;
() uS)EW, iff SEW;.
Proof: Let (A\;m) be an arbitrary integer representation of the n—person game
v satisfying Let x € Pk %
dx= It . TS _—
my 2.2 my and A = min {m(S) | § € Wi}. (v) and % Ax_{)mylexﬁwo__wm It is clear that sij(x) = sij(X) for i,j€(1,n] and
; : i#j In view of the fact that all players of [n+1,k] are interchangeable it suffices to
! Let w.lLo.g. ) m; be even numbers for i € Q - otherwise (\;m) can be replaced by show that si(&) = 8ky(%) for all i € [1,n}. Indeed, by a balancedness argument, there is
E - e )
(2Xx;2m). Then the vector . a coalition S C{l,n] with i€8, ¢(5,x) = p(x) and a coalition T C[l,n] with i ¢T
() := (m(§Y); MiypeoeyMpy 15000y 1) . a@,‘xvnkxw. n.:m_“m_.os the coalitions o(S) and o(T) \ {n+1} U {k} show that
1+m((2)-A times sik(X) = sxi(X) = p(x) holds true.
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Conversely, if & € 92.% () with &y = 0 define x = (&1y.ry¥n). It is well-known (see, e.g.,
Peleg (1989)) that the pre—kernel has the reduced game property in the sense of
Sobolev (1975), thus the proof can be finished using this property. Besides, the last

assertion can also be verified directly using the surjective mapping v. q.e.d.’
Remark 3.4: Let ¥ be a homogeneous extension of the n-person weighted majority
game v. Then
r
K (V) = CH Pt
1=

holds true for some r €l and some polytopes Pt containing the
normalized minimal vector of weights f and no other extreme point
with a non vanishing last component. Let P! be the polytope which
arises from P! by taking the convex hull of all extreme points other
than . Then the pre-kernel of v is the projection of the union of the
Pt(i€e[1,]) to R™

Example 3.5:  Kopelowitz (1967) gave examples of weighted majority games with
disconnected kernels. Here is one 6-person game v, given by the
representation  (10;5,4,3,2,2,2) ot (Xm) = (20;10,8,6,4,4,4).
Kopelowitz computed the kernel of this game and came up with

F(v) = {(2,L,LL11) / 7, (1,1,0,0,0,0) / 2}.

Then ¥, minimally represented by

(i) = (32;10,8,6,4,4,4,1,1,1,1,1,1,1,1,1,1,1,1,1)

-

is a homogeneous extension of v. Here X is chosen minimally such that m hom A is’

valid. This homogeneous exiension is not the one suggested in Lemma 3.2 — having level
m([1,6] ) = 36 and therefore four additional players of weight 1.

For the sake of completeness the kernel of ¥ is described explicitly. Define two vectors

xt=(2,1,1,1,1,1,0,.. . ,0) /7,
13 times
x? = (1,1,0,...,0) /2

s ool
17 times

- 25 -

Then J& () = CH {x!, m/49} U CH {x?, m/49} (sce Figure 2).

x»

/49
K (¥) H(v)

Figure 2
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4. The Kernels of Partition Games and Examples

Peleg (1966) showed that the kernels of certain homogeneous constani-sum games
called partition games are star-shaped. Partition games were introduced by Isbell
(1956, 1958). He observed that a monotone simple constant-sum game (without null
players) has at least as many min-win coalitions as players. And, up to one famous
exception, the partition games are exactly those with this minimal number. The
exception is the projective 7—person game, introduced by Richardson (1956). This game
has a very symmetric kernel with equal treatment of the players in the center — the
center being no extreme point of the convex hull,
In this paper it turns out that the pre-kernel of a partition game is not only
star-shaped - by homogeneity - but a singleton. We start recalling the definition of
partition games. Let n 2 4 in this section,

Definition 4.1: The game v is an n-person partition game if there is a number

rel\ {1} and a vector t €W with t; = 1, 42 2 2 < ty, and 4([1,f]) =n - ie,
r
(1] =\ Ty, where Ty = [1+4([Li]), t([1,i41])], i € {0} U [L,r-1] ~ such that
i=l
Sewn,iff Se{S | je[Lr]},

where § € (WU {0})" is defined by §; = | SATi | (i €[La])

ty, if j-i =0mod2andi ¢
and mb,u 0, if (j~! =lmod2andi<jjori>j+l.
1, otherwise

The following table shows the minimal representations of all 7-person parlition games.
(6;5,1,1,1,1,1,1)
(9;5,4,4,1,1,1,1)
(10;7,3,3,3,1,1,1)
(11;7,4,4,3,1,1,1)
(9;7,2,2,2,2,1,1)
(12;7,5,5,2,2,1,1)
(11;8,3,3,3,2,1,1)
(13;8,5,5,3,2,1,1)

-7 -

Theorem 4.2: If v is a partition game, then the (pre-)kernel of v is a singleton.

Proof: v.ﬂ X € J(v), 1, ty, Ty, 5§ be defined according to Definition 4.1. In
view of Proposition 2.5, it suffices to show that x = m/m(f}), where
(hm) is the minimal representation of v. Again, by the
star-shapedness we assume x,, > 0.

Define &= {5 | Se (x)nW"}.
Claim: @= {§' | je[1,0]} =: &

wm 89._ as this last equality is shown, the proof is finished, since m/m(}) is uniquely
etermined by y(8) = const. for S € W™ and y(f) = 1 - note that all players of T; are

interchangeable and thus obtain equal weights according to x.

wmwnn@ Xn > 0 there is $e¢ @ with § > 0, but §1 and §° are the only elements of
{5€¢ 4] 5> 0} 1f §1€ B, then syj(x) = p(x) for i €Ty.y, j €Ty since §5:1 > 0 and
Grel .

5" = 1 < t; hold true. By the balancedness of x we have 8ji(x) = (x) implying the
existence of 5 € @ with §; > 0, §,.; < t;.; and thus § = 8. Therefore, in each case,

§re 9 is valid.

Now, 8ij(x) = p(x) shows that there is § € @ with §,, > 0, § < Ty, thus
§ ¢ (Gt Grea &r-2 (3 .
5€ {57, 57}. Assume § = §72 (i.e. 1 2 8), thus §,., > Oand §; = 0. As a consequence
we obtain

8ij(x) = p(x) for i € Trp, jET,

m:a - by vawzom%mmm - 84j(x) = p(x). We conclude that there is § ¢ @ with §; > 0
Sra2 < tpag, thus § = 871, Up to now we proved §7, §re &, .

Assume 5, §7L. §o € @ for
some « ¢ 1~2. If & = 0, the proof i
Therefore assume o > 1. . ’ " compite

Again, since 531} > 0, §3'! = 0 there is § € @ with §, > 0, 84,5 < ta., Observe that
§ = 8§ if @ = 1. Therefore § §au}
n ] assume & > 1. Then clearly § € {§, §2*1} i5 valid. Assume

5 So-t) thus §o.p > 0, we._ = 0 and ~ by balancedness - there is T € Dwith Touy > 0
Ta-t < to-1 Consequently, T = §% holds true. q.e m.
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Finally, some examples are presented showing the following assertions.

(i)  The kernel of a homogeneous constant-sum game need not be a singleton or even

convex.

(i)  An element of the kernel of 2 homogeneous game — even in the constant sum
case — need not satisfy the condition thai the maximum surplus of player i or |
coincides with the maximal excess, even for non interchangeable player i and j.

(iii)  The least core of a homogeneous game need not be contained in the kernel of the

game.

(iv) An element of the kernel of a weighted majority game need not satisfy that the
maximum surplus of player i or player j is attained by a min-win coalition for
non interchangeable players i and j.

Note that a possible example showing (iii) has to be a non constani-sum game, because
otherwise the least core is a singleton consisting of the nucleolus as Peleg (1968) has
shown. Nevertheless, this assertion may be surprising because pre-kernel, nucleolus and
least core behave in the same way w.r.i. homogeneous games with sieps of dilferent
type, which was shown by Rosenmilller-Sudholter (1992) and Peleg-Rosenmiiller-Sud-

hélter (1992).

Examples 4.3:
(a)  Let v be the homogeneous 11-person constant-sum game minimally represented
by :
(Mm) = (16;10,6,4,2,2,2,1,1,1,1,1).
Define
xt = (2,1,1,1,1,1,0,0,0,0,0) / 7
x? = (1,1,0,0,0,0,0,0,0,0,0) / 2
x3 = (6,3,3,2,2,2,0,0,0,0,0) / 18.

1t is easy Lo verify that
J(v) = CH {x!, m/31} U CH {x2, x3, m/31}.

—~ 20 -

qw&& are only two "types" of min~win coalitions in T3, namely one consisting
o~ players 1,3, and one additional player in [4,6] and the other consisting of
players 1,3 and two additional players in [7,11]. The excess w.r.t. x3is 7/18 and

1/2 respectively. The maximal excess i )
: w.r.t. x3 is attaine
and is ~0\~m. ined by, ¢.6. An.&w u ?LS.

This example, thus, shows assertions (i) and (ii).

Let v be the 5-person weighted majority game, represented by (hm) =
(8;4,3,2,2,1). Then x 1= m/12 € ¥ (v) - indeed, m/12 is the nucleolus Mvm :_l
.mwgm. &0332 852(x) cannot be attained by a min-win coalition because :E_M
18 no min-win coalition containing player 5 but not player 2. As a consequenc

we have assertion (iv) and, additionally, sgs(x) < p(x). e

Let v be the homogeneous 7~person game, represented by
(Am) = Azmm.u.u.u_m,rc.

Define x! = Au.w.m.m.o,o.cv \ 6, x?= Au.u.w.m._.o.cv \ 6.

Then the least core is the convex hull of x!, x2 and m/21. Besides, the nucleolus
]

of v can be computed as .H@ wf‘ + 2 x_+ 2 ».

iT ¥

ﬁw nvm_ easily cm. sw:,mma that xi, x2 £ & (v). With the help of a computer it was
checked that this is the ouly 7-person example, showing assertion (iii).
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