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Abstract

Two preimputations of a given TU game can be compared via the Lorenz order
applied to the vectors of satisfactions. One preimputation is ‘socially more desirable’
than the other, if its corresponding vector of satisfactions Lorenz dominates the
satisfaction vector with respect to the second preimputation. It is shown that
the prenucleolus, the anti-prenucleolus, and the modified nucleolus are maximal in
this Lorenz order. Here the modified nucleolus is the unique preimputation which
lexicographically minimizes the envies between the coalitions, i.e. the differences of
excesses. Recently Sudholter developed this solution concept. Properties of the set
of all undominated preimputations, the maximal satisfaction solution, are discussed.
A function on the set of preimputations is called collective satisfaction function
if it respects the Lorenz order. We prove that both classical nucleoli are unique
minimizers of certain ‘weighted Gini inequality indices’, which are derived from
some collective satisfaction functions. For the (pre)nucleolus the function proposed
by Kohlberg, who characterized the nucleclus as a solution of a single minimization
problem, can be chosen. Finally, a collective satisfaction function is defined such
that the modified nucleolus is its unique maximizer.
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0 Introduction

Symmetry and fairness are among the basic tenets of the theory of solutions of cooperative
games since its creation by von Neumann und Morgenstern (1944). Symmetry roughly
means that a solution of a game must be invariant under the (linear transformations
induced by the) symmetries of the game. (More general formulations are possible.) Fair-
ness, or equal treatment, requires that at each point of the solution symmetric players
receive equal payoffs. However, considerations of equity were not used to justify solutions
of transferable utility (TU) games till the introduction of the nucleolus in Schmeidler
(1969).

Schmeidler considered the distribution of excesses of coalitions (relative to a feasible payoff
vector), and chose the feasible payoff vector that yields the minimum distribution (in
the lexicographic order). Although Schmeidler was motivated by equity considerations,
his approach is ad hoc and is not directly related to standard concepts of ‘the theory
of inequality (in economics). Indeed, Maschler (1992) writes on the definition of the
nucleolus: .

“Mathematicians will certainly admire the above definition, but can it be given a convincing intuitive
meaning? Here is an attempt [Maschier, Peleg and Shapley (1979)]. Consider an arbitrator, whom the
players ask to decide how to share v{N). The arbitrator may regard the excess of a coalition as a measure
of dissatisfaction and he may be eager to decrease the excesses of the various coalitions as much as
possible. This will also increase “stability”. He will then look for payoffs in which the highest excess is
as low as possible. If there is more than one such payoff, he will tell the highest-excess coalitions: “I
have helped you as much as I could, but I can still help other coalitions.” He will then proceed to choose
outcomes for which the second highest excess is minimal, and so on. Obviously, such “justification” raises
more questions than it answers. What is more “stable”, a situation in which a few coalitions of highest
excess have it as low as possible, or one where such coalitions have a slightly higher excess, but the
excesses of many other coalitions are substantially lowered? It is the lexicographic order that is hard to
motivate.”

Our paper addresses the foregoing questions raised by Maschler using the standard tools
of equity theory. Let v be a TU game. With each preimputation of v (i.e., a Pareto
optimal payoff vector) we associate the distribution of satisfactions of all the coalitions
(the satisfaction of a coalition is the negative of its excess). We now compare preimpu-
tations by (partially) ordering their distributions of satisfactions by Lorenz domination.
Our sdlution, the maximal satisfaction solution M(v), consists of the set of all preim-
putations whose distribution of satisfactions is maximal (i.e., it is not Lorenz dominated).
It cannot be criticized in the foregoing manner, because it contains all equitable payoffs. _
Nonemptiness of M(v) is easily proved. We now briefly review the contents of the paper.

First we show that M(-) has several standard properties: equal treatment, desirability,
covariance, self duality (i.e., M{v) = M(v*) for each TU game v, where v* is the dual of
v), (strong) null player, and (two-sided) reasonableness. A second goal is to determine the
structure of M(v) for each v. For this purpose we first obtain a geometric characterization
of the points in M(v) (see Theorem 2.2). Then we prove that M(v) is a contractible union
of a finite number of polytopes. ' : :



It is easily shown that the prenucleolus, the anti-prenucleolus, and the modified nucleolus
are members of M. Moreover, it follows from Kohlberg (1972) that the prenucleolus is
the unique minimizer of some weighted Gini index. This result can be generalized to
the modified nucleolus and the anti-prenucleolus. In an appendix we give a new proof of
Kohlberg’s result. Qur proof enables us to explicitly estimate the coefficients of Kohlberg’s
collective satisfaction function. '

This first study of the maximal satisfaction solution leaves open many problems. We shall
only mention one: To find a suitable axiomatization of M(:).

1 Definitions and Preliminary Results

A cooperative game with transferable utility - a game - is a pair G = (N, v}, where
N is a finite nonvoid set and
v:2¥ 5 R, v(0) =0

is a mapping. Here 2V = {§ C N} is the set of coalitions of G.

If G = (N,v) is a game, then N is the grand coalition or the set of players and v is called
coalitional (or characteristic) function of G. Since the nature of G is determired by
the coalitional function, v is called game as well.

If G = (N,v) is a game, then the dual game (N,v*) of G is defined by
v7(5) = v(N) —v(N\S) |
for all coalitions .S. The set of feasible payoff vectors of (7 is denoted by
X*(N,v) = X*(v) = {z € BY | =(N) < (M)},
whereas :
X(N,v)=X(v)={z € R | z(N)=0v(N)}

is the set of preimputations of G (also called set of Pareto optimal feasible payoffs of
G). Here )
2(S) = Biesz; (2(8) =0)

for each ¢ € RN and S C N. Additionally, let 25 denote the restriction of z to S, ie.
25 = (zi)ies € R,

whereas As = {zs5 | 2 € A} for A C IRM. For disjoint coalitions $,7 € N and z € RV
let (xs,.'r’r) = ZsuT-

A solution concept o on a set I' of games is a mapping that associates with every game
v €T aset o(v) S X*(v).

If T is a subset of T, then the canonical restriction of a solution concept ¢ on I' is a
solution concept on I'. We say that o is a solution concept on T, too. If I is not specified,
then o is a solution concept on every set of games.
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Some convenient and well-known properties of a solution concept ¢ on a set I' of games
are as follows. ' ‘

(1) o is anonymous (satisfies AN), if for each (N,v) € ' and each bijective mapping
7: N — N with (N',rv) €T

a(N’,ﬁ'v) = 7(a(N,v))
holds (where (7v)(T) = v(r~Y(T)), 7;(z) = z,-1; (x € RV, § eN,TC N'Y).
In this case v and Tv are equivalent games.

(2) o satisfies the equal treatment property (ETP), if for every z € o(N,v) (v € T)
interchangeable players ¢,7 € N are treated equally, i.e. z; = z;. Here ¢ and j are
interchangeable, if v(SU {i}}) =v(S U {j}) for SC N\ {i,7}.

(3) o respects desirability (sa.tisﬁes DES) if for every (N,v) €I every z € cr(N;v)
satisfies z; > z; for a player ¢ who is at least as desirable as player j. Here i is at
least as desirable as j if v(SU{i}) 2 v(SU{j}) for S C N\ {i,5}.

{4) o satisfies the nullplayer property (NPP) if for every (N,v) € T every z €
o(N,v) satisfies z; = 0 for every nullplayeri € N. Here i is nullplayer if v(SU{:}) =
v(S) for S C N.

(5) o is covariant under strategic equivalence (satisfies COV), if (N,v),(N,w) € T
with w = av + 8 for some @ > 0,8 € RY implies that

og(N,w) = ac(N,v)+
holds. The games v and w are called strategically equivalent.
(6) o is single valued (satisfies SIVA), if jo(v)l = 1 for v € I.
(7) o satisfies nonemptiness (NE),if o(v)# @ forvel.
(8) o is Pareto optimal (satisfies PO), if o(v) € X(v) forveT.
)

(9) o satisfies reasonableness (on both sides) (REAS), if

z; 2 min{v(SU {z}) - v(S) | S CT N\ {{}}

-.1;;- < max{v(SU {i}) —v(S)| S C N\ {i}}
fori € N,(N,v) €T, and z € o(N,v).



Note that both equivalence and strategic equivalence commute with duality, i.e. (7v)* =
T(v*), (av + )" = av® + 3, where 7,0, # are chosen according to the definitions given
above. With the help of assertion (9b) Milnor (1952) defined his notion of reasonableness.

It should be remarked (see Shapley (1953)) that the Shapley value ¢ (to be more precise
the solution concept & given by ¢{v) = {(v)}) satisfies all above properties. Moreover,
it is well-known that the Shapley value of a game and its dual cannot be distinguished.
This observation motivates the following ' '

Definition 1.1 A solution concept ¢ on a set T' of games is self dual (satisfies SD), if .
o(v) = o(v*") whenever v,v* € I.

Some more notation will be needed. Let (V,v) be a game and z € IRV, The excess of a
coalition § C N at z is the real number '

e(S,z,v) = e(5,z) = v(S5) — z(9).
The satisfaction of a coalition S at z is the negative excess of S, denoted by f(S,z,v) =
£(5,2) = 2(8) — o($).

To a ‘utility’ vector z € RY its Lorenz curve L(z) = y € R", where n = |N|, defined
by T A ‘
yr = min{x(S) | S C N and |S| =k} for k€ {1,...,n},

is attached. A collective utility function is a continuous mapping W : RN — IR which
satisfies ' ‘

(1) Anonymity: W{z) = W(y), if = arises from y by a permutation of the components,
and :

(2) Unanimity: W(z) > W(y),ifz >y, and W(z) > W(y),if z; > y; fori € N

for z,y € RN.

To simplify notation we define z* to be the vector which arises from z by ordering the
components of © nondecreasingly, i.e.

k .
>z} = Li(z) for every k € {1,...,n}.

i=1

A collective utility function W is said to reduce inequality, if W respects Lorenz do-
mination, i.e. if L(z) > L(y) and L(z) # L(y) hold (z Lonenz dominates y), then
W(z) > W(y) is valid. For this notation Moulin (1988) is referred to. :

In order to compare feasible payoff vectors of a game in terms of their satisfaction vectors
it is sufficient to replace ‘utility’ by ‘satisfaction’. The formal notion is given in

Deﬁnition 1.2 Let (N,v) be a game and z,y € X*(v).
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(1) = dominates y via satisfaction w.r.t. v (written z >, y), if

(f(S,z,v))scn Lorenz dominates (f(S,y,v))scn.

We write =, y, if * weakly dominates y via satisfaction, i.e. if either z =, y or

L((f(ss -"3,”))SQN) - L((f(s’ Y, U))SQN)-

(2) Let D(z,v) = {z € X*(v) | 2 >, z} be the set of feasible payoff vectors which
dominate  via satisfaction. The set of weakly dominating vectors is denoted by

D(z,v) = {z € X*(v)| 2z =, z}.

(8) = maximizes satisfaction w.r.t. v, if D(z,v) = 0. Let M{v) = {z € X*(v) |
z mazimizes satisfaction w.r.t. v} be the set of feasible payoff vectors which are not
dominated via satisfaction.

- Note that = weakly dominates y via satisfaction w.r.t. (N,v), if

> f(S,2,v) 2 min{ ) f(S,y,0) | T C2V,|T| = k} (1.1)
S8 SeT
for every k =1,...,2" and every subset § C 2V with |S|= k. Moreover, = dominates y,

if additionally one of the equations (1.1) is strict.

Lemma 1.3 If (N,v) is a game and = € X*(v), then D(z,v) is a nonempiy convez
compact set.

Proof: Nonemptiness and boundedness are guaranteed by the facts that = € D(z,v) and
f(S,y,v) 2 mingen f(T,z,v) for every S C N and y € D(z,v) hold true. Convexity
is a direct consequence of the fact that every component Li((f(S,-,v))sen) : X*(v) —
IR of the Lorenz curve of the satisfaction vector is a minimum of finitely many affine
linear functions and, thus, concave. Continuity of these component functions guarantees
closedness of D(z,v). q.ed.

In order to show that the set of vectors which weakly dominate = intersects M(v) we
recall the definition of a nucleolus. For X € R™ the nucleolus of v w.r.t. X is the
set (X, v) of vectors in X which lexicographically minimize the nonincreasingly ordered
vector of excesses, i.e.

Af'(X, 'U) = {I €X | _G.(E) Slex _G.(y) for y € X}a

where G(z) = ((f(5,z,v))scn). Schmeidler (1969) showed that nonemptiness together
with compactness of X implies nonemptiness of the nucleolus, whereas convexity of X
implies that A"(X, v} contains at most one element.

Corollary 1.4 M(v) N D(z,v) is nonempty for every game (N,v) and every feasible
payoff vector x € X™(v).



Proof: By definition A(D(z, v),v) C M(v), thus Lemma 1.3 completes the proof. q.e.d.

Further properties of M are summarized in the following

Lemma 1.5 On every set T of games the solution concept M satisfies (1) AN, (2) ETP,
(3) DES, ({) COV, (5) PO, and (6) SD.

Proof: It is straightforward to verify AN and COV. ETP is a direct consequence of DES.
Therefore it is sufficient to show PO, DES, and SD.

(5) Let (N,v) € T and ¢ € X*(v). If z is not a preimputation, then there exists ¢ > 0
such that y, defined by y; = 2; + € for i € N belongs to X*(v). Clearly f(S,z,v) <
f(S,y,v) for § #.5 C N holds true, thus ¥ dominates z via satisfaction. Note that
¢ can be chosen in such a way that y is a preimputation.

(3) In view of Pareto optimality which is established for M we assume that z € X(v).
Take ¢,7 € N and assume that 7 is at least as desirable as j. If z; < x;, take € > 0
such that y, defined by

Tk ,lkaN\{E,]}
Ye=94 z;+¢ ,ifk=1 )
zj—e€ ,ifk=j

satisfles y; < y;. By definition of y and assumption we come up with f(S,z,v) =

f(S,y,v) and _
FSU{ihz,0)+ €= F(SU{iLy,v) < F(SU {1 r) = F(SU {5}, 2,0) — €
for every coalition S € N \-{1,j}. Thus y dominates z.
(6) Let (N,v),(N,v™) € T and z € M(v). For every S C N
| [(8,2,0) = ~ (N \ 5, 2,0) (1.2)

1s true by Pareto optimality (see (5)). Assume, on the contrary there is y € X*(v*)
which dominates z via satisfaction w.r.t. v*. Then y can be assumed to be Pareto
optimal w.r.t. »* and, hence, w.r.t. v. Equation 1.2 together with the fact that the
sumn of all satisfactions is constant on the set of preimputations shows that y =, z
(because

Lk((f(s’zs U‘))SQN) = L?“—k((f(S, zsv))S,C_N) - LZ"((f(Sax,U))SQN)

{where Lo(-) = 0 by convention) is true for z € X(v)), thus a contradiction is
established. _ - q.e.d.



Though we have seen that the nucleolus of v w.r.t. the set of elements which weakly
dominate z (for every feasible payoff vector z of v) via satisfaction is a singleton contained
in the set of undominated preimputations it should be noted that both the prenucleolus
N(X*(v),v) = {v(v)} as well as the antinucleolus v*(v) = v(v*) of v are members of the
maximal satisfaction solution M(v). Indeed, v(v) must be a member of the maximal
satisfaction solution applied to v, which can be seen dlrectly, whereas the antinucleolus

must be a member of M(v) by Lemma 1.5 (6).

Remark 1.6

(1)

(2)

(3)

Note that the mazimal satisfaction solulion is a standard solution which means
that for 2-person games (N,v), let us say N = {i,j}, the only member of M(v)
assigns [v({i}) — v({7}) + v(N)]/2 to player i. NE, PO, ETP, and COV imply this
property.

In what follows an example is presented which simultaneously shows that M(v) is

not necessarily conver (though it is a finite union of polytopes as proved in the next

section) and does not necessarily contain the Shapley value. To this end let (N,v)
be defined by N = {1,...,4} -and

v(S) = { 12, if S € {{4},{3,4},{2,8},{1,3,4}, N}

0 |, otherwise

With the help of Kohlberg’s (1971) characterization of the prenucleolus by balanced
collections of coalitions it can easily be checked that

v(v) = (~4,2,6,8) and v*(v) = (4,0,4,4).

Moreover, the Shapley value can be computed as p(v) = (1, -1,5,7). The verification
that (1,—1,6,6) », p(v) and (0,0,6,6) >, (v(v) + v*(v))/2 is straightforward and
left to the reader

The mazimal satisfaction solution need not be contained in the core even for conver
games. (Recall that a game (N,v) is convez, if v(S)+v(T) < o(SUT)+v(SNT)
for all S, T C N.) Indeed, Sudhélter (1996a, Ezample 3.2(iii)) presented a conver
five-persen game v such that the core of v does not contain the antinucleous v(v*)
which is a member of M(v).

‘Characterizations of the Maximal Satisfaction So-
lution

This section serves to present characterizations of M(v) which allow many apialica.tions.
Indeed, as a byproduct we show that this solution concept satisfies the strong nullplayer



property which can be used to verify REAS. Moreover, M(v) turns out to be a contractible
finite union of compact polytopes.

Some notation is needed. During this section let N be a finite set of at least two elements.
Recall that a finite set X C IRV is balanced, if it possesses balancing coefficients

(6Z)E€X7 l.e. : .
b, > 0 for z € X and Eéapx:lN.
zeX

Here 1y is the vector (1,...,1) € RN as usual.

Definition 2.1 Let (N,v) be a game and z € X*(v).

(1) A finite sequence G = (G;)_, of collections of coalitions is a configuration of N,
if .
Z|Q,~ |= 2" — 2 and Ug;:?N\{@,N}.
=1 i=1
Moreover, G; # 0 is assumed for 1 < j <,
(2) A configuration G = (G;)}., of N generates the subset
k
XG)={3> 1s+> 15|k=0,....,r —1,T C G}

i=15€g; S5eT
(3) A configuration G of N is feasible, if X(G) is balanced.
(4) The feasible payoff vector x induces the configuration G(x,v) = (G;)i-, defined by
(a) f(S,z,v)= f(T,z,v) for S, T€G; andj=1,...,7;
() f(S,z,v) < f(T,z,v) for S€G;,T €G;41 and1 <j <.

Theorem 2.2 Let x € X(v) for some game (N,v). The preimputation z of v mazimizes
satisfaction, if and only if the induced configuration G(x,v) is feasible.

This Theorem is a direct consequence of the duality theorem of linear programming and
the following

Lemma 2.3 Let x € X(v) for some game (N,v) and
Y={y e R"|y(N)=0andy-z >0 for every z € X(G(z,v))}.

Then x € M(v), if and only if Y = {(0,...,0)}.

Proof: Let 2 € X(v). Clearly, (0,...,0) € Y.



(1)

In order to show that Y = {(0,...,0)} implies z € M(v), assume there is a preim-
putation z € X(v) \ M(v), which does not maximize satisfaction, and choose some

- preimputation z’ € X (v) satisfying z’ >, z; thus z’ # z is valid. It remains to show

that ' — z is a member of Y. For

z= i z s+ z ls € X(G(z,v)), T C Giy1(z,v)

7=1 5€G;(z ) SeT

inequality (1.1) (applied to 2" and « instead of z and y) implies

zx'—z Yo w(8) = D v(S)

J=1 Se@;(z,v) SeT
t
= Z: Z f(S,:B','U)'F Zf(S,:E',’U)
i=138€G,(zv) SeT
t
> min{)_ f(S,z,0) | 18] = > [Gi(z,v) + [T}
Sgs 3=1

t

= zz=-3, > v(S)- v,
J=1 S€g;(z,v) SeT

hence z(z’ — z) 2 0. Therefore 2’ — 2 € Y holds true.

In order to show the converse implication, assume there is y € Y satisfying y # 0.
For every real number € define 2° = z + ey. Choose € > 0 small enough such that

- for every pair 5,1 C N of coalitions satisfying f(5,z,v) < f(T,z,v) the condition

f(5,25v) < f(T, 25 v) (2.1)

1s also satisfied.
For k € {1,...,2"} let min{}_ses f(S,z%,v) | |S| = k} be attained by a collection
S* of cardinality k of coalitions. The collections §* can be chosen in an increasingly
ordered way, i.e.

bcS'lc...c 8T =2V (2.2)

can be assumed. Then

mln{z f(S,z,v) | [Sl = k} = Z f(S,z,v)

Ses Sesk

holds true by (2.1). Moreover, in view of the definition of G(z, v), there is a number
t* and a set T* € Guyq(2,v) of coalitions satisfying

1k

§* = Gi(zv)UTE.
i=1
With -
tk

F=3"3 15+ D 1s € X(G(z,v))

j=1S€g, SeT*
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we conclude that

min{ Y f(5,2,0) | 18] = £} = min{ 3 £(S,2,0) | S} = k} + ey2*,

Ses Ses

thus z¢ >, z. The fact that the vectors z* span the Euclidean space is a straight-
forward consequence of (2.2). Therefore yz* > 0 for some k by y # 0, thus z¢ >, z
is satisfied. g.e.d.

Remark 2.4

(1) Similarly to Part (1) of the preceding proof we can show that if z <, y for some
preimputations x and y of v, then (y —z)-z > 0 for e'very z € X(G(z,v)), thus
y—z €Y, where Y is defined in Lemma 2.3.

(2) If z € M(v), then D(z,v) = {z}.

Ify € D(, 'v) satzsﬁes y £z, theny—z €Y by (1). However, in view of Lemma
2.3, Y # {(0,...,0)} is impossible for z € M(v).

Proof of Theorem 2.2: Let ¥ be defined as in Lemma 2.3 and put G = G(z,v). Then
the following conditions are equivalent by the just mentioned lemma.

(1) z € M(v).
(2) The linear programm P

Max 3 ex(g)y -2

subject to y(N) = 0,y - z > 0 for z € X() (23)
is feasible and its value is 0.
The dual program of P reads
min [(8:):ex(6), ] - (0,...,0) (2.4)

subject to — ZZEX(Q) 532,'1‘ ,BNlN = ZZGX(G) zZ, ﬁz 2 0 for = € X(g), ﬂN e R

and, thus, z € M(v) implies the existence of vectors 53;, By with the above properties,
As 1+ 3. > 0 we know that 8y must be positive in this case. We conclude that §, =
(14 B.)/Bn are balancing coeflicients.

It remains to show the converse direction of our assertion. If the configuration G is feasible,
take balancing coefficients é, > 0 for z € X(G} and observe that (4.).cz(g) together with
Bn defined by 4. = ad, — 1 and By = a, where @ = 1/ min{é, | z € X(G)}, constitute
a {easible and hénce optimal solution (with value 0) of the dual programm of P. The
duality theorem and the last lemma complete the proof of this direction. q.e.d.
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-Remark 2.5 A configuration G = (Gi)j_, is a refinement of the configuration H =
(H:)_;, tf every component of H is the union of consecutive components of G, i.e.

i(i+1)-1
Hi= | Giforj=1,... .t suchthat 1 =i(1) <--- <i(t) <r+1=1i(t+1)
i=i(4)
If G is feastble, then H possesses the same property. Indeed, with the help of a recursive
- argument, it is sufficient to show this assertion forr = t+1, i.e, if H; = G; UG, H; =
Gi+1 for 3 > 7, and H; = G; for j < 3. In this case we have
(1) X(G) € X(H).

(2) z € X(H) with z = E?:l ZSE'H, 1_5-&-2357— 1g for_some T C Hiyy implies z € X(g)
Jor0<k<j—=1lorr—1>k>j Thecasek =3—1 can be treated as follows. Let

-1 :
2= Y O Y 15+ 3 1)
TgHE j=15¢eH; SeT
and observe that
=2l T Tsen, s 4276170 s, 1s
= 211 (T Tsen; 1s + Xjai sen, 1s)
= 2™l (T S se, 1s +XI2) Tseg, Ls),

which shows that the sum of vectors in X(H) which may not be in X(G) can be
expressed as a linear combination of elements of X(G), i.e.

z= z Bz'zr

z€X ()

for some 3, € IR.

Let a, > 0 for z € X(G) be balancing coefficients for X(G), i.e.

Z o, z=ly,

z€X(G)

and € > 0 be chosen such that a, — ¢, > 0 for z € X(G). Then the equation

In= Y a;r2= Y (a,—€B;)-z + €

zeX(G) z€X(€)

tmplies balancedness of X(H).

Theorem 2.6 The marimal satisfaction solution M{v) is a finite union of polytopes for
every game (N, v).



Proof: For every feasible configuration G = (G;)7_, define the set
Me = {ze X(v)| f(S,z,v) < f(T,z,v)for S€G;,T€G;and 1 <1 <j L},
which clearly is a polytope. On the other hand
Mg ={z € X(v) | G is a refinement of g(m,ﬁ)},

which by Remark 2.5 and Theorem 2.2 is a subset of M(v). Conversely, the just men-
tioned theorem implies that G(z,v) is feasible for x € M(v). The number of (feasible)
configurations is finite, thus the proof is finished. q.e.d.

We would like to apply these characterizing results to show that the maximal satifaction
solution satisfies reasonableness. First of all we show that the solution satisfies the strong
nullplayer property (for single valued solution concepts also known as ‘nullplayer out
property’ (see Derks and Haller (1995))) in the sense of the following

Definition 2.7 A solution concept o on a set I' of games satisfies the strong nullplayer
property (SNPP), if for every game (N,v) € I and every nullplayer i € N of v the
folowing condition is satisfied: If (N \ {t},w) € T is the subgame of v which arises from
v by deleting 1, then a(v) arises from a(w) by adding a zero component for player i to
every element of o(w), i.e. '

o(v)={z € R" | z; = 0 and zn\p;) € o(w)}.

Note that SNPP implies NPP. Moreover, it should be remarked that many solution con-
cepts (e.g. the Shapley value, Core, and the nucleoli) satisfy even the stronger property.

Remark 2.8 Let z € M(v). We can get as a corollary of Theorem 2.2 that X(G(z,v))
is separating, that is, for all i,7 € N, 1 # j, there exist a = .a(i,j) and b = b(z,7) in
X(G(z,v)) such that a; > a; and b; < b;.

Theorem 2.9 The mazimal satisfaction solution M satisfies SNPP.

Proof: For one-person games the solution satisfies NPP because of PO. Let (N,v) be a
game, ¢ be a nullplayer of v, and & € X(v). In order to show that z; = 0 for z € M(v)
two cases are distinguished.

(1) z; < 0 : The smallest satisfaction is only attained by coalitions S C N which
contain player . Moreover, by PO and the fact f({i},z,v) < 0 such coalitions cannot
coincide with the grand coalition N. Take any coalition S of minimal satisfaction and

J € N\ S. Using the above observation and the fact that f(T',z,v) < f(T'\{i},z,v)
for all coalitions T C N with ¢ € T it is clear that z; > z; for every z € X(G(z,v)).
Moreover, the inequality is strict for at least one z. Therefore z ¢ M(x,v) by

Remark 2.8.
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(2) The case z; > 0 can be treated analogously. Indeed, a coalition S which attains
minimal satisfaction does neither contain 7 nor coincides with the empty set, because
F(N\{z},2,v) < 0. Moreover, f(TU{i},z,v) > f(T,z,v)for T C N\{i}. Therefore
z; < z; for 2 € X(G(z,v)) and j € S. Consequently x ¢ M(v) by Remark 2.8.

It remains to show that M(v)={z € R¥ |2, =0 and z5 € M(w)}, where (N \ {z},w)
is the subgame of v. .

(1) (C) This inclusion is trivial for |[N| = 2, thus we assume that N possesses at least
three members. Let x € M(v), thus z; = 0 by NPP, and define % = ZTpan{i)- Take
§ € R which satisfies §(N \ {i}) = 0 and §- z > 0 for z € X(G(&,w)). With
y = (§,0) € R" we come with y(N) =0and y-2 > 0 for z € X(G(z,v)). Indeed, if

'k

z=3 Y 154+ Y 1s - (2.5)
J=1 5eG (=} SeT
for some 7 C Giyq(z,v), then
. | . _
@ =2)0 3. ls+ ) Lenmgy - (2.6)
=1 8eg;(w) SeT

(Note that 15 in equation (2.5) is considered to be a vector of RN, whereas in the
second equation (2.6) it is considered to be in RMM}.) With T = {SNN\{i} | S €

~

Th To={S€T|SeT>50{i}},and T = T\To wehave T, 70, Ty C Giy1 (2, w)

‘and we obtain

k
NG = 20 > s+ >, 1s)+ > 1s

=1 8¢gj(zw) 5eT, SeTy
Tk .k .

= QU 2 L+ 1)+ X s+ Y 1s)
i=1 S€G,(zw) S5eT J=1 5eG;{&w) SeTyuT

= 20 + 21

e

for some £°, 21 € X(G(#,w)). By satisfaction maximality § - 29 > 0 < § - 3!, thus

y -z 2 0 and Lemma 2.3 implies this inclusion.

(2) (2) Let & € M(w) and define z = (%,0) € X(v). If there is y € X(v) with y >, z,
then y € M(v) can be assumed by Corollary 1.4. Therefore y; = 0 is true. For
z € X(G(z,w)), let us say

k
= Z ls + Z 1s
7=1 5€G;(dw) SeT

for some T C Gpy1(F,w), define z € RN by

k
N} =22, 5= Z G;(F,w)| + 7]

j=1
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and observe that z € X(¢G(z,v)) holds true. This shows that (v —2)-220
is valid. Clearly, yn\3 — & # 0 and, thus, Lemma 2.3 finishes the proof of this
inclusion. ‘ q.e.d.

Theorem 2.10 The mazimal satisfaction solution is reasonable.

Proof: Assume, on the contrary, M does not satisfy REAS on some set T" of games. Let
(N,v) € T be a game and £ € M(v), such that there exists i € N with

d; = | min{v(SU {i})—v(S) | SC N\ {i}} > z; or |
D; = max{v(SU{i}})—v(S)| ST N\ {i}} < z..

(1) z; < d; : By COV we can assume that d; = 0 holds true. Let j ¢ N and define
(NU{j},u) to be the game which arises from v by adding one nullplayer ;. By the
SNPP y = (z,0) € M(u), but y; < d; = 0 = y; which contradicts DES.

(2) The case z; > D; can be treated analogously by interchanging the roles of d;, < and
Di,>. _ 7 g.e.d.

Theorem 2.11 For every game (N,v) the mazimal satisfaction solution M(v) is con-
tractible. -

Proof: The mapping M(v) — R*" defined by  — L((f(S,z,v))scn) is continuous and,
by Remark 2.4 (2}, injective. With C = {L({(f(S,z,v))scn) | = € M(v)} we conclude
that

h': M(v) = C defined by h(z) = L((f(S,2,v))scn)

is a homeomorphism (because M(v) is compact). Let
D = {z € IR*" | thereis a c € C such that ¢ > z}.

Then D is closed and convex and C is the set of Pareto optimal points of D. Theorem 4.6
of Peleg (1972) directly implies that C is contractible. Therefore M(v) is contractible,
because h is a homeomorphism. g.e.d.

3 The Nucleolus as the Unique Minimizer of a Weigh-
ted Gini Index

In this section we fix a finite nonvoid set N and denote the set of games with player set
NbyT = {(N,v)|visagame}.
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Definition 3.1 A function U : RN xT — IR is a collective satisfaction function
reducing inequality, if there exists a collective utility function W+ R?*" — IR reducing
inequality such that ' '

Ulz,v) = W((f(S,z,v))scn)
holds true for x € R and v € T. '

We are going to show that there is a collective satisfaction function U/ reducing inequality
such that the nucleolus (pre- or antinucleolus respectively) is the unique maximizer of
U(-,v) restricted to the set of feasible payoffs X*(v) of v. Moreover, it will be shown that
U can be chosen in such a way that the induced inequality index is a weighted Gini index.

Recall that a collective utility function W : RN — IR reducing inequality induces an
inequality index G = G : R\ {0} — R, defined by

G(z) =1—(r- a(z))/z(N), (3.1)
where a(z) € Rp is the unique real number sa.tist-'ying

W(alz) - 1v) = W(a)
{Recall that W is assumed to be continuous.) An inequality index G satisfies G(z) < G(y)
for z,y € R, \ {0} with 2(N) = y(N) whenever z Lorenz dominates y.

In case .
W(z) = [(2(n— ) +1)/n’] - 2, (3.2)
=1 .

1.e. . )

G(z) =1—(n/z(N)) Z[(Z(n — 1)+ 1)/n¥ - 2?, (3.3)

=1

the induced inequality index is the Gini index. It takes the surface between the ‘straight
line’, i.e. the Lorenz curve of the ‘equal treatment vector’ (z(N),...,z(N))/n, and the
Lorenz curve of # as a measure of inequality of z. Indeed, note that (3.3) can be rewritten
as

Tt

Gla) =3 ((i-=(N))/n — Li(z))/l(n-2(N))/2}. (3.4)

=1
For this notation Moulin (1988) is referred to.
Every strictly decreasing finite sequence p = (p1,...,p,) of positive real numbers with

total weight 1, i.e.
Pr > >pa > 0,p(N) =1,

(p is called descending probability on {1,...,n}) defines a collective utility function-
W, : RN — IR analogously to (3.2) by

n—1

Wy(z) = 3 pic? = puln(z) + 3 (pi — pis1)Lila). (3.5)

=1 =1
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By the nonincreasingness and positivity of p the collective utility function W, reduces
. inequality. The induced inequality index G, is a weighted Gini index. The difference
between the ‘classical’ Gini index and a weighted Gini index can be seen by looking at
the formula - ,

Gy(2) = (n/2(N)) - T (pi = )i - 2(N)/m = Li(a)). (36)

: 1=1 .

Therefore G, puts weight p; — piy1 to i. The Gini index is proportional to the surface
between the straight line and the Lorenz curve (i.e. the Gini index G is a special weighted
index such that consecutive weights are equidistant), whereas G, ‘distorts’ the axis before
measuring the surface. Figure 3.1 sketches the Lorenz curves and the ‘distorted’ Lorenz
curves of z = (2,2,14) and y = (0,9,9), where p = (6,2,1)/9. In this case G, puts larger
weights to ‘poorer people’. Indeed, the horizontal distances between consecutive players
in the left part of the figure (which sketches the ‘classical’ Gini index) are equal, whereas
the horizontal distance between i and i + 1 in the right part of the figure (which sketches
G)) is proportional to p; — piy1. In this example G(z) > G(y) and Gp(z) < Guly).

18
12
x
6
4.
2
1. 2 3 players
’
18
12
Y
6
1 2 3 players 1 _ 3
G Gp

Figure 3.1: Gini index versus G,

Unfortunately the definition of inequality indices cannot directly be generalized to utility
profiles which possess negative entries. In our situation we would like to have the notion
of inequality indices for satisfaction vectors. As the interest is mainly restricted to pre-
imputations the normalization factor ‘n/z(N)’ can be dropped in formula 3.6. Therefore
we will frequently replace equation 3.6 by

2n -1

Go(,v) = 3 (pi = pin) - (i - Flz,0) = Li((£(S, 2,v))scn)) (3.7)

i=1

frc.)rn now on. Here f(z,v) = (1/27). 2sew f(5,z,v).
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Moreover, for every descending probability p € IR?" define U, : RN xT'> R by Up(z,v) =
WL ({f(5,z,v))scn), e :

. 2“
Up(z,v) = X" pi - Fi(z,v), (3-8)

i=]1

where

((f(S,2,0))scn); = Fi(z,v) = min{max{f(5,2,v) | S € §} | S C 2" and | S |=i}.

~Every ¢ > 1 determines a descending probability p = p° € IR?" by
pi=[(c— D)/(¢F =1)]- & fori=1,...,2"
Theorem 3.2 There is a cg > 1 such that for every ¢ > co the prenucleolus is the unique
-mazimizer of U, i.e.
argmaz{Upe(z,v) | 2 € X"(v)} = {u(v)} (3.9)

for every v e I,

This theorem is a direct consequence of Theorem 4.1 of Kohlberg (1972). Indeed, note
that Kohlberg’s assumption of zero-normalized games is not needed in his proofs, and
can, thus, be dropped. Moreover, it should be remarked that in view of Lemma 1.5 and
Theorem 2.10 equation 3.9 can be replaced by '

argmax{Up(z,v) |z € X} = {v(v)}, (3.10)

for every set X C X(v) satisfying X 2 {z € X(v) | z is reasonable}. By COV of M
and v we can assume without loss of generality that v(/V} = 0 and that the marginal
contributions of every player are bounded by —1 from below and +1 from above, 1.e.

—1<v(Su{})~v(S)<lfor SCN\{}andie N
is satisfied. Therefore X = {r € R |z(N)=0and —1 <z, <1 for: € N} possesses
the desired properties. As X is a polytope Kohlberg’s result applies.
Remark 3.3 Let (N,v) € I and & € X(v). Denote h(z) = L({f(5, x,v))scn). Then
hi(z) = min{} f(S,z,v) | S C 2" and |S|=k}

Seé&

fork =1,...,2". Hence hi(-) is a polyhedral concave function for each k. As in the proof
of Theorem 2.11 let

D = {z € R* | there is = € M(v) such that h(z) > z}.

Then D is a polyhedral convez set whose set of Pareto optimal points is U = h(M(v)).
1t is easily verified that the (finite) set of extreme points of D is contained in C. A point
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z € C is exposed, if it is extreme (because D is polyhedral). Thus, a point x € M(v) is
the unique mazimizer of a collective satisfaction function of the form
gn
Uly) = 3 pe Li((£(S5,9,v))scw), ¥ € X(v),

k=1

where p > 0, k =1,...,2"* iff z = h(z) is an extreme point of D. Thus h{v(v)) is
an exireme point of D (this can also be verified directly from the definitions of v and D;
notice that h(v(v)) is the lexicographic mazimum of D).

In order to obtain a similar result for the antinucleolus define for every descending pro-
bability p € JR*" the dual vector p* € IR?" by

p: = (1 —p2n+1_i)/(2n bt 1) fOI‘ i == 1,.-.,2n

and note that p* is a descending probability in R?".

Theorem 3.4 There is a co > 1 such that for every c > ¢ the antinucleolus is the unique
mazimizer of Uy, i.e. '

argmaz{Upe(z,v) | z € X*(v)} = {¢v"(v)} | (3.11)

for everyv € T.

Proof: By Lemma 1.5 equation 3.11 is equivalent to
argmax{Ue(z,v) | z € X(v)} = {v"(v)} (3.12)
and, hence, to

a.rgrnax{—(?“—l)sz f(8,2,0) + (2" = )y (2,0) | 2 € X(v)} = (" (0)}.  (3.13)
CN

Let z € X(v). With the help of equation 3.5, Fi(z,v) as defined in formula 3.8, and
¢ = p* we come up with

(2" — 1) Xsen (S z,0) +(2° — DUy(2,v)
= —(2" =D)L (F(2,v)) +(2" ~ Dlgan Lan (F(z, v))
+ T (g — giar) Li( (=, v)))
= (2" — 1}Lgn(F(z,v")) +(2" = 1)[~gonLon(F(z, 7))
+ 20N e = g )(Lani F(2,07)) = Lon(F(z,0%)))]
= P Lon(F(2,v7)) + L pELi(F(2,v7))
= Uy(z,v").
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The second equality is guaranteed by L:(F(z,v)) = Lon_i(F(z,v*)) — Lan(F(z,v*)) for
i=10,...,2" (Lo(:) = 0 by convention). Therefore equation 3.13 is equivalent to

| argmax{Up:(2,v") | € X(v")} = {v"(v)} (319
which is valid by Theorem 3.2 for ¢ large enough. . q.e.d.
Note that | _ |
Pi — Pi,; is proportional to il
and ' _
pi* — pf; is proportional to ¢!

for ¢ = 1,...,2"!. Therefore Theorem 3.2 and 3.4 can be reformulated in terms of
weighted Gini indices. Let G¥,G*" : RN x T — IR be defined by :

2%-1

Gz,v) = Z Czn_i_l(i'LZ"((f(Safav))sgN)/Qn - Li((f(sam,v))sgv))

and
2n_1

G:‘(:B,U) = Z c:-_l(i ’ LZ"((f(Sv xvv))_SEN)/Qn - L;((f(S,.’L‘, v))SQN))-

i=1
Corollary 3.5 There exists co > | such that for every ¢ > ¢y and everyv € T

(1) argmin {G¥(z,v) |z € X(v)} = {v(v)} and
(2} argmin {G¥ (z,v} |z € X(v)} = {v*(v)}.

Intuitively, G* puts exponentially larger weights to larger aggregate excesses (i.e. smaller
satisfactions play a ‘dominant role’), whereas for G** the opposite is true. Hence a possible
minimizer has to take care of relatively large lowest satisfactions in the first case and of
relatively small highest satisfactions in the second case.

A constant ¢y which guarantees these results may depend on the cardinality of the player
set N. We are going to present one possible candidate. Recall that a subset § C 2V is
called balanced, if the set {15 | S € §} is balanced (see Section 2). It is well-known that
every balanced &, which does not contain the empty coalition, is the union of its minimal
balanced subcollections. The balancing coeflicients for a minimal balanced collection of
coalitions are uniquely determined. Moreover, all minimal balanced collections of a finite
set can be generated recursively w.r.t. the number of players as shown by Peleg (1965).
In view of this fact it is possible to compute 3(S) = max{és/ér | S,T € S} for every
minimal balanced set S, where (6s)ses are the balancing coeflicients of S.

Note that ¢(r) = 3 8(S), where the sum has to be taken over all minimal balanced
collections & of coalitions of N, is completely determined by the cardinality n =| N | .

Theorem 3.6 For the real number ¢o which occurs in Theorems 3.2 and 3.4 any co 2 ¢(n)
can be chosen.

For a proof of this theorem the appendix is referred to.
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4 The Modified Nucleolus as the Unique Minimizer
" of an Inequality Index

So far we have characterized two ‘classical’ single valued members of the maximal sa-

tisfaction solution, namely the pre- and the antinucleolus. Common to M they satisfy

AN, ETP, DES, COV, PO, SNPP, and REAS. Unfortunately none of these single valued
solutions satisfies self duality. The modified nucleolus introduced by Sudhélter (1996a,b)
possesses all of the mentioned properties including SD. In what follows we briefly recall
the definition and show that it is a member of the maximal satisfaction solution by di-
rectly proving that it maximizes a certain collective satisfaction function which reduces
inequality.

For every game (N,v) the modified nucleolus ¥(v) is the set of preimputations of v
which lexicographically minimize the nonincreasingly ordered vector of excess difference,

ie.
U(v) ={z € X(v) | Hz) 21z H*(y) for y € X(v)} (4.1)

where H(z) = (f(S,z,v) = f(T,xz,v))srcn € R?*™  The modified nucleolus satisfies
SIVA. Let 1(v) be the unique element of ¥(v). Moreover, ¥ can be redefined by

( ={z € X (v) | H*(z) Zlex H*(y) for y € X" (v)} . (4.2)
where H(z) = (f(S,z,v) + f(T,z,v*))srcn. The modified nucleolus satisfies the above
mentioned properties. For detailed proofs Sudholter (1996a,b) is referred to.

For every descending probability p € IR” define W, : BN — R by
P

ﬂ.2
= Zp; . z,-', (43)
i=1
where 2(z) = z = (z; —2; + z(N))i jen € RV x R". Clearly W, satisfies anonymity. The
verification of unanimity is straightforward and left to the reader. Moreover, W, reduces
inequality as shown in the following

Lemma 4.1 For every descending probabzhty p € R the arising collectwe utility func-
tion W reduces tnequality.

Proof: It is sufficient (see Moulin (1988}) to show that Wp satisfies the Pigou-Dalton
principle:

Wp(:c) > Wp(y) holds true for and any two vectors z,y € RY with z(N) = y(N), z, =
for ke N\ {i,7} and | z; — 2; |<| yi — y; |, where {,7 € N,i # j are arbitrary.

Without loss of generality y; > y; can be assumed. Let € be defined by z; = y; — € (i.e.
x; = y; + € is automatically true). Moreover, by anonymity we can assume that z; > z;,



thus € > 0. For k,r € N\ {¢,7} we have

Ti—T; =Yi—Y;—2€ 2T;—x =y;—yi+2e
Ti— Tk =Yi—Yk—€ 2T;— Tk =Yi—Yrte
Te—T; =Y —Yj—€ Zxk— T =Yk—Yite
Ty — Ty = Yk — Yr-
Therefore z(z) > 2(y),z{z) # z(y) and, thus, the Pigou-Dalton principle is implied by
decreasingness and positivity of p. _ q-e.d.

-The induced inequality index coincides (up to normalization) with

n?-1

C:*,_.(:::) = 2 (pi — pir1) - (i - 2(N) — Li((zx — 20 + 2(N))kren)s (4.4)

because equation 4.3 can be rewritten as

Wp(z) = pr2 Loz (21 — 2, + ::(N))k,,EN) + ng (pi — pisr) Lil (2 — @7 + (N i ren). (4.5)

In this sense we could call G, a dually weighted Gini index.

" For ¢ > 1 define #* € R*" by

B ={lc-1)/(c

and observe that 7 is a descending probability on {1,...,2?*}, With U. : RN xT — R,
defined by

2 _ 1)](:22“_'. fori=1,... ,2%

Ue(z,v) = Wie((£(S,2,0))scn)

we obtain the following result.

Theorem 4.2 There is a ¢; > 1 such that for every ¢ > ¢; the modified nucleolus is the
unique mazimizer of U, t.e. '

argmam{ffc(m,v” r € X*(v)} = {(v)} B (4.6)

for every v € T,

Proof: By Lemma 1.5 and Theorem 2.10 X*(v) can be replaced by every set X of
preimputations such that X 2 {z € X(v) | z is reasonable} is satisfied. As in Section 3
we can assume that v is chosen in such a way that X = {z ¢ RV |-1<2,<1, 1€
N, z(N) = 0} possesses the desired properties. More precisely, equation 4.6 is equivalent

to
22n

argmax{)_ can'iGg(;v,v) |z € X} = {¢(v)}, - (4.7)

i=1
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where
Gi(z,v) = min{max{f(S,z,v) — f(T,z,v) | ($,T) € S} | S C 2" x 2" and | & |=1}
for ¢ = 1,...,2%, Take a disjoint copy N* of N and define the dual replication (N U
N*,9) of v by
: o(SUT") =v(S)+v™(T) for S,T C N.
Corollaries 1.6 and 2.6 of Sudhdlter (1996a) show that
N(Z,5) = {z € Z | 2 = b(0)},

where Z = {z € RN’ | 2y € X and z; = z} for i € N}. Kohlberg’s (1972) result
(Theorem 4.1) applied to (Z,v) finishes the proof. q.e.d.

This theorem can be reformulated with the help of the dually weighted Gini index G¥ =
Gpe. ' :

Corollary 4.3 There exists c1 > 1 such that for every ¢ > ¢, and everyv € T

argmin{G¥(z,v) | z € X(v)} = {9(v)}.

Theorem 4.4 For the real number c; which occurs in Theorem 4.2 any ¢; > 2-¢(2n) can
be chosen.

For a proof of this theorem the appendix is referred to.
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Example 4.5 Let (N, v) be the 4-person weighted majority game, defined by N = {1,2,3,4}

and
v(S)={ 1, ifm(S)>5 |

0 , otherwise

where m = (3,2,1, 1'). The nucleoli can be computed as:

v=v(v)=(1,0,0,0) v*=v*(v)=(1,1,0,0)/2 ¢ =¢(v)=m/T

* The corresponding Lorenz curves of the satisfaction vectors (L° refers to the Lorenz curve
of satisfactions w.r.t. o) are sketched in Figure {.1. Note that Li(-) and Lip1(-) are
connected via o straight line in order to get a ‘curve’,

We apply Theorefﬁ 2.2 in order to show that the maximal satisfaction solution is the
convex hull (CH) of the three nucleoli, i.e.

M= M(v)= CH {n,r",¢)

holds true (see Figure {.2).

(1) M(v) 2 CH{v,v*,¢}: Letz € CH{v,v",%} =Y. Then the minimal satisfaction
at x is attained by S* = {1,3,4}, because the satisfaction of S' is minimal at every
extremal point Y. Note that S' is the unique coalition of minimal satisfaction at v*.
The coalition S* = {1,2} possesses minimal satisfaction at v, ¥ and second lowest
satisfaction at v*, thus

=15 =(1,0,1,1) and 2* = 1ss + 152 = (2,1,1,1)

are members of X(G(z,v)).
The highest satisfaction at every extremal point of Y is attained by S° = {1,3} and
St = {1,4}, thus

P= 3 le=(27 -1,277, 977 — 1,977 = (7,8,7,8)
SBLSCN : '

and

A= Y 1s=(7,88,7)
S4#£SCN

are members of X (G(x,v)). Let A = {2,223 2%}, The proof that A spans RN is
straightforward and skipped. The observation that :
(/17 - (' + 22+ 22+ 2 = 1y

is valid, implies that A is balanced. Every finite superset in the span of a balanced set
is automatically balanced, hence X(G(z,v)) is balanced, thus Theorem 2.2 implies
z € M{v).
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(2) M(v) CY : Let 2° = (1,1,1,1)/4 denote the ‘equal treatment’ preimputation. By

PO,

DES, and ETP
M(v) € CH {v,v", 2%}

is valid. For an arbitrary vector z € CH {v,v",2°} \'Y two cases may occur.

(¢)

(b)

zy < 23 + z3: (This means that x is ¢ member of the convex hull of v*, b, z°
but it is not on the line segment connecting v* and b (see Figure 4.2).) The
four coalitions R', i = 1,...,4 satisfying 3 ¢ S* 5 1.can be characterized by
the corresponding zndzcator vectors as

lp = (1:010$1)1 lpz = (1!0?010)3 lps = (1:130,0)1 lpe = (1,1,0,1)
Conversely, let T*, i = 1,...,4 satisfy 1 ¢ T* 5 3, namely
1m = (0,1,1,1), 172 = (0,1,1,0), 172 = (0,0,1,1), 14 = (0,0,1,0).

The observation that f(R',z,v) < f(T*,z,v) holds true fori = 1,...,4 directly
implies z1 2 z3 for every z € X(G(x,v)) and z; > z3 for some z € X(G(z,v)).
Therefore x ¢ M(v) by Remark 2.8.

Iy > Ty < 223 = @3+ 24 : (This means that T is a member of the convex hull
of v, a, ¢ but it is not on the line segments connecting v and a or a and
z° respectively (see Figure {.2).) This case can be treated analogously by first
defining coalitions B, T* by

1R1 = (1,1,0, 1) ; 1R2 = (0, 11011) y 1R3 = (0115()’0) y lpe = (11110,0)1
I = (01071’0) y lr2 = (110$150) y lpa = (O$03111) y lpa = (1!0’111),

and then observing f(R',z,v) < f(T",z,v), thus z, > z3 for every z € X(G(z,v))
and z3 > z3 for some z € X(G(z,v)).

In this case the Shapley value can be computed as ¢ = p(v ) =(7,3,1,1)/12 and is, thus,
a member of the mazimal satisfaction solution.

Figure 4.2: The Set M(v)
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5 Appendix

This section serves to prove Theorems 3.6 and 4.4. The following result is of technical
nature and used in the sequel.

Lemma 5.1 Let n,k € IV, 7,y € R", and 6" € R, forr =1,...,k such that

O<ty < <t =my (5.1)

T == r
te—1+1 i forr=1,...,k (where t; = 0); (5.2)

Y41 S S,

tr tr
Z&f:r;=25{y,- Jorr=1,...,k (5.3)
i=1

i=1
Ifc=max{6[/6] | r = 1,...,k 1,5 = 1,...,t,} and § € IR® satisfies B, > 0 and
Bi>ec-fiyr fori=1,...,n—1, then S

> B> iﬂiyi- _ : (5.4)
i=1 =1 .
Moreover,
| Z:ﬂi-’ﬂa Zﬁ:yn ffz=y. (5.5)

Proof (by induction on k):

(1) k=1. Let 6 = é' and d = 2,1.e. 2 = (d,...,d). If n = 1, both assertions {(5.4) and
(5.5)) are obviously valid. Assume (5.4) and (5.5) are proved for n < m for some
m > 1. If n = m, then y; < d is true by (5.2) and (5.3). If y; = d, then again by
(5.2) and (5.3) z = y. Therefore we can assume y; < d, let.us say y; = d — ¢ for
some € > (. We come up with
Limabiyi =d- Tl 6 — &
=d-Th,6 — &i(d~¢)
= (d+ (61¢/ T 6)) s &,

thus the inductive hypothesis guarantees

S By < (d+(61¢/38)) 3 B (5.6)
c =2 =2 =2
The observation

By < Bild—e)+ (d+ (81¢/ T, 6:)) - Tiky B (by (5.6))
=dTL, B + e ((61/ Ty 6) S0y Bi — 1)
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shows that the proof is finished in this case as soon as
b)Y B < 3 &p - (3.7)
=2 =2

is shown. By the properties of 8 we have £, > 3, - 8,/6; for j = 2,...,n, thus

Ticg 6B 2 (n—1)Biminize,. . 6
> (n— 1)3261 > 6, 30, B
which shows (5.7).

(2) By (1), assume that (5.4) and (5.5) are verified for k¥ < m and some m > 1. If
-~k = m, then define § = 6%, p = t4_y, g = tp_1, € = Ty, d = z, (which implies
&= (T1,...,2p,6,...,8,d,...,d)). Two cases may occur.
—— S—— :
=P R=q
(a) If -1, bizi < 1, &4, let us say
rn n
Y bzi—e) =Y by
. i=g¢g+1 i=q+1
for some € > 0, then (1) and the inductive hypothesis applied to
(d—¢,...,d—€) and (yo41,-.-,¥n) with sequence (6,44,. .. y0n)
and to _
(%1,....2,) and (1,...,y,) with sequences 67, ..., 6!
. respectively implies -
mn n q q
D Bziz Y Bwiand Y B> Y By
i=g+1 i=g+1 i=1 i=1

respectively, where equality can only hold simultaneously in case y = z. The-
refore the proof is finished.

(b) H X, &z > Y1, &y, let us say Z,_, dix; — € =31, by, for some e > 0,
- then then we come up with '

g _ g g
Z&'Ii + D bile—¢/ X &)= b
i=1 i=p+1 i=p+1 =1

and

i bi(d+ef Zn: 6i) = Xn: 6iyi-

i=q+1 =g+l 1=g+1

The inductive hypothesis and (1) imply

Zﬁ=y=<ZﬂtI= by Ble—d Y 8) (5.8)

1=l i=p+1 i=p+1
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and

S < Y Ald+e 3 &), (5.9)

i=g+1- i=q+1 i=g41
thus it remains to show that

= Bi ! B
=< _— (5.10)
l-=qz+1 Zj=q+l 6J t=p+1 Z§=p+1 5.7 :
holds true. As (5.10) can be rewritten as
| n q g n
X B X E< Y B 2
i=g+1 J=p+l1 i=p+1 i=g+1
it 1s sufficient to verify

- max 6;<pfB,- min §;
6“ i=p+1l,...9 ! ﬁq i=g+1l,...n ¢

which is true by definition of 4. | q.e.d.

Lemma 5.2 For every balanced collection § € 2V of coalitions with | N |[=n € IN there
is a sequence (6s)ses of balancing coefficients satisfying maxsres bs/ér < c¢(n).

Proof: Let S be a balanced collection and assume without loss of generality that 0 ¢ S.
Then § = |5, S* for some minimal balanced collections &', 7 = 1,...,k, with ba-

lancing coefficients (6%)ses: which are uniquely determined. For ¢ = 1,...,% define
a; = 1/ mingesi 6%. Observe that (8s)ses defined by
Z?:l 63 e
0s = =5
Zi:l Qy
for S € § (where 65 = 0 by convention, if S ¢ S*) is a sequence of balancing coefficients
which possesses the desired property. q.e.d.

Proof of Theorem 3.6: It is sufficient to prove the result concerning the prenucleolus,
because the antinucleolus can be treated analogously by replacing a game by its dual. In
order to apply the preceding lemmata, let (N, v) be a game, ¢ > ¢(n), v = v(N,v) be the
prenucleolus, and z € X*(N,v) be such that :

Upe(z,v) 2 Upe(v, v).

It remains to show that z = v holds true. By Corollary 1.4 we can assume that z 1s
Pareto optimal, because U, reduces inequality. Let S*,..., 57" be an ordering of the set
of coalitions, i.e. {$' |7 =1,...,n} = 2V, such that the arising vector of satisfactions
w.r.t. the prenucleolus is nondecreasing, whereas the arising vector of satisfactions w.r.t.
z is nondecreasing on constant parts of the other vector, i.e.

F(Stvv) < F(SH, ) | (5.11)
f(§8,z,v) < f(8*,z,v) ,if (S, v,v) = f(§F, v,0) {5.12)
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r= (f(S‘,'v,v),...,f(SQ",u,v))
y=(f(S",2,0),..., f(57,2,v)) € R*",
and 0=1tg <t < --- <t = 2" by
| zi=; for tyoy <iyj <tpandr=1,...,k (5.13)

and
Ty, < Te41 fOT‘l":l,...,k——l. (514)

Kohlberg’s (1971) result shows that the sets S™ = {S',..., 5%} are balanced. According
to Lemma 5.2 there are balancing coefficients (8])L, for 8" satisfying &7 /6] < c(n) for
1,7 € {1,...,t.}. Pareto optimality of z and Lemma 5.1 dxrectly imply that ¢ = y, thus
v==zis true q.e.d.

With the help of Theorem 2.2 (and its proof) of Sudhélter (1996a) Theorem 4.4 can be

_verified using precisely the same technic as proposed in the preceding papagraph. Instead
of presenting a detailed proof we only recall one characterization of the modified nucleolus
in what follows.

A set T C 2V x 2V is called m-balanced if {1¢ + 17 | 5,T € 7} is balanced. The
following assertion is the content of Sudholter’s (1996a) Theorem 2.2.

A preimputation x of a game (N, v) coincides with the modified nucleolus ¥(v), if and
only if
T(z,a,0) = {(S,T) € 2V x 2V | f(S,z,v) - f(T,z,v) £ ]

is m-balanced for o € IR such that 7(z,a,v) # 8.

If 7(z,a,v) is m-balanced, then there is a balanced set of coalitions § C 2V"V" | where
N~ is a disjoint copy of IV, such that for every sequence {és)ses of balancing coefficients
for S there is a balancing sequence (8(s1))(s,7)er Which arises from the initial sequence
by taking components and sums of two components only {up to a normalization). This
assertion is content of the proof of Theorem 2.2 and shows that balancing coefficients of
m-balanced collections can be chosen in such a way that their quotients are bounded by
2¢(2n) by Lemma 5.2.

The proof of Theorem 4.4 can be completed analogously to that of Theorem 3.6 by
interchanging the roles of ‘balancedness’ by ‘m-balancedness’, ‘prenucleclus’ by ‘modified
nucleolus’, and ‘U’ by ‘U,
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