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Abstract

We prove that the core on the set of all transferable utility games with players
contained in a universe of at least five members can be axiomatized by nonempti-
ness for two-person flat games, covariance under strategic equivalence, anonymity,
individual rationality, the converse reduced game property, the weak reduced game
property, and the reduced game property from below (RGPB). Here, a solution
satisfies RGPB, if for every member of the solution of the game the following con-
dition is satisfled: Every feasible payoff vector belongs to the solution, whenever its
restriction to some coaliton is a member of the solution of the reduced game and its
restriction to the complement coalition coincides with the corresponding restriction
of the initial vector. Moreover, individual rationality can be replaced by bounded-
ness. Finally we prove that these properties also characterize the core on certain
subsets of games, e.g., on the set of totally balanced games, on the set of balanced
games, and on the set of superadditive games.

Key words: TU-game, core, kernel.



0 Introduction

On balanced cooperative transferable utility games and on some subclasses the core can -
be axiomatized (sée, e.g., Peleg (1986,1989)). However, in the well-known axiomatizations
either nonemptiness or the property of “coincidence with the core on two-person games”
are employed. The characterization of the core presented in this paper does neither
refer to balanced games nor does it use one of the axioms just mentioned. - That may
be regarded as an advantage over the axiomatizations that are known from literature.
Except nonemtiness (which is relaxed) the axioms employed in the present results have
been used to characterize the core or the prenucleolus.

The paper is organized as follows: In Section 1 the notation and some definitions are
presented and some relevant well-known results are recalled. Two axioms which were not
frequently used up to now are nonemptiness for two-person flat games (NETPFG) and the
reduced game property from below (RGPB). For the detailed description see Definitions
1.5 and 1.6. However, the first property is weaker than nonemptiness and the second
property is, alike the reduced game property, a set-valued generalization of the reduced
game property for smgle—valued solutions as mtroduced by Sobolev (1975).

In Section 2 it is shown that on the set of games Wlth player set contained in a universe of
at least five members the core is the unique solution that satisfies nonemptiness for two-
person flat games, covariance under strategic equivalence, anonymity, the (weak) reduced
game property and its converse, RGPB, and individual rationality (IR). Especially the
last property can be weakened. Boundedness is a property which is able to replace IR.

In Section 3 it is shown that Theorem 2.1 is also valid for every subset of games that
contains every totally balanced game and does not contain nonbalanced two-person games.
The considered set of games is, thus, “closed under weak reduction” with respect to
members of the core (meaning that every two-person reduced game with respect to a
member of the core belongs to the considered set of games). Among others the subset
of all superadditive (balanced) games has the required properties. On such sets of games
AN can be dropped as a condition.

In Section 4 it is shown that the axioms that occur in Theorems 2.1 and 3.1 are logically
independent. Moreover, it turns out that boundedness can be weakened and it can even
be replaced by AN in the second theorem, if the converse reduced game property is
formulated with respect to feasible payoffs instead of preimputations.

Some results of Section 4 are proved in Section 5.

1 | Notation and Definitions

A cooperative game with transferable utility — a game - is a pair (N,v), where N

-is & finite nonvoid set and
| v:2¥ 5 R, v(0) =0

is a mapping. Here 2" = {S - N } is the set of coalitions of (V,v).
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If (N,v) is a game, then NV is the grand coalition or the set of players and v is called
coalitional function of (N,v). If 0 # S C N, then (5, v) denotes the subgame of (N, v)
w.r.t. the coalition S. (The coalitional function of the subgame w.r.t. S is the restriction
of v to subsets of 5:)

The set of feasible payoff vectors of G is denoted by
X*(N,v)={z € R" | z(N) < v(N)},

whereas -

| X(N,v) ={z € BY | 2(N) = v(N)}

'is the set of preimputati'ons of (N, ) (also called set of Pareto optimal feasible payoffs
of (N,v)). Here ' : :
: 2(S) = iesz: (z(0) =0)

for each 2 € RN and S C N. Additionally, let 25 denote the restriction of z to S , Pe.
zs = (2i)ies € R®.
- For disjoint coalitions S,T C N and z € RV let (zs,27) = ZTSuT-

‘A solution o on a set I of games is a mapping that assocmtes with every game (N,v)eT
a set o(N,v) C X*(N,v).

If T is a subset of T, then the canonical restriction of a solution ¢ on " is a solution on T.
We say that o is a solution on T', too. If I' is not specified, then & is a solution on every
set of games. Typically we shall assume that a solution ¢ is defined on a subset of I['y.
Here I'yy denotes the set of all games with player set contained in U. The universe U of
players is assumed to be a set.

Some convenient and well- known properties of a solution o on a set I' of games are as
follows.

(1) ois anonymous (satisfies AN), if for each (N, v) € T and each bijective mapping
7:N = N with (N',7v) el '

o(N',7v) = 7(o(N,v))

holds (where (rv)(T) = v(r=}(T)), 75(z) = 2,=; (x € RY, j € N', T C N')). In
‘this case (N, v) and (N, 7v) are isomorphic games. ,

(2) o is covariant under strategic equivalence (satisfies COV), if for (N, v), (N,w) €
I' with w = av + § for some o > 0,8 € RY -

o(N,w) = ao(N,v) + 8
holds. The games v and w are called strategically equivalent.
(3) o satisfies nonemptiness (NE), if (N, v) # @ for (N,v) € T.
(4) o is Pareto optimal (satisfies PO), if o(N,v) C X(N,v) for (N,v) € T.
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(5) o satisfies individual ratioanlity, if z; > v({i}) for every i € N holds true for
(N,v)eT and z € o(N,v). -

* Some more notation will be needed. Let (N,v) be a game and z € R". The excess of a .
coalition 5 C N at z is the real number :

e(S,x,v) = v(S) — z(9).

‘For different players 1,7 € N let
- si(z,v) = max{e(S,z,v) | i€ SC N\ {j}}

denote the maximum surplus of 7 over ; at z.

The core of (N, v) is the set
C(N,v) = {z € X*(N,v) | e(S,z,v) < 0VvSC N}

of feasible payoff vectors which generate nonpositive excesses. The prekernel of (N, »)
is the set "

PK(N,v) = {z € X(N,v) | 'sij(z,v) = sji(z,v) Vi,j € N with  # 5}
of preimputations that balance the maximum surplus of the pairs of players.

The prenucleolus of (N,v), abbreviated by PA(N,v), is the set of preimputations that
lexicographically minimize the nonincreasingly ordered vector of excesses of the coalitions.
The prenucleolus of a game is a singleton.

On the set 'y the prekernel as well as the prenucleolus satisfy all properties mentioned so
far except individual rationality. The core satisfies all axioms except NE. On the subset
of balanced games the core satisfies NE.

For these notations and assertions see Davis and Maschler (1965), Schmeidler (1969),
Borndareva (1963), and Shapley (1967). .

- Axiomatizations of the prenucleolus and the prekernel on I'y; are due to Sobolev (1975)
and Peleg (1986). On the subsets of balanced or totally balanced games (a game is totally
balanced, if each of its subgames is balanced) the core can be axiomatized (see Peleg
(1986,1989)). In order to precisely formulate some of these characterizations we recall
some definitions.

" Definition 1.1 Let (N,v) be a game, let D # S C N, and z € X*(N,v). The reduced
game w.r.t. S and = is the game (S,v>7) defined by

0, #T =0
v5%(T) = ' o(N)=2(N\S), #T=S5
max{v(TUQ)—z(@Q)[Q C N\ S}, otherwise

4



Definition 1.2 Let o be a solution on a set T of games. Then o satisfies the

(1) reduced game property (RGP), if the following condition holds: If (N,v) €
[, 0# S C N, and z € o(N,v), then (5,v%%) € T and z5 € o(5,0v5).

~ (2) weak reduced rgarne property (WRGP), if the following condition holds: If
(Nyv) € T, B # 8§ C N, |S| <2, and z € o(N,v), then (5,v5%) € T and
zs € o(8,v57).

(3) converse reduced game property (CRGP); if the following condition holds: If
(N,v) €T, .z € X(N,v), and for every S C N with two members (S,v5%) € T and
zs € o(S,v5%), then x € o(N,v).

Note that Definition 1.2(2) is due to Peleg (1989) and that RGP implies WRGP. Further-
more, note that the prekernel and the core satisfy CRGP and RGP, if the set T' of games
 is rich enough. Now two results are recalled.

Theorem 1.3 (Sobolev (1975)) If the universe U of players is infinite, then the prenu-
cleolus is the unique solution on I'y that satisfies single-valuedness, COV, AN, and RGP.

A solution on a set ' of games satisfies superadditivity (SUPA), if 2' +2° € o(N,v' +
v?), whenever (N, v'), (N, v?),(N,v* + v?) € T,z' € o(N,v!) and 22 € (N, v?).

Theorem 1.4 (Peleg (1989)) If the universe U contains at least four players, then the
core is the unique solution on the set of totally balanced games in ['y that satisfies NE,
SUPA, WRGP, CRGP, and individual rationality.

Let T%, and I'# respectively denote the set of all balanced and totally balanced games in
I'y. ‘ '

We shall present an axiomatization of the core (see Theorem 2.1) which can be compared
with the preceding results. We do not want to employ NE, because our attention is not
restricted to balanced games. Therefore we demand less than NE.

Definition 1.5 A solution on a set ' of games satisfies nonemptiness for two-person
flat games (NETPFG), if for every flat two-person game (N,v) € T, ie. '|N| =
"2, 9(85)=0 for S CN, .
' o(N,v) # 0.

Note that we do not impose from a solution which satisfies NETPFG that it yields (0,0) €
IR for every flat two-person game; we only require nonemptiness. An idea of this property
is as follows. Suppose two players bargain about how to share the worth of the grand
coalition with respect to (w.r.t.) their two-person game. If this worth is positive or .
negative, it- may happen that they do not reach any agreement. If the game is flat they
should be indifferent between leaving the game, thus obtaining zero (0), and sharing the
worth (0) of the grand coalition equally. NETPFG only requests that the two players do
not leave the flat game without an agreement. :
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Definition 1.6 Let o be a solution on a set T of games.

(1) The solution o satisfies the reduced game property from below, if the following
condition is satisfied: If (N,v) €T, z € o(N,v) and S C N such that (5,v5%) € T,
then (y,zn\s) € o(N,v) holds true for every y € o(S,v5%).

(2) o satisfies the strong reduced game property (SRGP), if o satisfies RGP and
the reduced game property from below.

For interpretations of the notion of the reduced game, the reduced game property, and the
converse reduced game property see, e.g., Maschler (1992). In some sense RGP is a reduced
-game property from above. Indeed, if a solution satisfies RGP, then the restriction of any
member of the solution of a game belongs to the solution of the corresponding reduced:
game. RGPB reflects, in some sense, the opposite direction. Every member of the solution
of a reduced game yields an element of the solution of the game, whenever it is combined
with the corresponding restriction of the initial element of the solution. More precisely,
on ['y the reduced game properties can be described as follows. A solution & satisfies
: RGP or RGPB respectively, if for every game (N,v) € T'y, every z € o{N,v), and every
nonempty coalition S C NV :

{y E.]RS l (y,-TN\S) € O'('N,'U)} c J(Sv 'US'z) -

{v € R® | (y,zms) € o(N,v)} 2 o(S,v5)

holds true respectively:

N ote that RGP and the reduced game property from below are equivalent for single-valued
solutions on I'y;. Moreover, it should be remarked that the core satisfies RGPB on every
set of games.

A solution on a set ' of games is said to satisfy the strong reduced game property
(SRGP), if it satisfies RGP and RGPB. It satisfies the semi stronig reduced game
property (SSRGP), if it satisfies WRGP and RGPB.

Now an axiomatization of .the core on I'yy can be formulated.

Theorem 1.7 If |U| > 5, then the core is the unique solution on I'y that satisfies
NETPFG, AN, COV, SRGP, CRGP, and individual rationality.

This Theorem is a direct consequence of Theorem 2.1, in which SRGP is replaced by
SSRGP and individual rationality is replaced by BOUND. A solution o on a set I satisfies
- boundedness (BOUND), if 6(N,v) is bounded (from below) for every game (N,v) €
I'y. Of course individual rationality implies BOUND. Moreover, Theorem 1.7 constitutes
an axiomatization as shown in Section 4.



2 A Characterization of the Core

Our.main result is the following theorem.

" Theorem 2.1 If the universe U of players contains at least 5 efements, then the core
is the unique solution on 'y that satisfies NETPFG, AN, COV, SSRGP, CRGP, and
BOUND.

We postpone the proof of Theorem 2.1 and shall now prove several useful lemmata globally
assuming that o is a solution on some set I satisfying ' C T' C I'y. The standard

solution of a two-person game (N, v) is denoted by z™*) (i.e., (V") = (v({z}) —v({jH+
o(N )) /2, where N = {i, j}). We start with the following simple result.

Lemma 2.2 Ifa satisfies COV, WRGP and BOUND, then o satisfies PO.

Proof: Let (N,v) € I. If [N| = 1, then COV and BOUND imply that every member
of o(N,v) is Pareto optimal. If |N| > 2, then WRGP applied to an arbitrary coalition
S € N of size 1 implies Pareto optimality of o(N,v). q.e.d.

For the remainder of this section we assume that the universe U of players contains at
least three members, let us say 1,2 and 3. :

Lemma 2.3 Ifo satisfies NE'TPFG, COV, WRGP, CRGP, and BOUND and if (N,v) €
' is the inessential game given by v(S) = z(S) for some z € R, then z € a(N,v).

Proof: In the case [N| = 2 NETPFG, COV, and BOUND show that {z} = o(N,v).

The fact that I' contains every inessential two-person game in I'y together with WRGP.
implies the assertion for |N] = 1. If [N| > 3, then CRGP shows the assertion. q.e.d.

Lemma 2.4 If[U| > 5 and o satisfies NETPFG, COV, SSRGP, CRGP, and BOUND,
then EXT C(N,v) C o(N,v) for every (N,v) € T with |N| = 2.

Here EXT A denotes the set of extremal points of the convex subset A of some Euclidean
space.

Proof: Let (N,v) e T s.a.tisfy IN| =2, let us say N = {1,5}, and C’(N,v) # @. It suffices
to show that (’U(N) - v({5}),v({5}_)) € o(N,v). Without loss of generality we assume

v({1}} = »({5}) = 0 (by COV) and v(N) =1 (by Lemma 2.3 and COV). Let N C U be
a superset of NV of cardinality 5, let us say N ={1,2,3,4,5}, and define for every @ € IR



the game (N, w,), by. ‘ -

' | 18] <2and $ ¢ {{2,4},{3,4})
a—4-8|, if
or § € {{2,3,5},{1,4,5},{1,2,3}}
a—4, if $=1{2,3,4} o
a—1, if|S] =4 '
0, if S € {B, N}

«, otherwise

wa(S) =

.

(In the present proof only w = wo is needed, but different values of the parameter o Wlll
be used in two other proofs.) Let z = (0,0,0,0,0) € RY and u = wil234}e,

Claim 1: (N, w) is totally balanced.
Let 0 #SCN, S8 -,é N. It remains to show that the subgame (S w) is balanced. We

distinguish the following cases:

(1) |S] .5 2 : The fact that w({i}) = —4fori e N and v(S5) > —4|§| shows balancedness
in this case.

(2) w($) = 0 : The fact that w(T) < 0 for § C N shows balancedness in this case.
(3) S €{{2,3,5},{1,4,5},{1,2,3}} : Then (S, w) is inessential, thus the core is nonempty.
(4) S ={2,3,4} : Then (—4,—4,4) € C(S,w) can easily be checked. |
(5) S ={1,2,3,4} : Then (1,-2,-2,2) € (S, w) holds true.

(6) §={1,2,3,5}: Then (1,~1,—-1,0) € C(5,w) holds true.

(7) $=1{1,2,4,5} : Then (—1,2,—1,—-1) € C(S,w) hold§ true.
(8) S =1{1,3,4,5} : Then (—1,2,—1,-1) € C(S,w) holds true.
( (-

9) §=1{2,3,4,5}: Then (-1,~-1,1 0) € C(S,w) holds true.

Claim 2: ({1,2,3,4},u) is totally balanced.

Indeed, u is balanced, because u(S5) < 0 for every S C {1,2,3,4} and u({1,2,3,4}) = 0.
Moreover, u(S5) > —4-|5], u({:}) = —4 shows balancedness of one- and two-person
subgames. If S = {1,2,4},{1,3,4}, then u(S) = 0 and the subgame (S, u) is balanced.

Finally, if 5 = {1,2,3} or § = {2,3.4}, then u(S) = —1 and the vector (1,~1,-1) or
(—1,-1,1) respectively belongs to the core.

Now the proof can be completed. Claims 1 and 2 show that both, (N, w) and the reduced
game ({1,2,3,4},u), belong to I'. We come up with s;;(z,w) = 0 for i,j € N with



i # j, thus £ € o(N,u) by CRGP and Lemma 2.3. Let y € R{'?>* be given by
y={1,-1,-1,1). Then , '
sij(y,u) =0 Vi, j€{1,2,3,4} (2.1)
thusy € 0({1,2,3,4}, u) again by CRGP and Lemma2.3. By RGPB z = (y,0) € o(N, w).
The fact that s51(z,w) = 0 > —1 = s15(2, w) finishes the proof, because it shows that the
reduced game ({1, 5}, w!**}*) is {N,v) and that (1,0) € o(N,v) by WRGP. g.e.d.

Lemma 2.5 If|U| > 5 and ¢ satisfies NETPFG, COV, SSRGP, CRGP, and BOUND,
then C(N,v) C o(N,v) for every (N,v) € T satisfying [N| = 2. .

Proof: Let (N,v) be a balanced two-person game in I' and let = C(N,v), let us say
N = {1,2}. By COV we can assume that v({1}) = »({2}) = 0 and without loss of
generality we can assume z; < 7. If »(N) = 0, then Lemma 2.3 finishes the proof.
Therefore v(N) = 1 can be assumed by COV. Therefore 0 < 71 £1-2;= 23 <1 holds
true. Take any playerz € U\ N, let us say i = 3, and define (N, u) with N = {1,2,3} by
l—z, fS=N,
u(S) = 1, fS=N

0, otherwise

Then (N, u) is totally balanced. With y = (0,1 — z;,z;) € R" we come up with

WM{1)) = {2 = 0, wMY(N) = 1 -z, (22)
w({1}) = D] = 0, wOI({1,3)) =y, and (23)
WBI(2)) =1 -2y, DB =0, PIN2IY =1, - (24)

thus y € o(N,u) by Lemma 2.3, Lemma 2.4, COV, and CRGP. Again by Lemma 2.4 (or
Lemma 2.3 in the trivial case that z; = 0) the preimutation which arises from T3 by
exchanging the components belongs to {{1,3},u{?*}¥). RGPB shows that z = (z,,1 —
21,0) € o(N,u) holds true, thus WRGP applied to the reduced game (N, u™*) shows
that z € o{ N,«*). However, this reduced game is (N, v). ' q.e.d.

Lemmata 2.2,...,2.5 will be used in the proof of Theorem 2.1 as well as in the next section.
The following result only applies in the current section.

Lemma 2.6 If [U| > 5, T = Ty, and o satisfies AN, COV, SSRGP, CRGP, and
BOUND, then o '
o(N,v)=0

for every two-person game (N,v) € I'y satisfying C(N,v) =0.

Proof: Assume, on the contrary, that there is z € o(N,v). Without loss of generality
N = {1,2} can be assumed. Moreover, by COV, we can assume that v({1}) = v({2}) = 0
and v(N) = —1 hold true. Without loss of generality z; < z3 = 1 — z; (by PO).
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Step 1: z(V) g o(N, v).
With V = {1,2,3} we define a game (N,w) b

—zy, if§={1},N
~z3, i |S] =2and S#N
T — 22y, if|S| =land §#{1}
0, ifSl=0 N

\

COV, AN, and CRGP imply that y = (O 0,0) € o(N,w). Indeed, a straightforward
computation shows that :

Slz(yoyw) = Sla(yosw) = st(yo,w) = s12(x,v) = —x4

and -
s21(¥% w) = sa1(y%, w) = s22(y°, w) = smi(2,v) = —z9
_ hold true.

W1th a = 23—, and using AN and COV we come up with (a ,—a) € o(N, wN¥"). Putting
- y=(a,—a,0) we get y € o(N,w) by RGPB.

Note that g
s13(y,w) = 331(.% ) =—x1. (2.5)

Equation (2.5) {together with WRGP AN and COV) shows Claim 1.

Step 2: Now the proof can be finished. Let N, w,,z, Y,z be defined as in the proof of
Lemma 2.4 and put & = 1/2. Then (compare w1th (2.1))

sii(x, wa) = sy, us)=1/2 Vi,j € N, kke {1,2,3,4} with i # 7, k # [,

where uz = wi*e, CRGP and Step 1 imply z € o(N,w;) and y € 0({1,2,3,4}, us),
' thus z € o(N,ws) by RGPB. The fact that

ssi(z,wa) = 1/2 > —1/2 = s15(2, wa)

shows that ({1,5},w {ehe 7} is inessential. By WRGP the restriction z(;5) is a member of
1, 5

o({1,5}, wi"H?), thus for every 3 > 0, _
| (1+8,1-8)/2 € o({1,5}, w7
by COV. This observation contradicts BOUND. q-e.d.

Proof of Theorem 2.1: Asshown in Section 1 the core satisfies the desired properties. In
order to show the uniqueness part, let ¢ be a solution on 'y which satisfies all properties.
It suffices to show that o coincides with the core on two-person games. Let (N,v) € Iy
satisfy [N| = 2. In view of Lemma 2.5 it remnains to show that o(N,v) C C(N,v) is
true. Assume the contrary. If C(N v) = @, then Lemma, 2.6 completes the proof If
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C(N,v) # 0, then we can assume that N = {1,2}. With N = {1,2,3} we define (N, u)

by u($) = v(§ N N). Choose z € a(N,v)\ C(N, v) and observe that (z(V%), 0} € (N, u)
by CRGP and Lemma 2.5. Therefore y = {z,0) € ¢(N,u) by RGPB. By WRGP Y133 €
o({1,3},ut**}v). However; the fact that this reduced game is not balanced directly leads
to a contradiction to Lemma 2.6. o ‘ , . q.e.d.

3 Totally Balanced Games

This section shows that suitable modifications of Theorem 2.1 are true for certain subsets
cof Ty, -

Theorem 8.1 If U] > 5, then the core is the unique solution on I'% that satisfies
NETPFG, COV, SSRGP, CRGP, and BOUND.

Proof: Uniquenes remains to be shown. Let o be a solution that satisfies NETPFG,
COV, SSRGP, CRGP, and BOUND, thus PO. In view of Lemma 2.5 it suffices to show
that o is a subsolution of the core. By WRGP it suffices to show this assertion for two-
person games. A careful inspection of the proof of Theorem 2.1 shows that, given the
contrary, there is a nonbalanced two-person game in ' which is not the case. q.e.d.

Remark 3.2 Theorem 3.1 remains valid, if I ® is replaced by any superset of I'? which
does not contain nonbalanced two-person games. Ezamples are T, the set of all balanced
superadditive games, and the set of all superadditive games in Ty. :

4 Independenée and Modifications of the Axioms

The following examples show that the properties used in Theorems 2.1 and 3.1 are logically
independent. We show that these results are not valid, if [U| = 4, and simultaneously
we show the independence of SRGP and SSRGP.

Example 4.1 Define °(N,v) = C(N,v)NPK(N,v). It is well-known (see, e.g., Sudhélter
(1993)) that the prekernel coincides with the prenucleolus for games with at most three
players. Therefore |o°(N,v)] <1 in the case that |N| < 3 is satisfied. In view of this
fact 6° satisfies RGPB on any subset T' of [y, whenever Ul < 4. It satisfies NETPFG,
AN, COV, CRGP, and BOUND. On every superset of T the solution o° satisfies WRGP
and it satisfies RGP on I'y. In the case that U} > 5 this solution satisfies all properties
except SSRGP or SRGP.

From now on we assume that the universe U of players contains at least five members. The
empty solution @ (®(N,v) =0 V(N,v) € I'y) satisfies all properties except NETPFG.
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Example 4.2 Choose two distinct players, let us say 1 and 2, of U and define o' on 'y
by .
1 {z¥)), f N.={1,2} and'C(N,v) =0
o (N,v)= . :
: C(N,v), otherwise
Then o! satisfies NETPFG, COV, SRGP, and BOUND.
Claim: o! satisfies CRGP.

Let N C U with |N| > 3 and (N,v) be a game with C(N,v) # 0. Moreove'r let ¢ €

X(N,v) satisfy zs € 0'(S,v5%), whenever S C N with |S| = 2. If {1,2} € N, then
z € C(N,v) by definition. If $ = {1,2} C N, it suffices to show that C(S, ,st) # 0.
Assume the contrary. Then sjy(z,v) = 321(3 v) > 0. Let sy3(z,v) be attained by T. If
T = N\ {2}, then sjo(z,v) > (T, x,v) > 0 for every j € N\ {1,2}, which is impossible.
Otherwise there is some pla,yerj € N\ (TU{2}) and slj(;c v) > e(T,z '0) > 0 yields a
contradzctzon :

We conclude that o' satisfies all properties of Theorem 2.1 except AN.

Example 4.3 for every game (N,v) let the “equal treatment vector” € ¢ RN be given
by xft’” = v(N)/|N|. Then o?, deﬁ_ned by :

. Et,'u { 6#,1}
(N2 { {2}, i 2t € C(N,v)

@, otheruise

satsfies all properties except COV.

Example 4.4 The solution o® defined by 0® = PN (N,v) N C(N,v) shows the zndepen-
_dence of CRGP.

Example 4.5 The solution which assigns to every game its set of preimputations shows
the independence of BOUND in Theorem 2.1. This solution is bounded, if it is restricted
. lo one-person games. In order to show the independence of BOUND in Theorem 3.1 we
choose two distinct players, let us say 1 and 2, in U and define the solution o4 on T# by

C(N,v), if{1,2}Z N
o} (N,v) =14 X(N,v)\ {z®™¥)}, f N = {1,2} and (N, v) is inessential .

@, otherwise

Then o* satisfies NETPFG, COV, SSRGP, and BOUND', i.c., boundedness for one-
person games. In order to show that it satisfies CRGP, it suffices to choose (N,v) € T#
with {1,2} C N, {1,2} # N and to show that there is no z € X(N,v) with z5 € |
o*(5,v5%). Assume, on the contrary, that there is a preimputation z with the required
property. Then the reduced game w.r.t. the coalition {1,2} and z is inessential, thus
s1a(z,v) = —sp1(z,v) # 0, let us say s12(z,v) > 0 (otherwise exchange the réles of 1 and
2). Let S C N be any coaliton attaining sia(z,v). Two cases may occur:

12
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(1) S = N\ {2} : Then .31](1: v) > €(S,z,v) > 0 for every j € N\ {1, 2} thus
zr & C(T,vT®), where T = {1, 5}, which is impossible.

(2) S # N\ {2} : Then sj(z,v) > e(S,z,v) > 0 for every j € N\ SU {2} thus the
. proof can be finished as before. '

Remark 4.6 It is possible to relax BOUND. Indeed, this property is only used in three
proofs. The first occurrence can be located in the proof of Lemma 2.2. In fact, only
- BOUND' is needed here. BOUND secondly occurs in the proof of Lemma 2.8 and it is
used to show that the standard solution. belongs to the solution when applied to any two-
person inessential game. BOUND is thirdly used in the proof of Lemma 2.6, actually in
the form of BOUND?! | i.c., boundedness, if the solution is restricted to two-person -flat
games. If U] > 2, then Lemma 2.2 remains true, if BOUND' is replaced by BOUND*
and NETPFG and RGPB are added. Thus BOUND can be replaced by BOUND* in both

Theorems Moreover, the following two results will be proved in Section 5.

Theorem 4.7 Theorem 3.1 is valid, if BOUND is replaeed by AN and BOUND.

Note that the axioms that occur in Theorem 4.7 are logically 1ndependent by the precedmg
examples and the following example.

Example 4.8 Let 05 on L'y be defined by

S(N,v) = X*(N,v)\ X(N,v), if|[N) <2 B
0, otherwise
On every set of T C T C I‘U the solution o° satisfies NETPFG, COV, AN, SSRGP and
CRGP. However, it does not satzsfy BOUND*.

However, it is possible to replace BOUND by AN, if a stronger version of CRGP is used.
A solution ¢ on a set I' of games satisfies CRGP*, if the phrase “z € X (N, v)” in the
definition of CRGP (see Definition 1.2(3)) is replaced by “z € X* (N v)".

Theorem 4.9 IflU| > 5 and if T is a set of games with T C T C Ty which does not
contain any nonbalanced two-person game, then the core is the unique solution on T that

satisfies NETPFG, COV, SSRGP, CRGP*, and AN.

- In order to show the impact of NETPFG we now describe all solutions that satisfy the
remaining properties. - For proofs see Section 5. Let int C denote the interior of the
core, i.e., ‘

int C(N,v) = {z€ C(N,v) | e(S,2,v) <O VB # S # N}.
Note that int C satisfies all properties of the theorems except NETPFG.
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Theorem 4.10 Let |U| > 5. The unique solutions that satisfy AN, COV, SSRGP,
CRGP, and BOUND on Ty or I'2 respectively, are d, int C, and C. '

Note tha,t AN cannot be dropped as a condition of Theorem 4.10 ever in the case of
totally balanced games as the following example shows.

Example 4.11. Choose distinct players, let us say 1 and 2, of U. The solution o5, defined
by '

K

o®(N,v) = { ) TN E1L2)

0, otherwise

' satisfies all azioms of Theorem 4.10 except AN.

5 Appendix

Proof of Theorem 4.7: Let o satisfy the required axioms. In view of Remark 4.6 it
suffices to show that o( N, v) is bounded, whenever (N, v) € Ty is a flat two-person game.
Assume the contrary. Let (N,v) be the flat game and let us assume N = {1,2} for
* simplicity. By AN, COV and NETPFG :

o(N,v) 2 X(N,)\ {(0,0)}.

Choose :z: € a(N v) satisfying z; < 0 < 9 = —2;. This can be done by AN and PO. Let
(N,w),4° y be defined as in the proof of Claim 1 of Lemma 2.6. It is easy to check that
this game is totally balanced, thus y° € o(N,w) by COV, CRGP, and AN. Therefore
y € o(N,w) by RGPB. However, the reduced game ({1, 3} ., 3}’1’)‘ is not balanced.
q.e.d. ' '

Proof of Theorem 4.9: Let ¢ satisfy the required axioms. It suffices to show that
o(N,v) is Pareto optimal for every flat two-person game (N, v) € ['y. Assume the contrary
and let (V,v) be a flat game, let us say N = {1,2}, and let = € o(N, v) satisfy z, # —z,,
i.e., 23 < —zy. By AN we can assume z; < z,. Take i € U\N let us say ¢ = 3, and let
N ={1, 2 ,3} and let (N, w) be defined by

4

—z;, fS={1},N

—zp, if|S| =2and S# N
'w(S) = < min{xl — 22,21 — 225}, if § = {2},{3} -
—21— a2, fS=N

' 0, ifS=40

Ay

Then (N,w) is balanced, because (—z;,0, ~25) € C(N,w). Moreover, it is easy to check

that this game 1s totally balanced. With y = (0,0,0) the reduced two-person games are
flat, thus AN, COV, CRGP*, and the equalities

Slz(y,w) = 513(% w) = 323(y5w) =—I = -‘512(55;”)
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and

321(y,w) = Sal(ya w) :332(.9',"1}) = —I2 == 521(-‘15:”)

show that y € o(N,w). By WRGP 0 € o({3}, w®). By COV t € o({3},wh) is true
for every t < wi®({3}) = —z; — 22 > 0, thus y* = (0,0,2) € o(N,w) by RGPB. Choose
t < x; — 2 and observe that (/V, wN’ye) is not balanced. _ q.e.d.

Proof of Theorem 4.10: The three solutions satisfy the axioms. Let ¢ be a solution
with the desired properties and let us assume that o is neither the empty solution nor the
core.

Claim 1: ¢ is a subsolution of int C.

By our assumption we obtain for every two-person game (N, v) :

(1) If (N, v) is flat or if C(N,v) =0, then o(N,v) = . (see the proof of Lemma 2.6)
(2) If int C(N,v) # 0 then @ # o(N,v) C int C(N,v). (by our assumption, see the
proof of Theorem 2.1) '

Claim 1 follows from CRGP.

Let (V,v) tN = {1,2}) be the unanimity game and choose z € o(N,v) satisfy 2, <
1 —x; = x5 (this can be done by PO and AN).

Claim 2: ™) € o(N,v).

Let (N, w),1° a be defined as in the proof of Lemma 2.6. Then y* = (a,0,~a) € o(N,w)
by AN, COV, and SSRGP. However, Y{2,3) 15 the standard solutlon of the reduced game

({2,3}, wi23h¢') which is isomorphic to (N, v).
" Claim 3: int C(N,v) Co(N,v).

Let (N, w,) and z,y be defined as in the proof of Lemma 2.4 and let 7 € int C(N,v). By
PO z; = 1 - Z; and by AN we can assume that #; < 7. Moreover, z; > 0 holds true by
Claim 1. Puty?* = 8-yfor € Randlet & = —%,, B =1-27, = Z2—Z:. Then (N, Ws)
is totally balanced, because & < 0. CRGP and Claim 2 imply z € (N wg). With uz =

wi?** e obtain that ({1,2;3,4}, uz) is totally balanced, thus v e 0({1,2,3 .4}, us)
by the same reasons. Finally 2% = (y#,0) € o(N,w;) holds true by RGPB. However,

SSI(N,'IU&) = &‘J 515(N1 w&) =& — B = —Io,

thus COV and WRGP imply Claim 3. :
The proof is finished by CRGP. q.e.d.
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