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Abstract

Recently Reny and Wooders ([17]) showed that the intersecting
collection of sets in Shapley’s ([18]) generalization of the Knaster-
Kuratowski-Mazurkiwicz Theorem could be chosen to be partnered
as well as balanced. In this paper we provide a further extension
by showing that the collection of sets can be chosen to be strictly
balanced, implying the Reny-Wooders result., Our proof is topological,
based on the Eilenberg-Montgomery fixed point Theorem. Reny and
Wooders ([17]) also show that if the collection of partnered points in
the intersection is countable, then at least one of them is minimally
partnered. Here we show that if this collection is only assumed to be
zero dimensional (or if the set of partnered and strictly balanced points
is of dimension zero), then there is at least one strictly balanced and
minimally partnered point in the intersection. The approach presented
in this paper sheds 4 new geometric-topological light on the Reny-
Wooders results.
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1 Introduction

A solution concept for a game (or economy) is said to be partnered if it
exhibits no asymmetric dependencies between players. That is, whenever a
player ¢ needs the cooperation of player j or is dependent upon the actions
of player j then j similarly depends on ¢. Partnership is a natural property
to require of a solution concept. If a solution concept is not partnered, there
is an opportunity for one player to demand a larger share of the surplus from
another player. Thus, a payoff that is not partnered exhibits a potential for
instability. Consider, for example, the two-person divide the dollar game. If
the two players can agree on the division of the dollar between them, the
dollar is divided between them according to the agreement. Any division gi-
ving the entire dollar to one player displays an asymmetric dependency since
the player receiving the dollar needs the cooperation of the player getting
nothing.

The definition of partnership is based on the notion of partnered collecti-
ons of subsets of a finite set. Let N be a finite set, whose members are called
players. A collection of coalitions, consisting of subsets of N, is partnered if
each player ¢ in N is in some coalition in the collection and whenever 7 is in
all the coalitions containing player j then j is in all the coalitions containing
player z. If ¢ is in all the coalitions containing 7 we think of this as a situation
where ; “needs” :. To illustrate a partnered outcome for a game, we return
to the divide the dollar example. An outcome in which one player receives
the entire dollar is not partnered since the only coalition that can afford to
give him the dollar is the two-player coalition, while the player getting no-
thing has an alternative coalition, the coalition consisting of himself alone.
Thus, the player receiving the dollar needs the player receiving nothmg but
the player receiving nothing needs only himself.

The partnership property was originally introduced to study solution con-
cepts of games and economies and has now been applied in a number of
papers; see, for example, ([11], [12], [9], [1], {2], (3], [14], [16], [15]). More
recently, Reny and Wooders ([17]} have extended Shapley’s ([18]) generali-
zation of the Knaster-Kuratowski-Mazurkiewicz Theorem by showing that
the collection of sets satisfying the conclusion of the Theorem can be chosen
to be partnered as well as balanced. Reny and Wooders ([17]) also show
that if the intersection of a balanced and partnered collection satisfying the
conclusion of the KKM Theorem contains at most countably many points,



then at least one of these balanced collections is “minimally” partnered. A
collection of subsets of a set N is minimally partnered if it is partnered and
if for each player 7 there does not exist another player j such that j is in all
the subsets containing player i. In other words, no one needs anyone else in
particular.

- In this paper, we provide further results using a topological approach,
shedding new geometric-topological light on the results of Reny and Woo-
ders. We obtain a further extension of Shapley’s generalization of the K-K-M
Theorem, showing that the collection of sets satisfying the conclusion of the
Theorem can be chosen to be strictly balanced — the weights on the sets in
the collection may be chosen to be all positive. This implies that the collec-
tion is partnered. Qur argument involves the Eilenberg-Montgomery fixed
point Theorem for set-valued mappings. (This is deeper than the Kakutani
fixed point Theorem ’customarily’ used in game theory and economics - see,
however, Keiding ([7]).) Assuming that the set of partnered and balanced
points is zero dimensional (weaker than countable), we obtain a stronger re-
sult: There is at least one point in the intersection of a strictly balanced and
partnered collection of sets that is minimally partnered. We use a version of
degree theory valid for set valued maps (correspondences), where the image
of a point is not necessarily convex. (We are unaware of any previous app-
lication of this theory to game theory and mathematical economics.) Using
similar methods we obtain the same conclusion, assuming that the closure of
the set of strictly balanced (and hence partnered) points is of zero dimension.

We are very much indebted to Philip Reny for pointing out an inaccuracy
in an earlier version and for other suggestions which led to improvements in
the present paper.

2 Definitions and the Main Results

Let N = {1,2,...,n} and let P be a collection of subsets of N. For each ¢ in
N let '

P;={SeP:iec S}
We say that P is partnered if for each ¢ in N the set P; is nonempty and for
every ¢ and j in N the following requirement is satisfied':

1The concept of a partnered collection of sets was introduced in Maschler and Peleg
([11], [12]). They used the term “separating collection.” We follow the terminology of
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if P;CP; then P; CP;;

i.e. if all subsets in P that contain ¢ also contain j then all subsets containing
j also contain . Let P[4] denote the set of those j € N such that P; = P;.
We say that P is minimally partnered if it is partnered and for each 1 € NV,
Pli] = {:}-

Let A denote the set of nonempty subsets of N. For any $§ € N let €°
denote the vector in ™ whose i** coordinate is 1 if ¢ € S and 0 otherwise.
For ease in notation we denote eli} by €.

Let A denote the unit simplex in ®". For every § € N define

A5 = conv{e':ie S}, and

S
s _ &
T sr

where “conv” denotes the convex hull and |§| denotes the number of elements
in the set S.

Let B be a collection of subsets of N. The collection is balanced if there
exist nonnegative weights {A5}sep such that

Z /\SeS=CN

SeB

and the collection is strictly balanced if all weights A5 can be chosen to be
positive. Observe that the collection B is balanced if and only if

m" € conv{m’ : S € B}.
Reny and Wooders ([17]) obtain the following two results.

Theorem A. (Reny and Wooders ([17]) Let {C% : $ € N} be a collection
of closed subsets of A such that

Uscr C5 2 AT forall TeN. (1)

Then there exists z* € A such that S(z*) = {§ € M : z* € C5} is balanced
and partnered.

Bennett ([2]).



Theorem B. Reny and Wooders ([17]). Let {C°: S € A} be a collection
of closed subsets of A satisfying (1). If the set {z* € A : §(z*) is balanced
and partnered} is at most countable, then at least one z* € A renders S(z*)
balanced and minimally partnered.

The next two Theorems will be used in our extension of Reny and Woo-
ders’ results.

Theorem 1. Let F(z) be a correspondence from A into the closed convex
subsets of A such that:

F is upper — hemicontinuous; (2)

For all z € B (:=08A), F(z) C B and ¢(z) ¢ F(x), where g is the
antipodal map with my as the origin, ¢: A\{my} = A\{mn};
(3)

and .
F assumes finitely many values. (4)

Then there exists z € A such that my € rel int(F(z)).

Theorem 2. Let F(z) be a correspondence from A into the closed convex -
subsets of A satisfying (2), (4) and:

Forall z € B, z € A = F(z) C A% (S C N). (5)
Assume also that:
The closure of the set {z : my € rel int(F(z)} is zero — dimensional. (6)

Then there exists ¢ € A such that my € int(F(z)).
(Note that “snt” means “interior in the topology on the hyperplane” ", z; =

1.)

Theorem 1 implies a strengthening of Theorem A of Reny and Wooders
([17]). Under somewhat different assumptions, Theorem 2 yields a stronger
conclusion than those of Theorem B of Reny and Wooders ([17]).

Note that in the course of their proof of the KKMS Theorem, Shapley
and Vohra ([19]) establish the following,.



Proposition 1. Let {C° : § C N} be a family of closed subsets of A
satisfying (1). Then there is a homeomorphism ¢ of A into the interior of A

and a correspondence F' from A into the closed convex subsets of A satisfying
(2), (4), (5) and such that

F(p(z)) = conv{ms : z € C°} forall z €A, (7

and .
if my € F(z) then z € o(A). (8)

The following strengthening of Theorem A of Reny and Wooders ([17])
follows from Theorem 1 and Proposition 1:

Theorem 3. Let {C®: S C N} be a family of closed subsets of A such that
(1) is satisfied. Then there exists z € A such that the collection {§: z € C%}
1s partnered and strictly balanced.

Proof: Let F be a map satisfying the properties required in Proposition 1;
from that Proposition there is such a map. Note that F satisfies condition
(3). By Theorem 1 there exists y € A such that my € rel int(F(y)), and by
(7) and (8) there exists € A (z = ¢~'(y)) such that

mu € rel intjconv{ms : z € C5}]. . (9)

Clearly, ¥ := {S : 2 € C°} is balanced. Moreover, it is strictly balanced.
In fact, let § € Z, S # N (without loss of generality, £ # {IN}) and let £s
denote the line joining my and mg. Then my is contained in the interior of
the interval £sNconv{ms}sex. Hence there exists an ag € conv{mg}secx and
positive numbers ag, S5 such that ag + 8s = 1 and my = agms + Bsas. We
may average these equations with positive weights over S € 3, § # N and
obtain mpy as a convex combination of the points mg, § € X, with positive
weights for each S # N.

If ¥ is not partnered, then there exists 7,7 € N such that whenever
i€ 5€ X alsoj €5, but there exists T' € X with j € T, ¢ ¢ T. Then for all
y € D(z) := conv{mgs : ¢ € C°} we have y; > y;, but there exists § € D(z)

such that §; > 0 and § = 0 or % > §;. Hence my = (3,..., 1) cannot satisfy
)R

L3
2The last part is not really needed, as strict balancedness implies partnership.
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It is well known (Maschler, Peleg, and Shapley ([9])) that there exist
partnered collections which are not balanced. Let ¥ be such a collecti-
on for an n-person game. Then {N} U ¥ is balanced and partnered, but
my ¢ rel intfconv{ms}sezu{ny]. One may choose ¥ to be minimally part-
nered. Then ¥ U {N} is balanced and minimally partnered, but my ¢
rel int[conv{ms}sezu{ny].- Thus, our Theorem 1 is a strengthening of Theo-
rem A in ([17]).

The following consequence of Theorem 2 is related to Theorem B of Reny
and Wooders ([17]).

Theorem 4. Let {C° : § C N} be a family of closed subsets of A such
that (1) is satisfied. Assume that the closure of the set {z : {§ : z € C*}
is strictly balanced} is zero-dimensional. Then there exists € A such that
the collection {S : z € C5} can be chosen to be minimally partnered and
strictly balanced.

Proof of Theorem 4. Assume that the closure of the set {z : {S: z € C¥}
is strictly balanced and partnered} is zero-dimensional. Let F' be the map
whose existence is stated in Proposition 1. Nore in particular that F satisfies
(5). Hence there exists (by Theorem 2) =z € A such that my € int(D(z))
[where D(z) = conv]ms:z € C5)]. HE = {§: z € C5} is not minimally
partnered, then there exists a pair 2, 7 such that for every § € T either : and
7 both belong to S, or neither belongs. Hence for all y € D(z), ¥ = y,.
Thus nt(D(z)) is empty, a contradiction. |

Comparing our Theorem 4 with Reny and Wooders ({17]) Theorem B it
appears that neither is stronger than the other. While a countable set may
be dense {and hence have closure of positive dimension) a set of dimension
zero may be uncountable (for example, a Cantor set on ‘a line). Note also
that the statement “my € int(D(z))” is stronger than the conclusion of
Theorem 4. The statement means that every hyperplane through my (except
for ", z; = 1) has vectors ¥ with z € C¥ on both sides.

Our final result is a proper strengthening of Theorem B of Reny and
Wooders ([17]). As a formulation for correspondences (similar to Theorems 1
and 2) is cumbersome, we state here the result only for closed coverings.

Theorem 5. Let {C}scn be a closed covering of A such that (1) is satisfied.
If the set {z* € A : §(z") is balanced and partnered} is zero dimensional,
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then at least one z* € A renders §(z*) strictly balanced and minimally
partnered. In fact, my € int [conv{ms}ses(zr))-

3 Proofs of Theorems 1, 2 and 5

To prove Theorem 1, note that if y is not in the relative interior of a con-
vex set K, then removing an open ball B(y,#8) of radius § centered at y
from K results in a nonempty closed contractible set (i.e., a set homeo-
morphic to a simplex of a certain dimension) for § > 0 sufficiently small.
It follows from (2) and (4) that if my € rel int(F(z)) for no z € A,
then there exists a 6 > 0 such that F(z)\B(my,$é) is nonempty and con-
tractible for all z € A. Moreover the openness of B(my,§) implies that
the correspondence z — F(z)\B(my,§) is upper-hemicontinuous. Let A
denote the usual radial retraction of the punctured simplex A\{mn} on-
to B. Then h(F(z)\B(mu,$)) is contractible for all z, and the same is
true of g(h(F(z)\B(mn,$6))), where g is the antipodal map as given in (3).
Clearly the correspondence z — g(h(F(z)\B(mn,6)}) is upper hemiconti-
nuous. By the Eilenberg-Montgomery fixed point theorem ([5]) every upper-
hemicontinuous correspondence mapping the simplex into the collection of
its non-empty, closed, and contractible subsets has a fixed point. Hence there
exists a point z* € A such that z* € g(h(F(z*)\B(mn,4))). In particular,
z* € B. By assumption (3) F(z*) C B. But on B, h is the identity. Hence,
z* € g(F{z*)\B(mn, 6)) C g(F(z*)}, contradicting (3). ]

For the proof of Theorem 2 we need degree theory as extended for cor- -
respondences (see, for example, Lloyd ([10]), 115-120). Actually, a stronger
version is needed, where the values are not necessarily convex (see, for exam-
ple, Borisovich ([4])). In our case the values assumed by the correspondence
are contractible and compact, so that the Begle-Vietoris mapping theorem
([5], [6], [20]) is applicable and may serve as a basis for degree theory.

It follows from (5) and a simple homotopy argument that

d(F,int(A),my) = 1. (10)

Denote by X the closure of the set {z : mny € rel int(F(z))}. By
assumption, X is zero-dimensional. This means that for every € > 0, the set
X may be covered by a finite number of disjoint open sets whose diameter
is less than e. Let {D;m}om denote such a collection of sets with diam
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(Dim) < 2, X CUID; 1 and Diy N Dy = B for i # 5. Then D;,, NX is
both open and closed in -)?, so that 0D; , N X=40.

' With § as in the proof of Theorem 1, set §(z) = min[dist(z, X), 6], and

define an upper-hemicontinuous correspondence G by

G(z) = F(z)\B(mny, §()). (11)
Then my ¢ G(z) if z ¢ X. It follows from (5) (compare (11)) that
d(G,int(A),my) = 1. (12)

By construction, my ¢ G(y) for all y € 0D;,,, 1 < i < P,. Hence
d(G, D; m,my) is well defined and

%d(Ga Dim,my) = d(G,?nt(A),mN). (13)

=1

It follows from (13) and (12) that there exists i = ig(m) such that
d(G, Dig(m)m>mn) # 0. By compactness there exists T € X and a se-
quence Djy(m)m of neighborhoods (with Diy(mym N X compact) such that
7 = Moy Digm),m- For each m, d(G, D;j(m)m, mn) # 0 implies the existence
of an (n — 1)-dimensional ball B,, centered on my such that

Bn C U:EGD.-O(m),mG(x) - UEED.'O(m),mF(‘T)' (14)

Set a; = & —mpy, 1 <4 < n. Fix for a moment a; for anindex 1 < § < n.
By (4) there exists a positive number §; such that if my + ea; € F(y) for a
certain y € A and a positive ¢ (no matter how small), then my+§;a; € F(y).
By (14) there exists a sequence z™ converging to T and a sequence of positive
real numbers €, such that my + €na; € F(z™). Hence my + 6;0; € F(z™).
By the upper-hemicontinuity my + 8;a; € F(Z). The convexity of F(T)
and the spanning property of a;, ..., @, imply that my is an interior point of
F(z). | :

Remark: Theorems 1 and 2 may be generalized to contractible non-convex
sets. Inspection of the proof of Theorem 1 shows that the condition (4) may
be replaced by the assumption that there existes a positive number § such
that the sets F{z)\B(my,6) are nonempty and contractible for all z € A.



Similarily, Theorem 2 is true if (4) is replaced by the property that for every
a # 0 there exists a § > 0 such that if both my and my + ea € F(z) for any
z € A and € > 0 then my + 6a € F(z). :

To prove Theorem 5, we follow Reny-Wooders ([17]) (inspired by [3]) and
set

cj(e) =  min  dist(z, C%) (15)

forre A, 1<1<5<n,

ci(z)=0 for z€ A, 1<i<n, (16)
w(2) = Ylei(a) ~ ei(#)] for s €A, 1Si<n, (17)
é(z) = min[)n: |ni(z)|, 6] for z €A, (18)

=1
where the positive number 6 is chosen so that the set F(z)\B(mn,$§) (for F
as in Proposition 1) is nonempty and contractible for all z € A, (compare
the proof of Theorem 1), and if my ¢ F(z), then B{my,8)NF(z) = 0. Then
4(z) is a non-negative continuous function on A. Define the correspondence
H(z) by
H(z) = F(z)\B(mn,8(¢7(2))) for z € p(A), (19)

H(z) = F(z) for = ¢ p(A). (20)

(Contrast with the definition of G(x) in (11).) The choice of § and (8)
imply that H(z) is upper-hemicontinuous. Let X denote the set {z* € A :
S(¢~(z*)) is balanced and partnered.

We claim that if z ¢ X then my ¢ H(z). In fact, if my € H(z) then
mpy € F(z). Thus (8) implies that z € ¢(A). Hence H(z) is given by (19).
It follows that S(¢~'(z)) is balanced and é(¢'(z)) = 0. But according
to a Lemma of Bennett-Zame ({3]), as adapted by Reny-Wooders ([17]), if
ni(y) =0 for all ¢ = 1, ...,n (as implied by é(y) = 0), then S(y) is partnered.
Hence z = p(y) € X.

Set now Y = {z € A : my € H(z)}. Then Y is a closed subset of
X, hence a closed zero-dimensional set. Note that the correspondence H(z)
satisfies the conditions of Theorem 1, except for (4). But by the remark
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made after the proof of Theorem 2, the conclusion of Theorem 1 holds for
the correspondence H (see also (18)). Hence there exists a point z € A such
that my € rel int(H(z)), and in particular Y is not empty.

We can now continue the proof as in the proof of Theorem 2, with ¥
replacing X and H replacing G. We conclude that there exists T € Y such
that mpy is an interior point of F(Z). As in the proof of Theorem 4, this
implies the existence of z € A (z = ¢ (Z)) such that my € int(D(z)), from
which all the assertions of Theorem 5 follow. [

Remark: Note that T € Y implies 8§(¢71(Z)) = 0 or 5;(¢~'F)) = 0 for
all 1 € 7 < n. Thus the "net credits” ([3], [16]) of each player at z are
zero. However, one does not need all the assumptions of Theorem 5 for the
non-emptiness of ¥. For this the assumptions of Theorem 3 suffice. (This
observation was made in response to a suggestion by Philip Reny.)
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