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Preservation of Differences,

Potential, Conservity

Abstract

The potential approach for cooperative games was invented by Hart and
Mas-Colell. In this paper now there is an extension with respect to a new
characterizing property called conservity which gives a clear interpretation
of the potential. The many analoga between game theory and physics are
shown. The well known Shapley-Formula can be derived by the potential
approach. Moreover the Banzhaf-Index can be uniquely characterized in
this context. Eventually there are new proofs for Hart’s and Mas-Colell’s
basic theorems using not the potential but the preservation of differences

which is a little bit more elegant.



1 Preliminaries

Definition 1.1 A cooperative game (with sidepayments) is a luple I = (2. v},

where

Q0 C IN\{0}, |©2] < oc set of players

v: 2% - R, v{#) =0 characteristic function

Remark. Elements of {2 are called players. Sets of players are coalitions. v (S5}
is the worth which the coalition § can obtain by cooperation. Sometimes one
may designates a characteristic function already as a game, if per definitionem

the set of players can be recognized.

Now there is the question, how much utility shall be transfered to every single

player.

Definition 1.2 A solution concept is an operator, which assigns to every co-

operative game ' = (0, K, [) ezactly one element of RI%!,

“The main principle to soive a given game is not to consider just the fixed game
but a whole family of games which are similar to the given one. One may
have difficulties to deal with single elements of this family, but there is a simple
connection between all these elements. And in some cases a solution is quite

obvious.

One possible way to get a nice family of games is due to Lloyd S. Shapley!.
The set of players is fixed, the characteristic function varies. The values of
different characteristic functions f and ¢ are been put together hy the additivity
axiom. Therefore the Shapley—Value may be viewed as a linear mapping on the
set of all characteristic functions () with fixed Q. This set is together with
point by point addition and multiplication of functious a real vector space. The
normalized unanimity games form a basis. Shapley characterized his value as

the linear continuation of the uniform distribution.

Yef. 8]



Corollary 1.3 2 Let T' = (Q.v) be a cooperative game and let {AT breamygoy
be the coefficients of expansion in the basis of the normalized unanimity games.

- Then the Shapley-Value Y for player ie€dy is given by

i - 1
(Do, Ko, [) = > mf\?" (1)
'1'"&251
1T

.2 Alternativa

In this section another family of games will be considered. The set of players
varies, the characteristic function on the other side is “fixed”. lLe., for a fixed
cooperative game I' = ({2, vo) one considers the set of subgames G(T') := {T'¥ :=
(S,v;2s) : & C Q}. It is possible to characterize the Shapley—Value on this family
due tolHart and Mas-Colell®. |

2.1 Preservation of Differences

Definition 2.1 Let T = {Q,vo) be arbitrary, but fired and let P be a real valued
operator on G(I'). For § C A and 1eS the operator V;, defined by

ViP(I®) := P(T%) — P(T*7") * (2)

is called difference operator. The vector Vs := (V;);es is called discrete gradient.
Discrete differences are the analogon to differentiation in analysis.

Definition 2.2 Let I' = (Q,vg) be arbitrary, but fired. A solution concept ®

preserves differences, if
Vid;(I%) = V;0(T%) (3)

Jor all S CQ and all 1,7eS, 1 # 5.

Zef. 8]
t. 1], [2
1S — i is a short form for S\ {7}



Preservation of differences corresponds to the integrability condition in analysis.
Mverson® has introduced this property as balanced contributions. Hart und
Mas-Colell® point out, that one wants to preserve differences rather.than ratios,
since the resulting outcome should not depend on the choice of the origion of a
player’s utility scale. It is required, that the utility which playver / can gain. if
player j takes part, is equal to the profit which player j gets if player ¢ joins. It
will be shown in the following that the property of preservation of differences is

a necessary property of the Shaplev-Value.

2.2 Potential

Definition 2.3 Let T = (), vy) be arbitrary, but fired. Then a solution concept
® is called a discrete gradient field, if there exists a function P : G(I') — R such
that

®(I) = Vs P(I"") (1)

for all S C . P s then called the poteniiaf operator, or shortly the potential,
of the solution concept ®.

For the present the potential is just a technical tool, but later on it gets a clear

meaning.

Proposition 2.4 A solution concept ¢ is a discrete gradien! field. if and only

if it preserves differences.

Proof. =" Let ' = (Q,vy) be arbitrary, but fixed and let ® be a discrete
gradient field, i.e., for a certain potential P : G{I') — R and for an arbitrary

subset S C €} and arbitrary z,jeS, 7 # 7 it 1s true that

o(I'%) = VP(I'®) ; o,(I'%) = V; P(T)




Therefrom

Vi0,(I'S) = VUV;P(T%))
= V(P(I'%)— P(T°Y)
- P(FS) _ P(]-!S—i) _ P(l“g—J) + P(T‘(S_J)_i)

and dito
Vi®dTS) = G(ViP(T)

= V(P(F®) = P(I'"7))
= P(I'%)— P(I°7) — P(T°7%) + P(I5977)

Therefore Vi@ ,(T¥) = V;®;(I'°) for all § C Q and all i,jeS, ¢ # ;.

"« Let Vi®,(I%) = V;$,(T%) for all Se? and all 7,7¢S, ¢ # j. Then one
defines recursively '

P(C%) = P°7) + &,(0%) (5)
for all S € Q and all 2eS. By induction one can see that this expression is well

defined.

Basis of induction. Let S| = 1 and set P(I'®) = 0 then P(T'{) = ¢,(I'{1) is
well defined for arbitrary ).

Induction hypothesis. Let equation (5) be well defined for all § C @ with |.5] <n
for arbitrary, but fixed nelN, n < ||.

Induction step. n — n + 1. Let § C @ with |S] = n + 1 be given and let ¢, je§
be arbitrary. Then ‘

hs

PT*7) 4+ @4(T%) "= P(I°7) + (%) = &5(T°7) + (1)

S P 4 0,(1%) — (P(I) — P(TU077),)
+P(I577) — P(I=97)
= P(IS7) 4 &,(I%)
Per definitionem therefore Vs P(I') = @(I'S) for all S C ). O



The find out of a potential is the turn back of the preservation of differences
and corresponds to integration in analysis. Uniquenes can be obtained up to an

additive constant. In fact only differences of a potential are important.

2.3 Conservity

Definition 2.5 Let I' = (0, vg) be arbitrary. but fired and let S,. 5. be two
arbitrary coalitions in 1. A finite sequence (Sy,---.8,) of coalitions in € is

called a way from S, to S., if the following holds

¢ 51 =05, 5. =S5

£

e Vi=l.-n3j=j3 0 P = (SUSa\SNSi)

Definition 2.6 Let I' = (Q.vg) be a cooperative game, ¢ a solution concept,

8., S. two coalitions in ) and (51‘, 8, a way from S, to S.. Then

n—1
Vl(q), Sa- S“ (Sh - Sn)) = Z 5;:“ (I)js. (1"3.‘LJS,+1 ) (6)
=1 S .
with
s |+l 0 5 C Sip
Setn -1 19 D Sin

is called the expenditure of @ for the pair (S,,5.) with respect to the way
(51,---.5:0.

The expenditure has a clear meaning. Imagine the players of a given game
I' = (92, vy) meet together at a certain place. The worthes of all coalitions have

been settled. Moreover one has come in terms with a solution concept ¢.

A certain master of the game now has the possibility to pay off an arbitrary
player 1eQ} according to the solution concept and send himn away afterwards.
Thereby the situation has changed: the new set of players 1s ! —¢. Cooperation

with plaver ¢ is not possible anymore, because he is not present. All the other



coalitions can obtain by cooperation the same worthes as before. But the payoffs
to the remaining plavers according to the agreed solution concept have been
changed. The master can now pay off another player je(£2 — 7) according to the

new calculation and send him away.

This procedure might go on. Of course the master can fetch a player from
outside and bring him into the game while the master demands exactly the
amount which this player will get by the solution concept @ afterwards according

to the new situation.

In this sense WP, 5,. S, (5. --.5.)) is exactly the amount of utility which
has to be transfered to the master. just to bring the coalition S. mto the game
according to the way (Sy,---.5,) while starting with the coalition 5,. The

choice of the sign is just an agreement with the author.

The master himself may be viewed as a " deus ex machina”. Every arbitrary

coalition S C ) can be the master if their players for example want to play the

game on their own or want to gain utility on closed ways.

Definition 2.7 Under the assumption of the preceeding definition a solution
concept & is called conservative, if the expendilure is equal fo zero for every

closed way, i.c., for every pair (8,5), S C§Q and every way from S to 5.

Definition 2.8 Let ' = (Q.,vy) be arbitrary, but fized and let S,, S. be two
coalitions in Q. A way (51, --,8,) from S, te 5. is called rigorously climbing,

if S; CSiyq foralli=1,---,n—1.
Equivalence Proposition 2.9 For a solution concept ¢ it is equivalent:

{(z) ® is conservative.
(i7) The erpenditure W is independent of the way.

(i71) The expenditure W is independent of the way for every way which is star-

ting i O and rigorously climbing.

(iv) ® preserves differences.

=1



Proof. “(i) = {(i1)" Let S;, S. be two arbitrary coalitions in @ and let
(S1,+++.5.), (3‘;.---.5’,,1) be two arbitrary wavs from S, to S.. Then
(T, s Tt ) 1= (Sh0-- -0 50, Spocqaree, 6'1) is by assumption a closed way

with Yt 5;{'“ (I)J.Tt (TTTi+1) = 0. Therefrom holds
1 T|+]

n—1 n—1
- - . T LT
S8 @ (DR = SU6T g (DTVTHY
Sy i 141 it
i=1 EEE i=1 41

n+mni—2 T T UT
it L
= — Y 6, on (DT

: T
i=n 1+1

2 . .-
5, S5 U,
= =383 @5 (IO
! = J=
1=m Te1

m—1

= Z (_6;:+1) (Df'h(rS'HUS')
1=1 &

m—1

- S', . S-,US +1
- Z 55.+1 cpj_:' (F t )
=1 St

"(i1) = (222)" clear
"(#i7) = (iv)” Let S C Q be arbitrary and let the expenditure of ¢ be indepen-
dent of the way for every way which is starting in § and rigorously climbing.

Then for arbitrary ¢, jeS. 7 # 7 it 1s true that

q)!(rS) + q)j(rs—i} + Z (I){(F{ke(s—i_j): kﬁ!})

le(S—1-7)

— . (DJ(FS) + (I)i(rb"-j) 4 Z (I)l(l.-\{ke(sfiuj): kgf})

le{S—i—7}

Thus @) + &,(15~) = &,(1%) + &,(T5). And therefrom V(1) =
Vid (') for all S € Q and all 7, jeS, ¢ # j.

"(tv) = (2)" Let @ preserve differences. Then by proposition 2.4 there exists a
potential P : G(I') — R, such that for every § C Q always VsP(I'¥) = ®(I'?).

Now let (51, --+,5,) be an arbitrary closed way with 5; = S,.. Then it is true

8



that

n—1 n—1 . -"f'
285, B (T = 3Tag,, (PISW0w) — P )
i=1 Zi41 i=1
n—1
= ST PO~ P(I%)
=1
= P(I*)— P(I'™)
= 0

Therefore ¢ 1s conservative. 0

Remark. If @& is a conservative solution concept then i1t 1s true that
Wi, 5, 5.,(5,---.5,) = P(S.) — P(5,). Differences of the potential cha-

racterize in this sense the expenditure.

In classical mechanics conservative forces imply conservation of energy. This
theorem is highly important in physics. It means that the whole mechanic

energy is the same at every time.

In this game theoretical context one has a similar property of conservative
solution concepts which can be described informally. If one deals with a solution
concept which is not conservative, then there exists at least one closed way for
. whicli the expenditure 1s positive. This utility is deprived from the players of
the grand coalition. A repetition might be done such that more and more utility
1s deprived from the players. For conservative solution concepts on the other

side the whole (transferable) utility of the players is the same at every time.

Corollary 2.10 Let T = (. vg) be arbitrary, but fized and let ® be a conserva-
tive solution concept, then a potential P : G(I') — R ts given by

P(T¥) =3 @ (TUes: ssih (7)

es

Proof. Tt is obvious that P is a real valued operator on G(I'). Now let 5 C §2

and 75 be arbi.trary1 then holds

VP(I%) = P(I')- P(IS)



= ZQ);(F{jE(-*’):iS”) _ Z (D{(F{je[h‘—z’): jgz})

lgs lef—
- @i(r-‘*)_l_ Z @z(r{je(-ﬂfi)wsl}) _ Z (I,[(r{je(s—i}:jéf’}]
leS—t leS5-i
— &(I%)

This is alwavs true because of the independence of the way of the expenditure

of & for every § C Q and every 1S by proposjtion 2.9. a

Set P(T'®) = 0. then the potential P{T*) has the following meaning: It describes
exactly the amount of utility which has to be transfered to the master just to
bring the members of the coalition S step by step into the game. In this sense
(—P{S)) is the potential ability of the coalition S to obtain utility {[rom the

master). It is the game theoretical analogon to the potential energy in physics.

3 Determination

The well known Shapley-Formula can be derived by the aid of a potential.

Proposition 3.1 Let I' = (,v) be a cooperative game. Then the Shapley-
Value U for 1} is given by

vy =% (|m_|R|£|!(Rl_l)! (U(R)—U(RAi)) (8)

RCQ

ieh

Proof. In the following n respectively r denote the cardinality of the set )
respectively R. Furthermore let P : G(I') — R be a potential of the Shapley-
Value . Then

i l

Ty = 3 o5 W)= 3 o W)
RCO (T) RCQ (”)
ieR ieR



- S w(F) - Y (=) (”_Tn_,l)u ¥, (rR)
RCO (’) RcQ -
eR tefl
1 n—rj{r—1) .
S E e T p ey
rca V7 RCO 7eR=
1eR el
n—ryl {(r—1) :
_ Z ( ):11( 1) (T‘I’,‘(FR) _ % .qli(l'*H—J))
RCO e
1eR

— Z (n"_r)! (T— 1)' (\II!(FR)+ Z l}[lt-(FR)— ‘I’i(FR_J))

|
. jeR—i

el

£ X P(OR) = PR — (P = PIF9)))

JjeR—

_ Z (n—r)!'(r_l)! (ZP(FR)—P(FR_j)

. jeR

RCQ
ieR

-3 P(FR-")—P(F(R-“-J'))

JeER-1

=y WU (e m) - (@) (R - )

n!

RCO
ieR .
(n—r)! (r —1}

- ¥ e (U(R)—U(R-z'))

RCQ

el

11



Remark. This proposition 3.1 can also be verified by theorem 4.2, Oune can
directly show that a solution concept defined by (8) is eflicient and preserves

differences.

4 Theorem

The symmetry in the partial differences may be viewed as a partial difference
equation analog to a partial differential equation in physics. With an additio-
nal constraint which is always necessary there is a unique solution namely the
Shapley-Value. Hart and Mas-Colell” on the other side use the potential for

their proof.

Definition 4.1 Let U = (Q, ) be arbitrary. but fized. A solution concept @ is
efficient. if for all 5 C §) holds

(@(I))(S) = volS) (9)

Theorem 4.2 There exists eractly one solution concept ® which is efficient and

preserves differences. This © is equal to the Shapley-Value V.

Proof. First let I' = (£, vg) be arbitrary, but fixed and let {Ar}ycanyyey be
the coefficients of expansion in the basis of the normalized unanimity gaines.

Because of corollary 1.3 it is true that

1
(WIENS) = D0 20wk
1S ]T|
Te2v
eT
- Y
Te25\ {9}
= w($)

“ef. [1]. citehart2



Hence W is efficient. For arbitrary § C Q and arbitrary 7, jeS, i # Jj it is true

again because of corollary 1.3

(= 3 LAT

7|
Te2®
teT
and dito |
W (M) = TR AT
2o
Te2lv-1)
1eT
Therefore for the difference it is true that
l l
V0% = wm Ay — — Ay
) Lot o
Te2f Te2¥
1eT teT
. €T
1
Yy
2 1T
Te2*
1,3eT

and mutatis mutandis

1
AZEEDY m’\’?
Te2®

ijeT

(10)

A comparison between {10) and (11) completes the proof of existence. One still

has to show unigueness. Let ® be an arbitrary solution concept which is efficient

and preserves differences. Moreover let I' = ({2, v¢) be arbitrary, but fixed. Then

V;®,(T¥) = V;®;(T'%) for arbitrary S C © and arbitrary ¢, jeS, ¢ # j. Now one

sums up both sides over all je(5 — 7).

Y VT = Y Wieu(rd)

je(8—-1) je(S-1)

13



hence
’S‘(I’:(FS)* Z ¢1(TS_J):((1){1“3))(5*)_((I,(rqﬂ))(s_?)
JE[S—12)
and eventually because of effiency of ¢

1

Q%) = (w8 = vl S =)+ X @) (12)
5] je(S-1)
By induction one can see that ®;(I") = W, (™).
Ba;;is of induction. Let § € Q with |[S§] = 1 be arbitrary. thus § = {7} for

arbitrary ¢ € (1. then by corollary 1.3
QT = Ay = wy(IH)

Induction hypothesis. For arbitrary, but fixed neIN\{0}, n < |©}] Let ®{T*) =
V() for all S C Q with |[S] = n and all 7eS.

Induction step. n — n 4+ 1. Let $ C Q with |S]| = n + 1 be arbitrary. Then by

assumption it is true in equation (12) for arbitrary €S

orsy ¥ i( S oar— Y )
ol Te25\{#} Te2-14 {0}
1 1
+m Z Z mf\’r
7el

je(S—i)

Te=—1}

el

i |
+= (ST =111 747
|51 2 T
Tez2¥
T#S

1T

14



1 1
+ T T Tar | AT
2 (m m)
Te2s
T8
1eT
|
= —A
Z‘ Fi
Te2”
eT

W, (')

Thus @ is equal to the Shapley—Value W¥. O

The Shapley-Value can be uniquely characterized for fixed I' = (£, vg) on the
set (G(I'). Because I' is arbitrary, one has an axiomatization on the class of all
cooperative games. If one wishes to axiomatize the Shapley—Value directly on the
class of all cooperative games, then the demand on efficiency and preservation

of differences can be "weakened”.

Corollary 4.3 A solution concept & is equal to the Shapley Value V. if and

only if the following two properties are valid.
(1) VI = (v} (H(T)H) = o()
v(ii) VT = (Q.0) Ve, 70, 1 #£ 5 Vid; (') = V,,(I)

Proof. <" For every I' = (2, v) the Shapley-Value ¥ is efficent and preserves

differences by theorem 4.2 particularly for the grand coalition €.

"=" Let I' = (2, vp) be arbitrary, but fixed. Then every subgame I'*c¢G/(T') can

particularly be viewed as a new cooperative game. By assumption the efficiency

-

15



and preservation of differences are valid for I'®. a

In a slightly different way Hart and Mas-Colell® found the potential and the
preservation of differences. The efficiency property is binded in their definitions
of the potential. But if one wants fo have reasonable interpretations, one should
have the auxilary condition of effiency. The results coucerning the conservaty
and the physically interpretations arc essential and new. The many analoga to

physics are here really clear?.

5 Miszellaneum

Preservation of differences alone is not sufficient to uniquely characterize the
Shaplev—Value. The Banzhaf-Index is a solution concept for cooperative games
which is especially for simple games in parliaments very useful.’?. It is possi-
ble to characterize it uniquely by preservation of differences and an additional

constraint.!!

Definition 5.1 A solution concept = defined by

Q) = 2078y Wi (13)
with 6,(9) := Z v(T)—v(T —1) {11)
TCR
1eT

is called Banzhaf- Inder.

Definition 5.2 Let I' = (fl.vg) be arbitrary. but fired. A solution concept ®
contributes the marginalities, if for all 5 C Q it 15 true that

((I)(F‘?))(S') :2(1*\-5”2{)1.(‘5‘) (15)

=)

Sef. [1], [2]

Yof. appendix

et 8]

"'This thearem has independentiy been derived by A. Ostmann and P. Sudlidlter
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Theorem 5.3 A solution concept @ is equal to the Banzhaf~Inder =. if and

only if it contributes the marginalities and prescrrves differences.

Proof. =" Let I' = (2, v) be arbitrary, but fixed. The Banzhaf-Index con-

tributes the marginalities per definitionem. One still has to proof the preser-

vation of differences. For arbitrary § C € and 7,jeS, 7 # j it 1s true that
SATS) = Zy(T52) = 20710 (b,(S) — 2b,(S — 7)). Hence

bi(S)— 265 - §) =

(1) —o(T —1)
Yo w(T) = (T —1)
TC(5-5)

TCS TCS
ieT 1gT
JeT 1eT
- o(T) + o(T)
TCS TCS
teT igT
JeT jeT

Mutatis mutandis b;(S) — 26:,(S — ) = b;(S) — 2b;(§ — 7} and thus V;Z(I¥) =

V.Z,(T9).

17



<" Let T = (Q.vo) be an arbitrary. but fixed cooperative game and let
V;0:(0%) = Vi@, (T7) for all & € O and all 7.jeS. 7 # j. Then one sums
up both sides over all je(S — 7).
3 VeIt = Y Vie,(rT)

Je(5—1) J&{5-1)

therefrom
SO = Y @I = (B(I))(S) - (BTN - )
Je(5—1)

and eventually, because @ contributes the marginalities

A= S @ T) = STh(S) =2 3 b{S—0)+2 Y b(S—)

i€ jelS—i) se(S—1)

= Y+ > > w(T)y—u(T—3j)
je(5-1) TCS
jeT

-2 3 > (M) -e(T-7)
0 s

jeT

+2 > S w(T)—o(T 1)

P res-n

Jels=) s TCS
jeT €T
-2 v(T) +2 > o(T)
TCS TCS
7€T €T
igT 1T
#2030 o) -2 X u(1))
TCS TCS
1T i€l
ieT ieT



TCS TCS
7T JeT
= gl
- 3 Ty = Y ()
TCS TCS
7eT seT
ieT , ieT
-2 »(T) —2 v(T))
TCS TCS
jeT seT
ieT ieT
= WS+ Y ( S o) -~ 3 o(T)
) ey TCS
2T ieT
1T gl
LY T - % U(T))
TCS TCS
€T jeT
teT ieT
=0+ Y (T wn - % U(T)>
€= s TCS
ieT ieT
= b{S)+|S—i| Y. o(T)—v(T —7)
TCS
T
= [S]6:(5)

Thus &;(I'%) = 20-1¥0p,(8) = Z,(T'°) for arbitrary § C Q and ieS.

19



6 Consistency

The Shapley—Value can also be characterized on the family of cooperative games
where both the set of plavers Q0 and the characteristic function [ varies. Again
in this family there are games for which a solution is quite obvious, namely the
two person gafnes. The connection between the elements of this family 1s given

by a property which is called consistency.

| 6.1 The Reduced Game

Definition 6.1 Let [ = (v} be a cooperative game and let ® be a solution
concept. For arbitrary T C Q, T # § there is function v¥ : 27 — R defined by

vP(S) = v(SUT) = 30 & (SUTS vpsure) 1 (16)
1eTe

The tuple I'r = (T,v2) is called the reduced game with respect to T.

Remark. If @ is efficient, then one can simplify equation (16)

0} (8) =3 0 (S UT* vgusure)) (17)
el
Definition 6.2 A solution concept ® is consistent, if for every cooperative game

F'= (2, v) and every coalition T C 2, T # 0 it is true that

O(T,v3) = &;(Q,v)  VieT (18)

The reduced game for the Shapley--Value was found by Hart and Mas-Colell'®.
There i1s the following motivation. Let I' = (€, v) be a cooperative game and let
® be a solution concept. For every coaliton T' which is discontented with & one
can define a reduced game in the following sense. Every discontented coalition
S C T can play the subgame I'*“7° together with the contented players of T¢.
The worth of coalition S in this game is then (S U T°). The players in 7 have

129(Q, v) s short for (2, v))
tef. 1], [2] '



to be paid off according to ¢ because they always agree to the distribution. The
worth of the coalition § in the reduced game is then v(SUT<) — ($(IV1)(T<).
If & is efficient then this simplifies to (®{I“7")}(.5) which is exactly that what

. . . g <
S can obtain on his own in the subgame 47",

The solution concept @ is now called consistent, if it gives for every discon-
tented coalition T-C () the same pavofls to the plavers in T in the reduced game

I'r = (T,v}) as before in the original game [ = (2, v).

Definition 6.3 A solution concept ® is standard for two person games, if for

cvery coo-pe:raf.ivﬁ game I' = (Q,v) with || = 2 it is true thal

®(0.0) = v({i) + 5(e({i) — o) = o)) ViR (19)

6.2 Theorems

Hart and Mas-Coleil' have proofed the following two propositions by the use of
a potential. Here it is shown that one can do it by preservation of differences as

well which is little bit more elegant.

Proposition 6.4 The Shapley-Wert ¥ is standard for two person games and

consistent.

Proof. Let I' = (12, v) be a cooperalive game and ¥ the Shapley—Value. Then by
corollary 1.3 ¥ is standard for two person games. By induction on the cardinality
of the subsets of £ one can show the consistency in equation (18), because V¥ is

efficient by theorem 4.2.

Basis of induction. Let ieQ) be arbitrary and T = {i}. Then v}(@) = 0 and
v ({1}) = ¥;(2,v). Therefore per definitionem V(T vi) = Ui(R,v).

Induction hypothesis. For arbitrary, but fixed leIN\{0}, [ < |©] let equation
(18) be true for all T ¢ & with [T < L

et 1], [2)
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Induction step. { — {4+ 1. Let T'C £ be arbitrary with {T| = /4 1. By therorem

4.2 ¥ preserves differences, i.e., VW (0. v) = VW (Q. v) for all 2, €T

One sums up both sides over all je(T —1).

Z V(0 v) = Z Ve, (2, v)

je(T—1) 76(T=1)

hence

‘T|\111'(Q.1‘) = Z LD,(Q —] ?."-2(ﬂ-33)
je(T-i)
HUQ, )} (T) = (W(Q — o, vppa—o )T — 1)

Mutatis mutandis

|T[w (T 1’?) = Z Wi “T)|2£T-J)

1e(T—1)
(T )T

—{(W(T — i (v )= )T — 1)
Because of efficiency it is true that
(VT 00))(T) = vf (T) = (W(Q0)(T)
By assumption of induction follows

ITIW(T,vp) = 3 Wi — jivpa-n)

je(T—1)
W (Q,0))(T)
—(\p(ﬂ - ?..‘ ’L"z(sz_.))){T — 1')

A comparison between (20) aud (21) completes the proof.

i .

Proposition 6.5 Let ® be a solution concept which 1s standard for two person

games and consistent. Then @ is equal to the Shapley—Value .

Proof. By corollary 4.3 it is sufficient to show the efficienicy and preservation of

® only for the grand coalition. By induction over the cardinality of the grand

coalition one can show the effiency.



Basis of induction. Let [2] = 1. Consider the two person game ({z, ;3. 20} @),
where #({:}} = v({¢}) aud ©(S) = 0 otherwise. Then v = f?f{b:-} and hence
S(v) = o{i}.0%)
= (bz({l’]} i')
-

Also for [©2] = 2 ® is eficient because of the property of being standard.

Induction hypothesis. For arbitrary, but fixed neIN\ {0} let  be efficient for all
[ = (2, v) with |Q] < n.

Induction step. n = n+ 1. Let I' = (2, v} be an arbitrary cooperative game

with || = n + 1 and let e be arbitrary, then

(@)(Q) =T &) = S(Qo)+ T H(Q0)

tell 1efd-1
= &)+ Z (I)i('Q—l,vg_()
11—
o) +vd (-1
= Q)

The preservation of differences can be proofed by induction, too.

Basis of induction. For cooperative games [' = (Q,v) with players, ®(0, v}
is equal to ¥(£),v) by corollary 1.3 and hence preseves differences because of

theorem 4.2.

Induction hypothesis.. Let neIN\{0} be arbitrary, but fixed. Then ®(Q,v) pre-

- serves differences for every cooperative game I' = ({2, v) with || < n.

Induction step. n — n+ 1. Let ' = (2,v) be an arbitrary cooperative game
with [2] = n+1 > 3. By assumption of induction the preservation of differences

has only to be shown for §! and arbitrary 2, jef2. Let lef2, [ £ ¢, 7, then

B(0) — by v) = & (Q—1od)
—0, (- Lvd )
TRP IS
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Y (R S N A ey
= ¢ (Q —1—. (l‘|-zfﬂ—1!)((bn;z—g})

—, (=1, 20070, (Cppa)in s
= @, (0~ j.vpuen)

~®, (=i vpann)

Thus V;®(S. vps) = V,0(S,vps) for all I' = (2. v) and all SCQ eSSt # .
a

7 Appeﬁdix

Here the analoga belween game theory and physics can easily be seen on a table.
A force in plvsics cooresponds to solution concept in game theory. If the in-
tegrability condition respectively the preservation of differences is fulfilled then
there exists in both cases a potential. The different partial derivatives respec-
tively differences form the force respectively the solution concept. Conservative
forces are very important in physics. Examples are the graviational force, the
Coulomb force, the force of linear harmonic oszillator and so on. They 1mply
that the work is independent of the wayv. Similarly for conservative solution con-
cepts the expenditure is independent of the way. Eventually one can scarch for
an casy way to calculate the potential. It might be a task for future numerical
analysis to find for every game such a way and hence to give an algorithm for

computing the Shapley-Value.



Physics

Game Theory

f:R* — R" ¢ : G(I') — R
Ov; _ O V.0, (%) = V;@:(T*)
Vi.j:l,-j--,rz. VS C 8, VieS, 1 #
VR — R 3P :G(T) = R

grad V(r) = F(x)

VsP(IS) = &(I'%)

v :[a,8] — R" is a way

from @ to e if
e (o) = q(8)=¢

e ~ piecewise continously

differentiable

(S15000.50) Is a way

from 5, to S, if
L4 Sl = Sﬂ's Sn = Se

o Sy =5t

fpuymzo

for every closed way

n~-1

S 6k (15050 =g
1=1 i
for every closed way

a
[ Fen e d
Z V(e)— V(a)

independent of +

n-1

S8 @, (rSUsn)

=1

= P(S.) — P(S.)
independent of (51, +-,5,)

wm:]ﬂ@&
o
1s unique up to an

additive constant

P(8) = Z (I),-(l"{jES: jSi})
s
is unique up to an

additive constant
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