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Abstract

We formally investigate partial equilibrium in pure exchange economies with money. We
start by identifying the logical implications of the ceteris paribus assumption. Then we
define the partial equilibrium property (PEP) of a sector. Several characterizations of the
PEP for economies with differentiable utility functions are given in Section 3. The case of
ordinal utility functions is considered in Section 4. Section 5, the last section, is devoted
to an investigation of the continuity of the PEP. '



1 Introduction

‘The technique of partial equilibrium analysis of a single market is well known and widely
used in economics (see, e.g., Lipsey and Steiner (1972)). For a lucid exposition and an
historical survey of partial equilibrium analysis the reader is referred to Arrow and Hahn
(1971, Section 1.4). However, as far as we know, there is no attempt to formally integrate
partial equilibrium analysis into general equilibrium theory, that is, to find conditions
in terms of the utility functions and the production sets that render it applicable in the
Arrow-Debreu model of private ownership economy. This paper is a modest contribution

in this direction.

Before we embark on a formal investigation of partial equilibrium we should clarify the
logical implications of the ceteris paribus assumption. We quote from Lipsey and Steiner
(1972, p.406): “All partial-equilibrium analyses are based on the assumption of ceteris
paribus. Strictly interpreted, the assumption is that all other things in the economy are
unaffected by any changes in the sector under consideration”: In this work we restrict
the use of the ceteris paribus assumption to situations where the rest of the economy is
in equi]ibrium. Secondly, we decompose it into two complementary assumptions:

(i) The {prevailing) equilibriuin in the rest of the economy is not destroyed by any
changes in the sector.

(i) The equilibrium in the rest of the economy can be combined with any equilibrium
of the sector to yield an equilibrium of the entire economy.

Clearly, (i) follows from the foregoing interpretation of the ceteris paribus assumption.
And (i) precisely describes the use of the law of supply and demand in partial equilibrium
analysis. We further remark that if the utility functions are differentiable and strictly

concave, then (ii) implies (i).

Our approach is not completely general because we consider only pure exchange economies.

More precisely, most of our results are obtained for pure exchange economies with money

as modeled in Shapley and Shubik [1969]. We shall now describe our results. Let

L = {1, ,l} be the set of commodities in a Shapley-Shubik economy. A market is

simply a noﬁ—empty proper subset M of L. T = L\M is called the residual economy.

A market M has the partial equilibrium property (PEP) if the following conditions are
satisfied:

(i) Every competitive equilibrium in the residual economy is unaffected by reallocations

in the market."



(ii) Every competitive equilibrium of the residual economy can be completed to an equi-
librium for the entire economy by, simply, stabilizing the market.

1t is easily proved that if the utility functions of the traders are separable with respect to
- the partition ( M, T), then M has the PEP. Example 2.3 shows that separability is not a
necessary condition. In Section 3 we characterize the PEP under various assumptions on
the differentiability of the utility functions. If the utility functions are twice continuously
differentiable then our conditions take a very simple form. Let u!,...,u™ be the utility
functions of the traders. Then the mixed derivatives Bmitgzh’ jeMheTi=1,..,n,
must vanish on a certain subset of the set of all feasible allocations which is determined by

the equilibria of the residual economy. Notice that the foregoing mixed derivatives vanish
everywhere if and only if !, ..., u™ are separable with respect to the partition ( M, T).

In Section 4 we. consider the possibility of extending our results to pure exchange economies
with nontransferable utilities. Finally, in Section 5, we investigate the approximate PEP.
We find that the PEP is very robust.



2 Partial' Equilibrium in Economies with Transfer-
able Utilities

Let N = {1,..,n} be the set of traders and let R/, be the commodity space. A pure
exchange economy with transferable utilities (TU) (see Shapley and Shubik [1969, p.13]) -
is a 2n-tuple E = < w},...,w™u!,...,u™ > (where w' € R is the initial endowment of
trader i and u¢ : R, — R is her utility function), that satisfies the following assumptions:

' is concave for i € N. (2.1)

' is continuous for ¢ € N. (2.2)

w=w'4..+w>>0(fz€Rthenz>>0ifz; >0,j=1,..,0). (2.3

Let E = < w!,...,w™u',..,u™ > be an economy. Actually, there is a more detailed
presentation of £ when money is introduced explicitly. Let E,, be the economy E with
money. Then E,, = < @', ..., @%@, ...,4" > where @' = < wi,m’ >€ R, x R, and
@ : R, x R — R satisfies @(z,m) = ui(z) + m for all i € N. There is no need to
introduce money explicitly in the sequel. :

Let E = < w), ..., w™u',...,u" > be a TU economy. x = < z},...,2" > is a feasible
allocation for E if z* € R, foralli € N, and i z* = w. The set of all feasible allocations
for E is denoted by 4 = A(w). A competitivé_elquilibrium (c.e.) for E is a pair (x,p) that
satisfies the following conditions:

%€ A(w) and p € R - (24)

uH(@) — p. > vi(z) —pa forallz € R, and i € N. (2.5)

If (%,p) is a c.e., then X is called a competitive allocation (c.a.).

i=1

n L, N _ - _ . .
Denote U(z!,...,z") = Y u*(z*) for 2* € R’+,i € N. Then x = <z',...,Z"> is a c.a. iff

kxcargmax U(x) (2.6)
x€A(w) :

(see Shapley and Shubik [1969, p.14]).

We begin our study of partial equilibrium by describing the possible submarkets of the
economy E. Denote by L = {1, ...,} the set of all commodities. A (proper) submarket of



Lis asubset M C L, with M # 0, L. Let M be a submarket and let T = L\M. If z € R'
then z,s denotes the restriction of z to M; if x = <zt ...,z" >€ R™ is an allocation, then -
Xpr =< Thy, o, Thy >. Also

Alwpr) = {xp =< @3y, -, oy >| 7 € RY fori € N and Yz = war}. (2.7)

i=1
Similar notations apply to the set 7'

Now let yar € A{war). The restricted economy Er(yas) is defined by

Er(yuy) = < why oy wlsul (-, 43,), o 0 (5 yy) > (2.8)

Clearly, Er(yas) satisfies our Assumptions (2'.-1) - (2.3). Thus, X7 is a c.a. of Er(yn) iff

Xr € argmax U{xr,¥u) | (2.9)
XTEA(‘WT)

Also, similarly, each xr € A(wy) defines a restricted economy

Bu(xr) = < whyy oy Wi v (2, ), oy u™ (2, 1) > (2.10)

It is now possible to discuss partial equilibrium.

" Let yar € A(wyr). Then we can choose a c.e. (xr,pr) of Er(yu), and consequently a
c.e. (xp,pum) of Ep(xr). M has the partial equilibrium property if it is always true that
((x7,%Xpm), (b, Pmr)) is & c.e. of E, and, conversely, if (x,p) is a c.e. of E, then (xr,pr) is
a c.e. of Ep(yp). (Notice that if (x,p) is a c.e. of E, then (xa,pa) is a c.e. of Ep(xr)
by our definitions.) Formally, we introduce the following definition.

Definition 2.1 The submarket M has the partial equilibrium property (PEP) if for every
yum € A(wyr) and every pair (x,p), where x € A(w) and p € R, the following conditions
are satisfied.

If (x,p) is ace. of E, then (xr,pr) is a c.e. of Ep(yum). (2.11)

If (x7,pr) is a c.e. of Er(ym) and (X, par) is a ce. of Ep(x7), (2.12)

then (x,p) is a ce. of E.

(2.11) stipulates that the stability of the residual market T is not affected by reallocations
in M: The restriction of a ce. of E to T is a c.e. of Er(yu) for every allocation
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var € Alwy). (2.12) is the converse of (2.11): If T is stabilized with respect to (w.r.t.)
an arbitrary allocation yas in A(wpy), and after that M is stabilized w.r.t. the c.a. in T,
then the combined result is a c.e. in E. It is our view that definition 2.1 is suitable for
the classical partial equilibrium analysis in economics because it allows us to stabilize M
without destroying an a]ready stable situation in 7. The relationship between (2.11) and

(2.12) is discussed in the Appendix. |
If the utility functions of the traders are seﬁamble wrt. M , then M has the PEP.
Theorem 2.2 If for each i € N there ezist functions ui,j = 1,2,4} : RT — R and
- uy: RM — R, such that

ui(z) = vl (x7) +ub(zpy) for allz € RL | (2.13)
then M has the PEP.

Proof: First notice that by (2.13) u},z‘ € N, j- = 1,2, are continuous and concave.
Now let yu € A(wy),x € A(w) and p € RY. If (x,p) is a ce. of E then, by (2.5),
w(a') —p-zi > u(z) —p-zforall z € R, and i € N. By (2.13)

ul(zh) — przh > u‘l(mT) —pp-apforall 27 € RT andi € N (2.14)
Because xr € A(wy), (2.14) implies that (xr,pr) is a c.e. of Er(yum)- Thﬁs, (2.11) has |
been proved.

Cdnversely, assume that (x7,pr) is a c.e. of Er(ys) and (Xp,pu) is a ce. of Ep(xr).
Then (2.14) holds and also

wh(zh,) — par - Top > ub(Tar) — par - 2y for all 2y € RY and i € N. (2.15)

Hence, by (2.13) - (2.15), (x,p) is a c.e. of E. Thus, (2.12) has been proved. Q.E.D.

Condition (2.13) is not necessary for the PEP as is shown by the following example.

Example 2.3 Let N = {1,2},1 = 2,w' = w? = (1,1),u}(z1,72) = 2z1 + 239, and
u?(zy1,z2) = min(zy, z2). If M = {1} (i.e., the submarket M consists of the first commod-
ity), then M has the PEP. Indeed, the foregoing economy E has a unique c.e. (x,p) =
(((2,2),(0,0)), (2,2)). Also, if yur € Alwas) then the restricted economy Ep(ya) = <
1,1; 235+ 2y}, min(z2, y3) > has ¢ unique equilibrium ((2,0),2). Similarly ((2,0),2) is the
unique c.e. of every restricted economy En(x7), where xr € A(wr). Thus, (2.11) and
(2.12) are satisfied. Finally, u*(2,,%2) = min(z,, z2) 15 not separable.
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We conclude with the following lemma.

Lemma 2.4 Assume that M has the PEP and let yar € A(wa). If (%7,p7) is a c.e. of
Er(yun), then (x7,pr) a c.e. of BEr(zp) for every zar € A(way). ‘

Proof: If (xp,pa) is a ce. of Ey(Xr), then, by (2.12), ((xr, X}, (Pr,Pn)) is a ce. of
E. Thus, by (2.11) (xr,pr) is a c.e. of Er(zy) for every zy € A(wp). Q.E.D.



3 Characterizations of the PEP when the Utility Func-

tions are Differentiable

Let E = < w!, ..., w™ ul,.... 4" > be a TU economy that satisfies (2.1) - (2.3). If u!, ..., u"
are differentiable on R , then several characterizations of the PEP are possible. Thus,
we introduce the following assumption.

2‘ -

is continuous on Rﬁ_ fori=1,...,n,and j=1,..,L (3.1)

oz

We first recall the price characterization of c.a.’s.

Lemma 3.1 x€ A{w) is a c.a. of E iff the following conditions are satisfied.

. out . Out . |
>0 — -8%(::,- ) > a—;(ﬂ:k),z,k =L j=1,.,¢0 (3.2)
1 7

Proof: Necessity. If x is a c.a., then there exists a price vector p € Rf such that for every
ieEN :

w(Z) —p. > ui(z) — px for all z € RE . (3.3)
If #;> O then, by (3.3), p; = 25(&"). Also, if Z;= 0 then p; > g:-;?(:z"). Thus, (3.2) has

2
amj

been proved.

Sufficiency. Assume for an allocation € A(w) that (3.2) is satisfied. For every 1 < j < ¢
there exists an i € N such that ;> 0 (see (2.3)). Hence, we may define p; = 24(z").
. f]

Because v’ is concave
ui(z) — v (Z) < grad wi(3).(z— ) < p.(z— 5*) for all z € RE.

(here grad u'(Z') =< %g(:?), %(i‘) >). Thus, by definition, X is a c.a. Q.E.D.

An allocation x € R is interior if 2} > 0 for i = 1,..,n and j = 1,...,£. Under the
following assumption we obtain a simple characterization of c.a.’s.

H

is continuous on B, forie Nand j€ L, (3.4)

]
and every c.a. of E is interior (here RS, = {z € R*|z >> 0}).



Corollary 3.2 If (8.4) is true, then X€ A(w) is a c.a. iff X is interior and

i 1 '
g;‘;. (') = %(.’El) forie N andj€ L. (3.5)
3 J

Now let M € L M +# 0,L, and T = L\M. The following theorem is a consequence of
Lemma 3.1.

Theorem 3.3 If E satisfies (3.1) then M has the PEP iff for every jM € A(wy) and
every c.a. Xy of Ep(ya) the following conditions are satisfied:

- (z,y )= (:1:’“,z)zf:c>0 |
> 0= DM bep M i,k € N,j €T,z € Alwy)  (3.6)

'g%(@;‘ay}w) 2 'glk'(stzM) ’I,f.’L' =0

Proof: Necessity. Assume that M has the PEP and let X1 be a c.a. of Er(yys), where
¥ is in A(wys). There exists pr € RT such that (X7, pr) is a c.e. of Er(yy). By Lemma
2.4 (Xr,pr) is a c.e. of Ep(zy) for every zy € A(wy). Hence (3.2) implies (3.6).

Sufficiency. Let yur € A{wys), X€ A(w) and p € RY. Assume first that (Xz, pr) is a ce.
of Er(ya) and (iM,pM) is a c.e. of Ep{Xr). Then, by (3.2)

i auF
x>0———>6“(;«,yM)_ GarEh k) ik e Nand jeT. (3.
O Ox
; Bu'i —3 3uk —k - ‘ '
> 0= () > z5E&"),s,ke Nand je M. (3.8)
7 oz} B:I:;-“ |
By (3.6) and (3.7)
i k - ;
z s 0= gui(")2%(£k),i,k€Nandj€T. . (3.9)

7

Clearly, (3.8) and (3.9} imply (3.2). Thus (X,p) is a c.e. of E. Therefore, (2.12) has been
proved.

Assume now that (X,p) is a c.e. of E. Then (3.9) is true. By (3.6), (3.7) is true. Thus,
(x7,pr) is a c.e. of Er(ya). Therefore, (2.11) has been proved. Q.E.D.

We proceed to find a characterization of PEP under the following stronger conditions.

If yir € A(wy) then every c.a. X of Er (ya) is interior (3.10)

K

(e, 35 > Ofori€ Nand j€T).
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Corollary 3.4 If E satisfies (3.1) and.(3.10), then M has the PEP iff for every yar in
A(wy) and every c.a. X7 of Er(ym) the following conditions are satisfied:

au‘ -1 ‘l auk -k k . . ’
ﬁ(wT,yM) = an-g(a:T,zM), i,ke N,j €T and zy € A{lwar). (3.11)
* _

J

We now add the following assumption.

a?ui . 62 ’Ufi
a:L' b a:L' h oz j oz h

zy =2 0,ieN,jeT, and he M.

(zp,zp) is continuous for zp >> 0, (3.12)

Corollary 3.5 Assume (3.1), (3.10), and (8.12). Then M has the PEP iff for every
yum € A(wy) and every c.a. Xy of Er(yun) the following conditions are satisfied:

2,1 ) .
O ) =0forieN, jET, he M and0 < z < wy. 3.13
dxifzi T

2 .

Proof: Necessity. (3.6) and (3.10) imply (3.11). (3.10) - (3.12) yield (3.13).

Sufficiency. Let yar € A(wyr) and let X7 be a c.a. .of Er(ya). (3.13) implies

?ii :?:},yh):ia—i%(:f},z) forie N,j €T and 0 < z < wyy. (3.14)

Because Zr is an interior c.a. of Er(yas), the following conditions are satisfied.

a’u:i —i i auk - . .
EE(xT,yM) = E;J,;(;ac;i,yj:l) fori,k€ N, and j €T, (?,.15)
Clearly, (3.14) and (3.15) imply (3.11). : ' _ Q.E.D.

We now make the following assumption:

E has a unique c.a. X (3.16)
Under (3.16) we obtain a simpler characterization of the PEP.

Theorem 3.6 Assume (3.1) and (3.16). Then M has the PEP if for every yu € A{wyy)
and every c.e. {X7,pr) of Er (yu) there ezist Xpr€ A(war) and pyr € RM such (X, Xnr

), (pT,pa)) s a c.e. of E.
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Proof: Let yyr € A(wM),ie A(w), and p € RY. Assume first that (Xr,pr) is a c.e. of
Er(yy) and (Xpr,pa) is a c.e. of Ep(Xr). By our assumption there exist zp € A(war)
and gy € RM such that ((Xr,2u), (pr,qm)) is a ce. of E. By (3.16), Xp= Xr and
zZy = Xpr. Thus, (X1,'pr) is a c.e. of Er(%y). Also, (ar,pa1) is a c.e. of Ep(Xr). Hence
Xar= %pr and ((Xr, Xpr), (pr,pum)) Is the ce. of E (by (2.3) and (3.1) each c.a. determines
its vector of competitive prices). Thus, (2.12) has been proved.

Now assume that (Z,p) is the c.e. of E. Then Xr= Xr. We claim that (Xr,pr) is the
c.e. of Er(ya). Indeed, assume on the contrary that (zr,qr) is a c.a. of Er{yy) and
(z7,9r) # (Xr,pr). By our assumption there exists zy; € A(wy) and gu € RM guch that
((zr,2Znm), (gr,qp)) is the c.e. of E. As (z7,qr) # (X7, pr), the des1red contradiction has
been obtained. Thus, (2.11) has been proved. Q.E.D.

The following assumption implies (3.16).

u* is strictly concave on R} fori € N (3.17)
(3.17) enables us to obtain the following direct characterization of PEP.

Theorem 3.7 Assume (3.1), and (3.17). Then M has the PEP iff

i k
T > 0= g:: (T, ) = guk 2k, k) fori, ke N,jeT, and yu,Zym € Alwar) (3.}8)

i
Proof: Necessity. Clearly, Tr is a c.a. of Ep(yum) for every yu € A{war) (see Lemma
2.4). Hence, (3.6) implies (3.18).

Sufficiency. Let yar € A(wp). By (3.18)
Ot ‘ ouk
>0=>8:E (mT’yM)Za k( T:yM):ZkENa‘ndJET (3.19)

3

Hence, by Lemma 3.1 %r is a c.a. of Ep(ys). By (3.17) Xr is the unique c.a. of
Er(ya) (see (2.9)). If pr is the price vector which is associated with X7, then (for j € T')

pj = M(zT,yM) for all i such that % > 0. By (3.18), p; = “ 24(2*) for all 4 such that
z; >0 (for j € T). Thus, (xT,pT) can be extended to the c.e. (:’E,p) of E. By Theorem
3. 6 M has the PEP. : Q.E.D.

Finally, we characterize the PEP for strictly concave and twice continuously differentiable
utility functions when the c.a. is interior.
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Theorem 3.8 Assume (3.12), (3.17), ande >> 0 (herex is the unique c.a. of E). Then M
has the PEP iff
o
Oz} 0},

5,2)=0foric N,j€ET,h€ M, and 0 < z < wy,. (3.20)

Proof: Necessity. If M has the PEP, then (3.18) implies (3. 20) because of (3. 12) and
XT >> 0. -

i

Sufficiency. By (3.20) g"‘ (&) = 2%

Xr is an interior c.a. of ET(E ) g du () = g—g( z*) for i,k € N and j € T. Hence (3.18)
is satisfied. Q.E.D.

(Zh,z)fori e N, j €T, and 0 € z < wyy. Because

\...-
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4 Partial Equilibrium in Pure Exchange Economies
With Nontransferable Utilities

Let E =< w!,..,w";ul,..,u™ > be a pure exchange economy with non-transferable
utilities (NTU). In this section we make the following assumptions.

u': R% — R is quasi-concave for i € N (4.1)

-4 is strictly increasing on R: for all i€EN (4.2)

u' is continuous for i € N. _ (4.3)

w'#£0forallie Nandw=>3 w' >>0. (4.4)
i

Let M Cc L =1{1,..,¢}, with M # L0, and T = L\M. In this section we will always
assume that both M and T have at least two members. Let yur € A(wys) and 67 € RY.
We define the restricted economy with transfer b7, Er(ya, 6r), as follows. The initial
endowment of trader i in Er(yar, 67} is wh, and her utility function is u*(-,%%,). In
addition i must transfer the amount 6% of income from the residual market T to the
submarket M (all price vectors are normalized such that the sum of the coordinates is 1).
If xr € A{wr) and 6y € RN then Ep(xr, 6y ) is defined similarly. Let yp; € A(wsr) and
br € RN, (xp,Pr) is a compet'itivre equilibrium (c.e.) of Ep(y, b7) if

%xr€ Alwr) and > D;=1. (4.5)
€T
Foreachz € N
Fne argmax u'{(zh,yhy) (4.6)

:L',':-'!-.EB‘.(]'_JT,GS"A)

where Bi(Pr, 65) = {24 € RY |Pr -a% <Pr -wh — 6%}

For the sake of completeness we recall that (X, D) is a c.e. of E if

£
%€ A(w) and > P;=1 (4.7)
J=1
For each i € N #'¢ arg max u(z’) (4.8)
=ie B (p,0)

By Assumptions (4.1) - (4.4) E has at least one c.e.. Also, if (X,P) is a c.e. of E, then
I_’j> Ofor j=1,..,¢

14



We now are able to discuss the PEP for NTU economies. As far as we can see only a
weaker notion (as compared to Definition 2.1) is definable here. First we introduce some
notations.

Let (X,P) be a c.e. of E. We denote a(P) =3 P; . Clearly 0 < «(P) < 1. Thus
' S jer

pr =Pr / o(P) and pa; = par/ (1 — a(p)) are well defined normalized price vectors. Also we
denote 8% = pr.whk — Br.ak and 6y = Pa.why — Pum. &3 for ¢ € N, and by 67 and Spthe
corresponding vectors. We claim that a(P)ér + (1 — a(P))6y = 0. Indeed

a(p) [Prwk — br- E7] + (1 — a(B)) [Bur-wiy — Par- ) =
Pr awb— Bp . &h + DPag whg— Par . Tyy=P w'= B . Z'=0forallie N

Everything has been prepared for the following definition.

Definition 4.1 The submarket M has the weak PEP (WPEP) if for every yp € A(wum), yur >>
0pr, and for every c.e. (X,D) of E, the following condition is satisfied '

(Xr,Pr) is a c.e. of Ep(ym,6r) (4.9)
Notice that it is always true that (Z,s,Pa) is a c.e. of EM(iT,ﬁM). Intuitively, (4.9)
means that no reallocation ys in the submarket M, that may result in a disequilibrium

in M, affects the equilibrium situation in the residual economy Er(yu,67). Thus, the
residual economy remains in equilibrium till the market M returns to equilibrium.

In order to characterize WPEP we make the following assumptions. -

Every c.c. of E is interior. (4.10)

(4.10) is guaranteed, for example, by the following condition.

' is interior, that is, if x € RY,,y € Rﬂ, and (4.11)

y; = 0 for some j, then u'(z) > u‘;(y)
The second assumption is:

2, _
—g;:;ﬂ is continuous on Ri+ for'i =1,..,n,5,h=1,..,L ‘(4.12)

We have prepared everything for the formulation of the following Theorem.
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" Theorem 4.2 The market M has the WPEP if for each c.e. (X,P) of E the following

conditions are satisfied:
au" -3 i - aui . .
-a'_m_g(anyM)/pj = axg ( T:yM)/pka j,kET,ZEN, (413)
end 0 < < y}w < wypy

For every i € N the Hessian of the Lagrangian
(5, 2) = (b, i) — Alpravh — 65 — r.ci] (414)

is negative definite at i, subject to the constraint fr.z5 = 0, for all values of the parameter
0 << yiy < wp
Proof: For i € N &;,¢ argmax u'(zh,yl,) if (4.13) and (4.14) are satlsﬁed Because

e B (Pr.6%.)
xr € A(wr), (4.9) is satisfied. Q.E.D.

Remark 4.3 Clearly, if M has the WPEP then ({.18) holds and L*(z%, A} has a negative
semi-definite Hessian at T, subject to the constraint p pT 20 =0. WPEP can be somewhat

strengthened in the followmg way.

Definition 4.4 The submarket M has the PEP if

M has the WPEP. (4.15)

For each c.e. (X,P) of E and for each c.e. (4.16)
(344, D) Of Epe{Xr, 6ar) the pair ((Xr X)), D) is a c.e. of E, where
7 = (1—aP)(0r,ph) + a(P)(Pr,0um).

(4.16) has the following interpretation. If after a perturbation the market M is stabilized
at a new equilibrium (x},,p},) (and not at the old c.e. of Ey(Xr,8p), (Tar,Par)), then
the new situation ((Xr,z},),P) is also a c.e. of E.

Unfortunately, we do not know how to characterize PEP for NTU economies.
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5 Approximation of TU Pure Exchange Economies
with the PEP

We consider the following class of economies

E={E|E=<uw, . ,u"ul, .. ,u" >}

where
iw".<< (K,...,K)€ R, andw'>>0foralli € N; (5.1)
i=1
u* is strictly concave for i € N; | (5.2)
8:1:; is cont?inuous on R foralli€ Nandje€L (5.3)

Further let E =< w!, .., w™ul;..,u" > yu € A(wy), and xr € A(wr). Then, by (5.2)
each of the economies E, Er(yar), and Ejys(xy) has a unique c.a..

Qur last assumption is

For all E =< w!, .., w™ul, ...u™ > in &, yu € Alwn), (5.4)

and xf € A(wr) the c.a. of each of the economies F, Er(yu), and Ep(xr) is interior.

Let again F € £. By (5.2), (5.3), and (5.4) E has a unique c.e. (x,p) which we shall
denote by (x(FE),p(E)). Every restricted economy that will be considered will also have
a unique c.e. which will be denoted similarly.

We shall use the following metric d on £.

1

] —_ 1 n. .1 — 1 n.
Let E =< w', ..., w™u, ..., u” > and B, =< w,, ..., WU, .

,u? > be members of £.
Then '

d(B, E,) =max [|| w* - w, ||, max | v'(z) — w(a) || (5-9)
<ign 0<z<K :

where ff = (K, ..., K). It is now possible to formulate and prove the following continuity
result in our model. -

Lemma 5.1 IfE(k), k= 1,2,.., end E are in &, and d(E(k), E) — 0, then x(E(k)) — x(E)
and p(E(k)) — p(E) |
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Proof: We first prove that x(E(k)) — x(E). By (5.1) the sequence (x(E(k)) is bounded.
Let (x(E(k;))) be a convergent subsequence of (x(E(k))). We have to prove that x(E(k;)) —
x(FE). Assume, on the contrary, that x(E(k;)) — y and y # x(E). Because x(E(k;)) €
A(w(E(k;)), 7 = 1,2,...,y € Alw). (If £ € £, E =< wl, ..., whul,...,u" >, then we
shall denote, if necessary for clarity, w* = w'(E) and u* = »*(F),i = 1,...,n.). Because
y # x(E) and (5.2)

Y ui(a(E)) > v (yY) ' (5.6)
= - i=1
'Denote E(k;) = E(j) =< @}, ..., W &}, .., B2 >, 5 = 1,2, ... and define z; € R} by
i Win i . _
Zp = wh(JE)mh(E)’z =1,..,nh= 1., ey .

Clearly, z; € A(W;),j = 1,2,... and z; — x(E). By (5.5) (@) converges uniformly to

u*,i =1, ...,n. Therefore

N T (2) Y i (EH(E)) ' (5.7)

i=1 i=1 .

From (5.6) and (5.7) we obtain that, for j sufficiently large > i (23) >3 W(HEG))),
i=1 i=1

which is the desired contradiction.

We shall now prove that p(E(k)) — p(F). By (5.4) x(E) is interior. Therefore there
exists € > 0 such that

B={x=<2a!,.,z" > R¥|| ' —2(E) ||<e,i=1,..,n} C R},
Clearly, x(E(k)) € B for k sufficiently large, and x(E(k)) — x(E) as we have already
proved. By (5.3) and (5.4) p(E(k)) = grad ui(z'(E(k)}), where uj = v (E(k)),k = 1,2, ...

By Rockafellar [1970, Theorem 25.7], grad ui converges uniformly on By = {z' € R% |
there exists x =< z!,z2,...,z" >€ B} to grad u'. Hence, p(E(k)) — p(E). Q.E.D.

Let E € £ and let ¢ > 0. x € A(w) is an e-approzimate c.a. of E if || x — x(E) ||< e.
Let x € A(w) and 6 > 0. z is a 6-c.a. of E if there exists p € R’ such that

ui(zf) —pa' > u(z) —pz—§forallic Nandz € RE. (5.8)

In our model approximate c.a.’s are almost competitive. More precisely,

18



Lemma 5.2 Let E € £. For every 6 > 0 there exists € > 0 such that every e- approzimate

c.a. of E is a b-c.a.

Proof: Let § > 0. Denote p = p(E) and 5& = x(F). There exists £ > 0 such that if
x € A(w) and || x— X [|< € then Z ui(z?) >Z 4} (%) — 6. Now let x be an g-approximate

equilibrium. We claim that the pa,lr (x,p) sa.tlsﬁes (5.8). Indeed, assume on the contrary,
that there exist i € N and = € R¢ such that

w(z') —pa' <ui(z)—pz—6 (5.9)
(5.9) implies

ui(z)) — pat < u'(®) = pF -6 (5.10)
Also, for every h € N\{i}

u®(z") — p.a® < uf(F*) — p.3* (5.11)

(5.10) and (5.11) iniply that i ut(z?) <E u*(Z') — 8, which is the desired contradlctlon
=1
Q.E.D.

We are now able to define approximate PEP.

Definition 5.3 Let E € £ and let € > 0. M has the e-PEP w.r.t. E if for all-yM €
A(wy) and all x € A{w) the following conditions are satisfied.

If x is a c.a. of E, then X7 is an s—a.pproximaté c.a. of Er(yu). (5.12)
If xr is a c.a. of Ep(y), and x, is a c.a. of Ey(xr), (5.13)
"thenx = (Xr,Xp) is an e-approximate c.a. of E.

Qur first result shows that the PEP is approximately robust.

Theorem 5.4 Let E € € , let M has the PEP w.r.t. F, and let € > 0. Then there exists
& > 0 such that if E, € € and d(E,, E} < 6, then M has the e-PEP w.r.i. E..
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Proof: Assume, on the contrary, that there exists a sequence E(k) € £,k = 1,2, ..., such |
that d(E, E(k)) — 0 and M does not have the e-PEP w.r.t. E(k). We have to distinguish
the following two possibilities. '

There exist sequences . (5.14)
E(k;),j = 1,2,.. and yu(k;) € A(wpm(E(k;))) such that
 xr(E(k;)) is not an e-approximate c.a. of
Erlym(k;),j = 1,2,..

In order to simplify our notations we shall assume k; = 4,4 =1,2,... and yar(§) = yur-
By our assumptions Er(ya(j)) — Er{yum). Let x = x(E). Then xr is the c.a. of Br(ya)
because M has the PEP w.r.t. E. By Lemma 5.1 x¢(E(j)) — xr and xr(Er(ym{j))) —
xr. Hence, xr(E(5)) — xr(Er(yn(7))) — 0, which is the desired contradiction.

There exist sequences E(k;) and | (5.15)
YMUCJ) € A(WM(E(kJ))),j = 1,2, ...such that
(xr(Er(yar(k;))), %p (Ena (xr(Er (v (k5)))))

is not an e-approximate c.a. of
E(k;),7 = 1,2,...

Again, we simplify our notations by assuming k; = 7,7 = 1,2, ..., and ym(k;) — yu. Then
xr(Er(ym(5))) — xr(Er(ym)) by Lemma 5.1. Denote xr(j) = xp(Er(yn(j))),J =

1,2,... Then, again by Lemma 5.1, xp(Enr(x7(5))) — xp(Em(xr(Er(yn)))). Because
M has the PEP w.rt. I :

(xr(Er(ym)) xum(En(xr(Er(yn))))) = x(E).

Hence

(x(5), %0 (Enm(x1(5)))) — %(E(5)) — 0

because x({F(j)) — x(E) by Lemma 5.1. Thus, the desired contradiction has been ob-
tained. Q.E.D.

Our final result is an approximation theorem for the PEP. Its precise formulation is as
follows.
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Theorem 5.5 Let E€ £ and M C LM # L,0. If B(k) € £,k =1,2,...,d(E(k), E) —
0, M has the ¢(k)-PEP w.r.t. E(k), and e(k) — 0, then M has the PEP w.r.t. E.
Proof: Lét vu € A(wy) and x = x(F). By Remark A.2 we only have to prove -

(xr(Er(ym)) xm(Ep(xr(Er(ya))))) = x(E) (5.16)

Define y(k) by

; wp(E(k)) ;. .
Vi (k) = -:fh—(l(g)l)-ym,z =1,..,mhe€Mk=12,..

Clearly, yam(k) — yum. Therefore, by (5.5), Er(k){(ym(k}) — Er(ym). Denote xr(k) =
x7{Er(k)(ym(k))). Then, by Lemma 5.1, xr(k) — x7(Er(ya)). Hence, also
Xpr(En (k) (x7(K))) = xm (Bt (x2(Br(y )

By our assumptions x(E(k)) — x(E) and || (xr(k),xm(En(k)(xr(k))) — x(E(k)) ||<
e(k),k=1,2,.. :

Therefore (5.16} is true. Q.E.D.
Remark 5.6 The first part of Assumption (5.1} is not essential for the results of this -
section. However, it enables us to use Definition (5.5) which allows relatively uncompli-

cated proofs. Clearly, (5.1) does not restrict the applicability of our results. Hence we
adopt it. '
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A Appendix: The Independence of (2.11) and (2.12)

We now show by means of an example that (2.12) does not imply (2.11).

Example A.1 Let E =< w', w?;u!,v? > where w! = w? = (1,1),u!(z1, z2) = min(zy, 25, 1),
and u3(x1,z9) = (21 + 22)/2. The set of c.e.’s of E is given by

(@0, 2~152-8),(5) [0t <1

Let M = {1}. If yar = (4}, 9?) € A(wn), then

Let yy € A(wyy) satisfy 0 < ¢1 < 1.If (x,p) isace., (x,p) = (((t,t), (2-t,2-1)),(3,1)
and t # y}, then (xg,pr) = ((t,2—t), ) is not a c.e. of Er(yn)- Thus, (2.11) is violated.

Now let yar = (v1,74%) € A(wy). The ce. of Ex(ym) is (xr,pr) = (1,2 — ¢), 1), where
t = min(yl,1). Also, Ey(xr) =< 1,1;min(z,1),% + 1 — £ >. Hence, its c.e. is given
by (xar,par) = ((£,2 — t), 3). Clearly, ((xa,%1), (pM,pT)) is a c.e. of F. Thus, (2.12) is
satisfied.

Remark A.2 Let E =< w!, ..., w™ul, ..., u™ > satisfy (3.1) and (3.16) (i.e., ul,...,u"
are differentiable and E has a unigue c.a.). Then, by Theorem 3.6, (2.12) implies (2.11).
All our results, except Theorem 8.8 and its Corollaries, are obtained under Assumptions
(8.1) and (3.16).

The next example shows that (2.11) does not imply (2.12).

Example A.3 Let E =< w',w?ul,u? > where w! = v* = (1,1) and v'(zy,22) =

u*(z1, ) = min[—(z; — 1)%, — (22 — 1)%]. The c.e. is given by (((1,1),(1,1)},(0,0)). Let
M ={1}. Ifyn = (v1,3?) is in A(wy), then

Er(ym) =< 1, Limin{—(zz — 1), — (31 — 1)*], min[—(z2 — 1)*, - (y7 - 1)*} >

Clearly, (1,1;0) is a c.e. of Br(yas). Thus, (2.11) is satisfied. As the reader may easily
verify (2.12) is violated.
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