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1 Introduction

We concern ourselves with games in which there are at least two states of
nature and at least one player does know the state of nature at the start
of the repeated game. Unlike stochastic games, the state of nature can not
change during the course of the repeated game, though the knowledge of the
players concerning the state of nature may change. The payoffs to the players
at each stage are not progressively discounted, so that the limit properties
of the averages of the payoffs up to finite stages must be considered.

In the model presented here all knowledge learned about the state of
nature or about what the other players have done will be deterministic. There
are important aspects of learning from signals that are not considered here;
this author’s goal is to present the topic in its maximal simplicity. Repeated
games with more than two players also will not be considered.

This author has chosen to concentrate on the pioneer work in questions of
equilibrium existence, including some contemporary open questions. In this
article only a tiny fraction of all the superb results in the field of repeated
games are mentioned.

The interested reader could consult the earlier survey article by Aumann
(1985), the new book Repeated Games by Mertens, Sorin, and Zamir (1994},
The Handbook of Game Theory, (Aumann and Hart, Eds., 1992}, or the new
- book Hepeated Games of Incomplete Information by Aumann and Maschler

- (1995), with the colaboration of R. Stearns.

2 The model

Let K = {1,2,...,n}. and let p = (p;,-*+,px) € A(K) be a probability
distribution on the set K. Let [ and J be finite index sets for the pure
actions of players one and two, of cardinality m, and m, respectively. Let
{A*¥ | k € K} and {B* | k € K} be m; x m, real matrices representing the
payoffs to the players in all stages of play, with A*(z,j) and B*(7, ;) being
the payoffs to Player One and Player Two, respectively, when Player One
chooses ¢ € I and Player Two chooses j € J.

. The information structure of the repeated game is given by two families
of partitions {P* | i € I} of J x K and {Q’ | j € J} of I x K with an
additional pair of partitions P° of K and Q° of K. The partitions P° and
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QO represent the initial knowledge of Players One and Two, respectively, on
the stdtes of nature k € K, and the partitions {P* | : € I} and {Q’ | j € J}
represent what knowledge the players learn from their actions about the state
of nature and the actions of their opponents. .

If P is a partition of a set § and z € S then P(z) will be the member
of P containing x. If S is a finite set, s € S, and p € A(S), then p, is the
probability p assigns to the singleton {s}

A behavior strategy of player one is an infinite sequence ¢ = {¢?,0%,...}
such that for each ! o' is a mapping from all tuples of the form

(PU(R) , iy s PRGLE) s oo s dir s PH2(ion, R))

to A(I). Behavior strategies for Player Two are defined symmetrically. Let T
and .7 be the set of behavior strategies of Players One and Two, respectively.

From the definition of the information structure and behavior strategies,
the players have perfect recall. (See Kuhn, 1953.)

3 Histories and the definition of Nash equi-
librium
For every | < oo define the set of finite histories of length ! to be H' :=

K x (IxJ). .
For every h € H! with b = (£, il,jl,. ..41, 71} define

fi(h) = 1/1 Z A¥( 1m,_;-m) and

ms=]

{
=1/13" B*(im, jm)-

m=1
Every pair of behavior strategies ¢ € 7 and 7 € J induces a prob-
ability measure p!  on the set of finite histories of length I, so that if
h = (in]sjls ot 'ihjf) € Hl then

e (B)) = b (PO(R), -7 (@K)), -+ 0" (PO), 2, P (i ) ..
i1, P G, B)) -7 (Q(K), 1, @0 (i, B), oty @0 (it B))
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A Nash equilibrium is a pair of behavior strategies ¢ € 7 and 7 € J such
that for every palr c€eTandT e J

M 00O

lim sup[ fm h)d,u,. < hm mf/ fml h)d,u“

and .
lim sup [ gm(B)dpZ,. < lim inf [ gn(b)duz,

e OO

(By replacing o™ by ¢ and 7* by 7 notice that if ¢ € 7 and 7 € 7 are a Nash
equilibrium then both limu_e [y fru(R)del, and limp—eo S5y gm(R)dpl,
exist. An alternative formulation of the definition of Nash equilibria exists;
see Aumann and Maschler, (1995): page 140)

An*e-Nash equilibrium” is a pair of behavior strategies o € 7 and 7 € J
such that for every pair ¢* € 7 and 7* € J the same inequalities as above
hold with the quantity € added to the right side of the inequalities. A game
has “epsilon-Nash equilibria” when it has an ¢-Nash equilibrium for every
€ > 0. When a repeated game has a Nash equilibria it has epsilon-Nash
equilibria, but the converse does not hold.

If a zero-sum repeated game has epsilon-Nash equilibria, by exchanging
the pairs of e-Nash equilibria for different € one can show through Cauchy con-
vergence that there is a unique quantity such that the distance supremum be-
tween either limu—o sup fyy, fm(h)dp7. .o or lima o inf f5y  fr(R)dul: .
of any e-Nash equilibrium ¢¢, 7¢ and this quantity converges to zero as ¢ goes
to zero. In this case this qua.ntlty is called the value of the zero-sum game, and
conversely if a zero-sum game has a value it means that it has epsilon-Nash
equilibria. If a zero-sum game, repeated or not repeated, has an equilibrium,
all strategies (or behavior strategies) that are half of an equilibrium pair are
called “optimal” for the player in question.

4 Special conditions

Special conditions on the information structure are to be considered. Al-
though these conditions are defined explicitely only for Player One, the def-
initions for Player Two will be symmetric.

- Perfect monitoring for Player One: for every 1 € I and A € P there



is some subset K’ C K and a j € J such that A= {j} x K".

— State independent learning for Player One: For every A € P® and ¢ € [
there exists a partition P% of J such that B € P' implies that B = C x A
for some A € P° and C € P). (The information structure satisfies “strong”
state independent learning for Player One if P% is the same for every A € P°.)

— One-sided information for Player One: P° is the discrete partition of K
and for every 1 € I P* is the discrete partition of J x K.

- Symmetric information: Both players have perfect monitoring, P° = Q°,
and for every ¢ € [ and j € J the information received by both players
about the states of nature is the same; in other words for every : € I and
j € J there is a subset K C K such that P = {{j} x K*/ | j € J} and
QI ={{i} x K" |ieI}.

- Independence of initial information : There exist non-negative real num-
bers {rs | A € Po} and {sp | B € Qo} such that 3 ;c4np Pz = T45B-

- Additionally, there are conditions on the information structure that per-
tain to knowledge of the payoff matrices.

— Player One knows her own payoff: k, ¥’ € S € P° implies that A% = A¥".

— Player One knows the other’s (Two's) payoff: k, k' € § € P° implies
that B¥ = B¥. _ '

In the non-zero-sum case, there are 16 different possible combinations of
the above conditions on the knowledge of the payoffs; however there are only
10 combinations after accounting for symmetries generated by switching the
players.

And finally there is the zero-sum condition: B* = —A* for every k € K.
Although the class of repeated games is rather restricted compared to

that of stochastic games with incomplete information, this author does not
want to imply that all of the interesting special cases are obtained through
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combinations of the above conditions.

When does there necessarily exist a Nash equilibrium or epsilon-Nash
equilibria? Not all combinations of the above mentioned special conditions
will be considered, since some combinations answer the question for others.
Stronger assumptions will be considered only when the answer is “no” and
weaker assumptions will be considered only when the answer is “yes.” If a
case is labeled “no” it means that there exist examples where epsilon-Nash
equilibria don’t exist. If the case is labeled yes, then there always exists
a Nash equilibrium; and if the case i1s labeled “yes-¢” then there always
exist epsilon-Nash equilibria. An exclamation point means that a published
result answered exactly this question; a “yes” without an exclamation point
means that the question has already been answered in the affirmative in a
more general case; and a “no” without an exclamation point means that the
question has already been answered in the negative in a more specific case.

5 One-sided information

For every p € A(K) define the matrices A(p) := Y3, peA* and B(p) =
Y r—1 pxB*. The value of a finite real matrix A, “val {A4)” for short, will be
the value of the corresponding zero-sum matrix game with the row player as
the maximizer. :

If C is a convex set and f is a bounded real valued function on C then
cav(f) is defined to be the minimal concave function greater than or equal to
f and vex(f) is defined to be the maximal convex function less than or equal
to f. If f is a bounded real valued function on A x B, both convex sets, then

cava(f){a,b) = cav(f(-,b)}{a) where f(-,b) is a function on A. Likewise we
define cavg(f)(a,b), vexs(f)(a,b), and vexg(f){a,b).



Table 1

One-Sided Information for Player One

General Player Two Zero-sum
E .Knows His Payoff

General ‘ ? Yes-& Yes !
Perfect Monitoring ? Yes Yes
State Independent 2 Yes-& . Yes
Learning '
Perfect Monitoring Yes ! © Yes! Yes !
and State Independent
Learning

The fundamental result in this topic is from the 1966-68 work of R. Au-
mann and M. Maschler (1995), with the colaboration of R. Stearns. For
the zero-sum repeated game with perfect monitoring and state independent
learning they proved that a Nash equilibrium exists and that the value for
the informed player, Player One, is cav(val(A(-)})(p). The determination of
the value came in two parts. First they proved that the informed player can
guarantee herself on the average a function on A(K') that is both concave
and greater than or equal to val{A(-)). Second, with the help of Blackwell’s

7



generalization of the min-max theorem to vector valued payofts (Blackwell,
1956), they showed that the uninformed player can hold down the payoffs of
the informed player to any vector v € R¥ such that v - p > val(A(p)) for all
p € A(K).

There is a curious asymmetry to these two claims concerning the value:
the informed player can guarantee cav(val{A(-)))(p) only on the average de-
termined by the distribution p; she can have extremely bad luck. As an
example of S. Zamir’s demonstrates (Zamir, 1992: page 112) the informed
player may choose an optimal behavior strategy such that for some behavior
strategy choice of the uninformed player, some state of nature, and some
finite history starting with this state of nature and reached with positive
probability, the conditional expectation of average payoff for the informed
player at any stage following this finite history are lower than what the in-
formed player can guarantee for herself at this state of nature. (Needless to
say, such a pair of behavior strategies is not an equilibrium and gives the
informed player very good average payoffs elsewhere!) Is there an example
where the informed player can have such bad luck with every optimal behav-
ior strategy? As far as this author is aware, this is an open question. On the
other hand, for every vector v with the above property the uninformed player
" has a behavior strategy such that, with probability one (a.e.) the payoff to
the informed player will be held down to no more than v for the £ € K
that happens to be the irue state of nature (Aumann and Maschler, 1995;
Blackwell, 1956). cav(val(A(-))) : A(K) — R is also the function limit of the
values of the corresponding finitely repeated games; the differences of these
values from their Iimit is also an important topic (Aumann and Maschler,
1995; Zamir, 1972). :

R. Aumann and M. Maschler (1995) showed that the zero-sum repeated
game of one-sided information still has a value when the uninformed player
may not have perfect monitoring or may not have state independent learn-
ing. They showed also that the informed player has an “optimal” behavior
strategy that obtains for her on the average at least this repeated game
value, Later, E. Kohlberg (1975) showed that the uninformed player also
has an “optimal” behavior strategy, hence that the repeated game has an
Nash equilibrium. ‘ ‘

With regard to the non-zero-sum one-sided information case in which
the uninformed player has perfect monitoring and state independent learn-
ing, the existence of an Nash equilibrium has been established. 5. Sorin
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showed that there always exists an Nash equilibrium when there are two
states of nature (Sorin, 1983). The principles at work behind Sorin’s proof,
and also behind the previous consideration of this class of games by R. Au-
mann, M. Maschler, and R. Stearns (Aumann and Maschler, 1995), are
the concepts of “non-revealing” Nash equilibria and “joint plans.” With
perfect monitoring and state independent learning a non-revealing Nash
equilibrium is a Nash equilibrium for which the informed player’s behav-
ior strategy is independent of her knowledge of the state of nature - in
other words she never makes use of her information. (If perfect monitor-
ing or state independent learning were not assumed, a more sophisticated
definition of “non-revealing” would be necessary.) A joint plan is a set of
signals S, for each k¥ € K a probability distribution ¢* € A(S), and for
each s € S an infinite sequence (3, 77,23, 73,...) € (J x J}*® such that for
every k € K the distribution on 7 x J, in the limit, converges. This implies
that HMm—co fr(ky 33,85 -y i5, 72 ) and liMmeco Gm(k, 2, iy .., %, 55 €x-
ist. By allowing s € S to be chosen according to ¢* if k is the true state of na-
ture and communicating the result s to the uninformed player, the informed
player can alter the uninformed player’s subjective conditional probability
distribution on the state of nature K, which we label P(- | s), satisfying
Pk | s) = ¢/(Swer ¢'). (We assume without loss of generality that every
s € S has a positive value ¢f for some k € K. Furthermore the informed
player is allowed to use a finite number of stages to communicate the signals
before they can play according to the corresponding sequence of moves.) The
joint plan delivers a Nash equilibrium if

1) for every s € S the sequence of pure actions associated with s is the non-
deviating behavior of a non-revealing Nash equilibrium of the repeated game
with initial probability distribution P(- | s}, and

2) for every k € K there is no payoff incentive for the informed player, given

that the true state of nature is %, to choose s € § is any way other than by

g~

Define p* € A(K) by p; := P(k | s). In general, finding a joint plan that
satisfies both conditions 1 and 2 1s not easy. Condition 2 means that there is
a vector z € R such that limm_cc fm(k,73,75,...,%5,J5) = Z¢ When p} =
P(k | s) > 0 and otherwise limuy,_.co fm(k,25,75,...,25,75) < xx. Condi-
tion 1 implies that for every s € § limp_oo Yoger PrOm(k, 25,55, - 1 85,,35) =
vex (val{B(:)))}(p*) and that ¢ -z > val(A(q)) for every ¢ € A. For two

states of nature, Sorin demonstrated the existence of such an Nash equilib-
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rium delivered by a joint plan of a special kind he called “independent and
two-safe.” The “independent” property is that for every s € S the sequence
of pairs of moves 72,33 has, in the limit, an independent distribution de-

termined by a mixed strategy pair (6°,7°) € A(J) x A(J). The “two-safe”
property is that for every s € S the r* is an optimal (or “safe”) strategy
for the uninformed player in the “one-shot” zero-sum game determined by
the matrix B(p®). For arbitrarily many states of nature the existence of an
independent and two-safe joint plan Nash equilibria was proven with the help
of a new theorem of algebraic topology. (See Simon, Spiez, and Torurczyk,
-1995. For general information on this case, see Forges, 1992.)

In the non-zero-sum case where the uninformed player knows his own
payoffs, even if perfect monitoring and state independent learning are not
assumed, an epsilon-Nash equilibria must exist. (No matter what happens,
the uninformed player plays on every stage according to an optimal strat-
egy s € A{J} in the “one-shot” zero-sum game defined by his known payoff
matrix. The informed player choices any pure strategy that maximizes her
payoff for the true state of nature in response to s € A(J). Statistically sig-
nificant deviation by the uninformed player can be detected and punished;
deviation by the informed player would be senseless. For the existence of an
Nash equilibrium, perfect monitoring suffices, since the players can agree to
play in a deterministic way that mimics this solution.) Adding the perfect
monitoring and state independent learning conditions, J. Shalev (1994) did
much more than show that an Nash equilibrium must exist; using the charac-
terization of all Nash equilibria developed by S. Hart (1985), he showed that
with all Nash equilibria the informed player completely reveals, through her
observable behavior, her knowledge of her payoff to the uninformed player.

One can consider what happens in the non-zero-sum case when the un-
informed player may not have perfect monitoring or may not have state
independent learning. Whether or not epsilon-Nash equilibria exist always
is still an open question, and a difficult one. This author thinks that with
state independent learning epsilon-Nash equilibria should always exist, but
he is very uncertain about the general case!

One can consider the condition that the uninformed player knows the
payoff of the informed player (but not his own,) and perfect monitoring and
state independent learning are not assumed. In the opinion of this author,
this case is more interesting in the more general context of independent
information structures, something discussed in the 7th section.
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Other variations of the one-sided information condition can be studied.
One can assume that Player One knows the state of nature (P? is discrete)
but does not have perfect monitoring. Such an information structure could no
longer be called strictly “one-sided;” yet this author suspects that with state
independent learning for Player Two there would be epsilon-Nash equilibria.

6 Existence results: gener\él

Let us consider the cases, both zero-Sum and non-zero-sum, where both play-
ers have perfect monitoring and we don’t necessarily assume staté indepen-

dent learning.

Table 2

Perfect Monitoring for Both Players

Zero-sum,

General Zero-sum Player One Knows
the Payoffs
Symmetric Yes-£ | o Yes-£.1 Reduces to Complete
' Information
State independent ' No - -~ . No ~ No'!
Learning : General
State Independent No No ! Reduces to One-sided
Learning and Independent Information

Information
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We assume that the game is zero-sum, both players have perfect mon-
itoring and state independent learning, and the initial information is inde-
pendent. The 1966-68 work of R. Aumann, M. Maschler, and R. Stearns
shows that there may not be a value to the undiscounted repeated game
(Aumann and Maschler, 1995). We assume without loss of generality that
the join P° A Q° is the discrete partition of K and consider the set of all
independent distributions on K represented by the set A(P%) x A(Q°). For
any (r,s) € A(P?) x A(QO) define p(r,s) € A(K) to be the corresponding
independent probability distribution on K. Aumann, Maschler and Stearns
proved that -

sup inf lim 1nf/ Jm(h)dpy, = sup 12f lim supf fm(R)dpy, =

UEI TGJ M—oo

cava(po) (VEXA(Q") (Val(A(P(', '))))) (7', 5)
and '

m sup lim sup Sm tt, . = inf sup .im in m Py =
f li 5 fm(h)dpg .e.fT 1 fH Sfm(R)dpy:
m T ae m

eJ ecI ™ =00 T m,—-oo

VexXa(oo) (cqvA(po) (va,lr(A(p(o, ))))) (r,3).

The infinitely repeated game has a value if and only if the two above quan-
tities are equal. An application of the Stone-Weierstrass theorem imphes
that there exists a plethora of examples of non-inequality for some (r,s) €
A(PP) x A(Q°) (Mertens, Sorin, and Zamir, 1994; pages 357-8); explicit ex-
amples of such have also been found (Auma,nn and Maschler, 1995; Mertens
and Zamir, 1972). (The four expressions on the top of the two equations
are not to be confused with what results when one switches the “sup inf” or
“inf sup” with the limits inferior and superior; in this case there would be
equality always of these four expressions and the resulting quantity would be
the limit of the values of the finite stage repeated games (See Mertens and
Zamir, 1972).)

If one drops the initial information independence condition but adds the
condition that one of the players know the payoffs, even the zero-sum context
is not sufficient to guarantee the existence of epsilon-Nash equilibria. Such
a game is called a game of incomplete information on one and a half sides.
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An explicit zero-sum example of Sorin and Zamir (1985) without a repeated
game value answers the existence question in the negative for many cases,
and allows us to restrict ourselves to only a few open questions. {Also see
Mertens and Zamir, 1972; Mertens and Zamir, 1977.)

If one assumes that the information structure is symmetric, there will
always be epsilon-Nash equilibria. The proof, however, comes historically in
two parts, following the proofs of the necessary existence of epsilon-Nash equi-
libria in stochastic games with absorbing states, first done in the zero-sum
context (Kohlberg, 1974; Kolhberg and Zamir, 1974) and later in the non-
~ zero-sum context (Thuijsman and Vriez, 1989; Neyman and Sorin, 1995a.)
(An absorbing state is a states of nature that the players cannot leave once
this states is reached. A stochastic game with absorbing states is a stochastic
game in which all states of nature but one are absorbing.}) One can perceive
the gaining of knowledge by both players concerning the state of nature as
a kind of transition to a new state in a corresponding stochastic game. A
special quality of this transition in this context is that the attaining of more
information is not reversible, which introduces an directed tree property to
these transitions. This allows, through finite induction, an application of
the existence of epsilon-Nash equilibria for stochastic games with absorbing
states. These results have also been generalized to Jearning structures more
complex than that presented by the model in this paper (Neyman and Sorin,
1996b; Forges, 1982.)

Two logical variations of the symmetric condition would be that of one-
sided information with perfect monitoring but without the state indepen-
dent learning condition for the uninformed player and that of information
structures that maintain the independence of information, the latter a topic
discussed below. Other variations of the symmetric condition are perhaps of
interest.

7 Non-zero-sum: many open questions

Let us consider now the cases which are not necessarily zero-sum where both
players have perfect monitoring and state independent learning. We order
the cases in two dimensions, whether or not the initial information is inde-
pendent, and by the knowledge of the two players concerning the payoffs.
Although the latter dimension contains ten cases, we do not need to consider
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some of these cases, due to the two previously mentioned non-existence re-
sults on zero-sum repea.ted games. One is left with eleven interesting cases
(out of an original 20), six of which are generate open questions on the ex-
istence of epsilon-Nash equilibria and two of which belong to the one-sided
" information topic, discussed above.

Table 3

Perfect Monitoring and State Independent Learmng
for Both Players .

General Independent Information
Player One Knows No ' ?
Two’s Payoff -
Both Know -7 ?
One’s Payoff .
* Both Know - No . No !
Own Payoffs
Both Know ' ? : Yes
Others” Payoffs '
Both Know Others’ 7 © Reduces to One-Sided
Payoffs, Player One ' Information
. Knows Own Payoft
Both Know Own : ?2 Reduces 1o One-Sided
Payoffs, Player One Information '

Knows Two's Payoff
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Assuming the independent initial information condition, (along with per-
fect monitoring and state independent learning,) interesting is the difference
between both players knowing their own payoffs and both players knowing
the payoffs of the other player.

If both players know the payoffs of the other player, then one has an easy
proof of the existence of a Nash equilibrium. Both players play indefinately
according to a Nash equilibrium of the “one-shot” bi-matrix game determined
by the matrices A(p) and B(p), and continue to play in this manner no matter
what the opponent does. Since both of the above behavior strategies are
independent of the knowledge of the players, neither of the players can learn
anything from the actions of the other player about her payoff. Any deviation
from the above non-revealing behavior strategies could not bring any higher
payoff expectation than that from the “one-shot” bi-matrix Nash equilibrium.
(A comparison of the Nash equilibria of this repeated game with the “Folk
Theorem” Nash equilibria of the corresponding infinitely repeated bi-matrix
game determined by A(p) and B(p) may prove to be very interesting.) The
above argument for the existence of a Nash equilibrium would remain valid
if the players still had state 1ndependent learning but didn’t have perfect
monitoring.

Given intitial mformatmn partitions P° and QU define a rectangle to
be a subset AN B of K for an A that is the union of some members of
P° and a B that is the union of some members of Q°. We keep the perfect
monitoring and initial independence of information conditions, drop the state
independent learning condition, and add the condition that for every pair
i € I, j € J there is a partition R* of K all of whose members are rectangles
such that P* = {{j} x R|je J, Re R“}and @’ = {{i} xR |i €
I, R e R"} In this case, learning always retains a structure of information
independence. Whether there must exist epsilon-Nash equilibria is an open
question. Can one establish a similar relationship between these repeated
games and stochastic games to prove the necessary existence of epsilon-Nash
equilibria as one could with symmetric repeated games? The problem is
that, although a player has no private information on her payoff matrices,
knowledge of the other’s payoff matrix could give a player private information
on the subgame equilibria that result from a transition.

A special case of the above paragraph is generated by the additional
assumption that for every ¢ and j there is a pair of partitions .A* and B* of
K coarser than P° and QO respectively, such that R = A% A B%, (This

15



includes the case of one-sided information in which the uninformed player
has perfect monitoring and knows the payoff matrix of the informed player
but does not have state independent learning.) In this case, there does ex-
ist a Nash equilibrium. Consider the join partitions A := Aierjed AW and
B = AierjesBh. For every subset S C K let p° be the distribution on §
determined conditionally by the initial probability distribution p. (Without
loss of generality we can assume that p assigns positive probability to every
member of K.) The non-deviational behavior of a Nash equilibrium is con-
structed in the following way: Player One and Player Two play all pairs in
I x J in the first |/||J| moves, so that subsequently Player One knows in
which member of B lies the true state of nature, and the same is true for
Player Two and .A. After all pairs of I x J have been played, the repeated
game is reduced to a subgame of state independent learning for which the
set of possible states of nature is some member of A A B. Given that the
state of nature is in S € A A B, both players play according to a Nash
equilibrium patterned after a Nash equilibrium of the "one shot” bi-matrix
~ game.determined by the matrices A(p®) and B(p°), as described above for
the corresponding repeated game of state independent learning. If one of
the players, say Player One, refuses to cooperate in the process of playing all
pairs in I x J, Player Two will minimize Player One’s expected payoff accord-
ing to the zero-sum matrix game determined by the matrix A(pT) where T is
the member of B that contains the true state of nature. Due to information
independence, p? induces the same probability distribution on Player One’s
payoff matrices as that of p° and p¥ for all S € AAB and S € P°AB
such that S € T and &' C T. Since any Nash equilibrium of the bi-matrix
game determined by A(p®) and B(p®) for S € AA B delivers for Player One
at least the value of A(p®), Player One has no motivation not to cooperate
in playing all pairs in I x J. As with the corresponding state independent
learning case, studying the set of equilibrium payoffs of such a repeated game
may be very interesting, as well as considering subgame perfect properties.

We assume again, for the rest of this section, that both players have state
independent learning and perfect monitoring. '

Let us assume that the players know the payoffs of their opponents and
remove the independence of initial information condition. This generates
what this author considers to be a good open question concerning the exis-
tence of Nash equilibria. One can also strengthen the assumptions by adding
the condition that one of the players knows her own payoff. (One should
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settle these questions first before investigating what happens if the perfect
monitoring or state independent learning conditions are dropped.)

Furthermore, one can-consider three other similar cases for which the
Nash equilibrium existence question has not been answered: the case where
one of the players knows the payoff of the other player and independence
is assumed, and the two cases where independence is either assumed or not
assimed and both players know the payoff of one of the players.

On the other hand, if both players know their own payoffs and indepen-
dence of initial information is assumed, there may not exist an epsilon-Nash
equilibrium. This was proved by G. Koren (1988), who also proved that with
all Nash equilibria that do exist both players completely reveal to the other
player through their observable béhavior what they know about their payoffs.

One can strengthen the “both players know their own payoff” condition
and weaken the “both players know the others’ payoffs” condition by assum-
ing that both players know their own payoff and one of the players knows
the payoff of the other (and of course dropping the independence of initial
information assumption.) As far ‘as this author is aware, for this case the
epsilon-Nash equilibria existence question is open.

8 Concluéion

This author concludes with a comment on the case he knows best, that
of non-zero-sum, one-sided information, with perfect monitoring and state
independent learning for the uninformed player. '

In the event that there is no non-revealing Nash equilibrium, the exis-
tence result of Simon, Spiez, and Torunczyk (1995) shows only the necessary
existence of a very strange kind of Nash equilibrium, one in which the in-
formed player always receives in general the same payoff as she would receive
when she deviates and is punished by the uninformed player. Needless to
say, it is difficult to understand why the informed player would want to play
in this way, except of course in situations that are in some way similar to
that of a zero-sum game. The Nash equilibria for which necessary existence is
proved involve very little of the beauty of S. Hart’s complete characterization
of the set of all Nash equilibria using bi-martingales and signaling moving
in both directions (Hart, 1985; Aumann and Hart, 1986). In games where
the existence of an Nash equilibrium is obvious, some fine work has been
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done on determining the set of Nash equilibria payoffs and how they may
be obtained; (see Forges, 1990). So far there have been few bridges between
these two directions of research. For example, one could try to prove that
for some weak conditions implying common interests between the players
. there must exist a Nash equilibrium that both players would be motivated to
play by a positive difference in expected payoffs between the non-deviating
behavior and all detectably deviating behavior. It would be interesting to
see if one could obtain a stronger result in this direction using the set of
all equilibrium payoffs instead of just those from joint plan equilibria. This
direction of research, in the opinion of this author, should be both difficult
and rewarding. '
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