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This article concerns infinitely repeated and undiscounted two-person
non-zero-sum games of incomplete information on one side. Following the
spirit of the Folk Theorem it establishes a sufficient condition for the ex-
istence of Nash equilibria with payoffs superior to what the players would
receive from observable deviation. Examples are presented that show both
the difficulty and the desirability for stronger results than those presented
here.
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1 Introduction

In SIMON, SPIEZ and TORUNCZYK (1995) the existence of a “indepen-
dent and two safe” joint plan equilibrium was proven; (see SORIN, 1983.)
In the non-trivial case of the proof, where there exists no non-revealing inde-
pendent and two-safe joint plan equilibrium, the equilibria whose existence
was proven give to the informed player for at least two states of nature the
same payoffs that she would receive if she deviated from the equilibrium play
in an observable way and were punished by the un-informed player - in gen-
eral this is likely to be true for all states of nature. In the opinion of this
author, one caunot speak reasonably about an equilibrium being the result
of a negotiating process when for some player there is no payoff distinction
between the equilibrium and the threat, carried out by the other player. pro-
voked by her observable deviation from the equilibrium. Therefore the tirst
efforts toward developing a theory of equilibrium selection or negotiation in
such games must be a better understanding of sufficient conditions for the
existence of an equilibrium with positive motivations for the players not to
deviate in an observable way.

To illustrate the above problem, consider the following Example 1. The
states [ and II are chosen with even probability. The informed player has
“two moves, “x” and “y”, and the un-informed player has threc moves, “a”,"
*b”, and “c.” As with all examples, the row player is the informed player.
the first entry is the payoff for the informed player and the second entry is
the payoff for the un-informed player.

See the diagram labelled Example 1 on the next page:
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Let us assume the informed player does not reveal anything about the
state of nature and an agreement is made that the un-informed player will
play “c” always and regardless of her knowledge of the state of nature the
informed player will play some sequence of “x” and “y” with a distribution in
the limit of o for “x™ and I—a for “y” with 1/4 < o < 3/4. This givesa payoff
of 0 to the un-informed player and a payoff to the informed player of 4a — 2
and 2 ~ 4a for the states I and II, respectively. If Player One cheats on this
agreement and plays either “x” and “y” with greater frequency, Player Two
will punish her by playing (forever or for some increasingly long sequences)
the appropriate combination of “a” and “b” to duplicate the payoffs of 4a —2
and 2 — 4o for the states I and II, respectively. (Any greater frequency for
“a” or “b” would give the informed player motivation for one or the other
state of nature to provoke punishment.) This describes an equilibrium, but
why would the informed player wish to play this way? She doesn’t suffer by
being punished at all, and by deviating observably and being punished she
inflicts great damage upon the other player!

2 Background

Let K = {1,...,n} be the set of states of nature. Let [ and J be the pure
actions (or movés) of Players One and Two, respectively, with |7{ = m; and
|7| = m,. Let A* and B* for all k € K be the corresponding my X my
payoff matrices for Players One and Two, with A*(i, 7) and B*(2,7) being
the payoffs to Player One and Player Two, respectively, when Player One
chooses 7 € I, Player Two chooses j € J and the state of nature is &. For
every p € A(K) we define the matrix A(p) by A(p) := Yoren PeA%; and
likewise we define B(p). The function a* : A(K) — R is defined so that
a*(p) is the value of the matrix A(p) with the first player as maximizer in
the corresponding zero-sum game, and likewise the function b~ is defined
so that b7(p) is the value of the matrix B(p)', (with the second player as
the maximizer; ¢ stands for the transpose.) If € is a convex set and fisa
bounded real valued function on C then cav(f) is defined to be the mininial
concave function greater than or equal to f and vex(f) is defined to be the
maximal convex function less than or equal to f.

We define GG to be the subset of A(A) x R" x R such that (p.ry) e

satisfies the following properties:



(1} - q > a*(q) for all ¢ € A(K),

there exists some v € A(J x J) such that

(2) ¥ = Ziiserxs 1.5 BP)(E,7) = vex(b*(-))(p),

(3) Tiijerss 1unA 4, 7) = @ if pe > 0,

(4) Tinersa 60 AME, 7)Y < 2y if pe = 0.

Recall that an equilibrium payoff for the players at the initial probability
distribution p € A(X) is an (x,y) € R x R such that there is a martingale
in A(K) x RY x R starting at (p,x,y) and converging a.e. to elements in
G with the property that at each stage of the martingale either the A(R)
coordinate is held constant or the R¥ is held constant, (otherwise known
as a bi-martingale.) Conversely, such a martingale generates an equilibrium
payofl of the repeated game (HART, 1985.) Such a martingale we call an
“equilibrium bi-martingale.” A joint plan equilibrium is an equilibrium gen-
erated by an equilibrium bi-martingale with only one stage for which the
z-coordinate is held constant; (see AUMANN and MASCHLER, 1995 and
SORIN, 1983.)

Call an element (p,z,y) of A(K) x RX x R “properly separated” from
a” if there is a vector ' € R¥ such that ¢ - ' > a*(¢) for every ¢ € A(R).
7}, < 1y for every k € K, and 2! < x for some k € K with o > 0. Call an
element (p,z,y) of A(K) x R* x R “completely separated” from o~ if there
is a vector z’ such that ¢ -z’ > a*(q) for every ¢ € A(K), 2}, < x) for every
k€ K and zj < z; for every k € K with p, > 0.

An equilibrium bi-martingale is called “good” for the informed player if
with positive probability the bi-martingale converges to elements of & prop-
erly separated from a*. An equilibrium bi-martingale is called “very good™
- for the informed player if with probability one the bi-martingale converges
to elements of GG completely separated from «*.

An equilibrium bi-martingale is called “initially good” for the informed
player if the (p,z,y) at the start is properly separated from a*. An equilib-
rium bi-martingale is called “initially very good” for the informed player if
the (p, x,y) at the start is completely separated from a*.

Initially good and initially very good for the informed player pertain to
the initial expected payoff for the informed player, while good and very good
for the informed player pertain to a lack of motivation to deviate in an
observable way. Good and very good for the informed player imply initially
good and initially very good for the informed player. respectively, but in gen-
eral the converses do not hold. In the case of joint plan equilibria, however,
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(very) good and initially (very) good for the informed player are equivalent,
(respectively.)

An equilibriumn bi-martingale is called “good” for the un-informed player
if with positive probability the bi-martingale converges to elements (p, z, y) of
( such that y > vex (*(-))(p). An equilibrium bi-martingale is called “very
good” for the un-informed player if with probability one the bi-martingale
converges to elements (p, z,y) of G such that y > vex (6*(-})(p). Notice for a
fixed initial probability that an equilibrium bi-martingale that is not good for
a player could give a higher average expected payoff for this player than some
other equilibrium bi-martingale that is good or very good for this player.

3 Some Examples

We recall from the “Folk Theorem” concerning infinitely repeated un-discounted
games of complete information defined by a single pair of real matrices A
and B of the same dimensions that any payoff from a correlated strategy i
A({I x J) giving at least the zero-sum values of A and B* to Players One and
Two, respectively, is an equilibrium payoff of the infinitely repeated game.
We attempt to follow the spirit of the Folk Theorem. We look for weak con-
ditions on a game of incomplete information on one side that make it both
different from a zero-sum game and insure the existence of equilibria that
are good or very good for either or both players.

First, for the existence of an initially good payoff for the informed player,
it does not suffice that for every k € K the pair of payoff matrices A¥ and B*-
have a correlated strategy giving to Players One and Two strictly more than
the values of A% and (B*)!, respectively. Consider the following Example 2.

See the diagram labelled Example 2 on the next page:
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‘The functions a* and b* are uniformly 0. If ¢ = 0 then there is an equilib-
rium giving 1 to Player One and 1 to Player Two for all initial probabilities
and both states of nature. But if ¢ > 0 and the initial probability gives
strictly more than a 1/10 probability for both states I and II, then there is
no equilibrium payoff other than that of 0 for both players.

Why? Let the variable p stand for the probability of the state of nature I1.
If1/10 < p < 9/10 then (p,z,y) € G implies that = (0,0). If0 < p < 1/10
and (p,z,y) € G with z # (0,0) then the y € A(J x J) generating the payoff
& = (21,xy) for Player One must give a frequency for “a” at least nine times
that of “b.” This implies that (1 +.1€)zs; > (1 + .9¢)z;. .

Now suppose for the sake of contradiction that an equilibrium bi-martingale
starting at p < 9/10 also starts with (z;,2;;) € R? satisfying (1 + .1¢)xj; <
(1 + 9¢)z;. Consider the set C := [0,(10p + 9)/20] and the closed half
plane in R? defined by D := {(r,5) € R? | (1 + .9¢)r — (1 + .le)s >
1/2 (1 + 9€)z; — (1 + .1€)zps)}. Since p and {z7,z71) are in the interior
of C and D, respectively, any equilibrium bi-martingale starting with p and
(x1,277) must converge with positive probability to elements of & with the
A(K') x R? coordinate in C x D (Theorem 4.7, AUMANN and HART, 1986}
— however there are no such elements of G!' Therefore any equilibrium bi-
martingale starting at p < 9/10 must also start with the R? coordinate
(xr,xyr) satisfying (1+ de)zyy = (1 + ¢)azr. The syminetrical result for
p > 1/10 allows only for z; = z;; = 0.

One shortcoming with the above condition is that it does not consider all
bi-matrix games determined by the pairs A(p) and B(p) for all p € A(K).
However, this author suspects that there exists an example such that for
“every p € A(K) the pair of payoff matrices A(p) and B(p) have correlated
strategies giving to the players strictly more than val (A(p)) and val (B(p)"),
respectively, yet there is no initial probability p € interior (A(K)) with an
equilibrium bi-martingale initially good for the informed player. To illus-
trate this opinion, consider the following Example 3. There are two states
of nature, I and Il, Player One has four moves, X7, T Y7 and Yyt
and Player Two has seven moves, “a” through “g”. Again, we will let the
variable p stand for the probability of the state of nature I1.

See the diagram labelled Example 3 on the next page:
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The function a* is piece-wise linear, whose graph is defined by the line
segments connecting the points (0,0), (1/4,1), (1/2,0), (3/4,1), and (1,0),
and determined by the moves “x” and “y”, and “a”, “b”, “c” and “d”. The
moves “z*” and “y*” paired with the moves “e”, “f”, and “g” are the optional
cooperative moves for the two players, with appropriate payoffs to discourage
the alternative mismatches. The values of the convex function b* are obtained
for Player Two by the move “a” in the closed interval [0,1/10], by “b” in
the closed interval [9/10,1], by “¢” in the closed interval [1/10,1/2], and by
“d” in the closed interval [1/2,9/10]. In combination with the moves “z*”
and “y™” the value of ™ or more is delivered by the move “¢” in the closed
interval [1/5,4/5], by the move “f” in the closed interval [0, 1/4), and by the
move “g” in the closed interval [3/4, 1). Because of the overlap between the
above intervals associated with “e”, “f”, and “g” and the payoff of .8 + ¢ >
a*(1/5) = a*(4/5) = .8 for the informed player in the event of a cooperative
combination with the moves “I” or “g”. for every p there is a pair of moves
that delivers more than a*(p) and b*(p) for Player One and Two, respectively.

With regard to Example 3, this author suspects that if ¢ is equal to .01
then the only members of GG come from the moves “2” and “y” combined
with “a”, “b”, “c”, and “d”, namely that there is no member of & for p
strictly between 1/10 and 9/10, for p = 1/10 all members of ' have for the
R? coordinate a convex combination of (0,4) and (1, 1), (and symmetrically
so for p = 9/10,) and for p strictly less than 1/10 all members of G have (0,4)
for the R? coordinate, (and symmetrically so for p strictly more than 9/10.)
If this suspicion is correct, that would imply that there is no equilibrium bi-
martingale good for either player. The reasou for this suspicion is the large
separation between the intervals where “a” or “b” deliver the function value
of “6” for Player Two and the interval where cooperative combination with

“e” delivers this function value.

4 A Folk Theorem

For every positive integer d > 1, a convex and bounded set D € RY and an
s € 8971 define the interval /(D,s) in R by

I(D,s):={r|v-s=r forsomeve D}



and define a real value r(1},s8) := sup(I(D,s)). For every such D and a
subset § C S9! define the set C(D, S) by

C(D,S):=({v|v-s<r(D,s)}.

5€S

Lemma 1: For every positive integer d > 1 and ¢ > 0 there exists a
finite subset S of S9! with the property that for every non-empty convex
and compact set D in R? every point in C(D, S) has a distance from the set
D no greater than ¢ times the diameter of D.

Proof: Without loss of generality, we can assume that ¢ < 1. Since 8§91
is a compact set, we can choose S so that for every point ¢ in S9! there is
a point s in 5 such that the angle between ¢ and s is less than arctan (e).

Let w be a-point in C(D, S)\D, and let w' be the nearest poiut in D to
w. Consider any member s of S close enough to w — w'/|jw — w'|| € §4-!
so that the angle between s and w — w'/||w — w'|| is less than arctan ().
Since tan (7/4) = 1 > €, the hyperplane {v | v-s = r(D,s)} intersects the
ray starting at w’ and passing through w; without loss of generality we can
assume that w is the intersection of the hyperplane {v | v-s = »(D,s)} with
this ray. Let u be any point in the intersection of {v ] v-s = r(D,s)} and D,
let H be the hyperplane containing u and perpendicular to the line passing
through w and w’, and let «’ be the interséction of A with this line. Because
w' is the nearest point in D to w, no point of D is strictly on the w-side of
the hyperplane parallel to H passing through w’ (perpendicular to the line
passing through w and w';) therefore v’ is either equal to w' or w' is strictly
between 1’ and w, so we have ||w — w'|| < |]w — ¢’||. The angle at u formed
by the rays toward w and v’ can be no more thau the angle between s and
w—w'/||w—w'||, and therefore ||w — u|| can be no more than {|u —u'|| times
the tangent of the angle between s and w — w'/||lw — w'||. Lastly, we notice
that ||z — || is no greater than ||u — w’||, a distance between two points of
D. g.e.d.

Lemma 2: Let X and Y be compact and convex subsets of Euclidean
spaces, let ¥ also be a polytope, and let F : X — 2" be an upper-hemi-
continuous convex valued nou-empty correspondence. For every ¢ > () there is
a continuous correspondence (upper and lower hemi-continuous) F : X — 2V
such that for every z € X F(x)is a polytope, F(z) C F(x), and if y~ € F(z*)
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then the Euclidean distance between (z*,y*) and {(z,y) | v € F(z)}, the
graph of F. is less than e.

Proof: First, we prove that when Y is a subset of R then there exists
a continuous function f : X — Y C R such that f{z) > y for all x € X
and y € F(z) and every point in the graph of f is less than a distance of ¢
from the graph of F. Cousider any simplicial subdivision of the Euclidean
space containing X such that the diameter of every simplex is less than e.
For any simplex o in this subdivision define the function ¢, : e N X — R
by g,(x) = sup,epiy ¥. cav (¢,) : N X — R is continuous and bounded
because Y is bounded and ¢, (z) is an upper-semi-continuous function. Since
cav (g,) and cav (g,+) agree on any = € X shared by two different simplexes
o and o', the functions cav (¢, ) define a continuous function on all of X. It
remains to show that if cav (g, )(z) = y then there is some z' € o N X with
¥y € F(a). cav (g,)(2) = y means that there is at least one z; € ¢ N X and
1 € Fxy) with y; < y and at least one 22 € o N X and y2 € F{axy) with
y2 2 y. The existence of such an 2’ follows from the fact that the image of
9o must be connected, (from the Vietoris mapping theorem, for example.)

Let R? be the Euclidean space containing Y. Without loss of generality
we assume that ¢ < 1 and that the diameter of YV is equal to . By Lemma 1,
we choose § C $! so that for every non-empty compact and convex subset
D C R? every point of C(D, S} is no more than a distance of ¢/8 times the
diameter of D from the set D.

Since F is upper-hemi-continuous, for every # € X there exists a 0 <
6. < €/4 such that 2’ € B(z,28,), (the open ball of radius 26, about z,)
implies that every point of F'(z') is less than a distance of ¢/4 from the set
F(z). Cover X with Uzex B(xz, 6,); since X is compact we can choose a finite
subcover, Uier B(t, é,), for some finite subset 7' C X. Let 6§ = miner 6.

For every s € 5 define the correspondence ¢, : X — 28 by ds(x) 1=
I{F(x},s). Since F is upper-hemi-continuous and convex valued, so is ..
By the first paragraph, for every s € S there exists a continuous function
@, : X — R such that for every z € X B,(z) > sup{s,(x)) = r{F(z), s) and
(z,¢,(z)) is less than a distance of § from the graph of ¢,. Define F : X — 2
by

Flz)=Nes{veY {v-s <o, (x)).

We have F(z) 2 Nees{v € Y | v-5 < r(F(z),s)} D F(z) for every z € X.
For the rest of the proof, consider any € X. For every s € S there exists
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an z, € X and y; € F(z,) such that |y,-s—@,(z)| < § and {|z,—z|| < §. Let
t € T satisfy ||t —z|| < §, which means for every s € S that ||z, —1|| < 2§ and
Ys is less than a distance of €/4 from the set F(t). Let @ be {v € R?| distance
(v, F(t)) < 1/2 ¢}, a convex and compact set. Since (y, +¢/4 s)- s > &,(z),
we have that r(@,s) > ¢,(x) for every s and thercfore C(Q,S) contains
F(z). By the choice of 3, since the diameter of () is less than 2, every point
in C(Q, S) is less than a distance of ¢/4 from (). Therefore if y € F(z) C
- C(Q, S) then y is less than a distance of 3/4 ¢ from F(t). It follows that the
distance of (z,y) from the set {t} x F(t) is less than e. - qed

Theorem 1: Let a : A(K) — R be a real valued continuous function
on A(K). If F: A(K) — 220%9) is an upper-hemi-continuous non-empty
convex valued correspondence such that for every pair p € A(K) and ¢ €
A(K)

Jg%)%n:,ﬂfl(q)(uj) > a(g), |
then for every po € A(K) there exists an z € R", a set T C A(K), and for
everyt € T a~' € F(t) such that
1) - g > a{q) for all g € A(K),
2) po € convex hull (T),
and for everyt € T
3) iy 7(2-’1-)%1“(1',]') < x; and
4) Tn YA G 7)) = a0 if £ > 0.

Proof: We fix ¢ > 0. By Lemma 2 there is a continuous polytope
valued correspondence F @ A(K) — 28U%J) guch that F(p) 2 F(p) for
every p € A(K) and if y= € F(p*) then the Euclidean distance between
(", y") and {(p,y) | ¥y € F(p)} is less than e. Define [A(K)] = {v €
R¥ | Yienwvi = 1}. Let r : [A(K)] — A(K) be the canonical retrac-
tion 7(v)e = max(ve,0)/ T, sew and let u : [A(K)] —» RE = {v | v, >
0 Yk € K} be defined by u(v)i := |min(vg, 0)], also so defined in the Ap-
pendix of Section Il of SIMON, SPIEZ, and TORUNCZYK (1995). For
every ¥ € A(J x J} and u € R let h(y,u) € R be defined by Ay, u)y =
iy Y AR (E, ) + ug. For every v € [A(K)] we define the convex function
b, on [A(K)] by

b(q):= max h(y.u(v))-q.
YEF(r(u)) '

As in SIMON, SPIEZ, and TORUNCZYK (1995), we say that » € R"
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“separates” a b, from a continuous function f: A(K) - Rif b,(¢) > ¢ - ¢
for every ¢ € [A(N)], ¢ - q > f{q) for every ¢ € A(K) and there is some
¢ € A(K) such that b,(q) = ¢ - ¢; and we say that ¢ “tightly separates”
b, from f if ¢ separates b, from f and there is some ¢ € A(K) such that
¥-q = by(q) for all » € R” separating b, from f. Because the correspondence
F is continuous, the function b,(¢) is continuous on (v,q) € [A] x A. Since
the corresponidence F contains the correspondence F we have b,(¢) > a(q)
for every v € [A(K)] and ¢ € A(K'). Because there is a real number W < oc
with |max; ,x A*(4,7)| < W, condition {1) to Theorem 2 of SIMON, SPIEZ,
and TORUNCZYK (1995) is satisfied; therefore by the theorem: for every
po € A(K) either there is an & € R® that separates b,, from a or there
exists a set V C [A(K)] and an h € R™ such that py € convex hull (#(V))
and for every v € V h tightly separates b, from a. In either case, the
same argument for (15) in the proof of Preposition 2 in SIMON, SPIEZ.
and TORUNCZYK (1995) implies that for every v € V (or py = v in the
former case) b = h{7", u(v)) for some 4* € F(r(v)). (The original argument
by Sorin used the Min-Max Theorem: see SORIN, 1983.) After removing
the auxiliary values u(v) we have Conditions 1} through 4) with 7" = »(V)
but with y' € F(t) instead of v* € F(t) for every t € T. Since F is upper
hemi-continuous and by Catheodory’s Theorem we can always choose T to
be a finite set of cardinality no more than |K|, taking the limit as ¢ goes to
0 of a convergent subsequence of such solutions gives the desired conclusion.
g.e.d. '

By letting F(p) equal {y € A(IxJ)| T;) 1B g) = vex(b*(:))(p)}
aud ¢ = a* we have a slightly alternative proof of the existence of joint plan

equilibria (SIMON, SPIEZ, and TORUNCZYK, 1995.)

Corollary: If for every p and ¢ in A(K') there exists a correlated strategy
v € A(f x J) such that

Y 1. B)E,§) > vex(b'())(p)
(1.7}

and

2 Al (i ) > a(q)

{t.1)
then for every initial probability there exists a joint plan equilibrium that is
very good for both players.
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Proof: Let ¢: A(K) x A(K) — R be defined by ¢(p,¢) :=

max min (3 15 Al0)(E5) = a7(9) s X wen BP)6d) — vex(57(-))(p)).-

ealrxd (i) (i)

Because A(K') x A(K) and A{] x J) are compact and _

min (Z(i.j) Y AgHe, ) —a(q) s gy van B 7) — Vex(b’('))(P)) is a
continuous function on (p,q,v) € A(K) x A(K) x A(] x J), the function g
is continuous. Because A{K) x A(A’) is compact, the function ¢ attains a
minimum value; therefore by the hypothesis there is a w > 0 with ¢ > w.
That means the convex valued correspondence F : A(K) — 28U*J) defined
by F(p) i= {7 € AU x J) | S tiiBU) 2 vex(b())(p) + w) satisfies
MaX.e p(p) 20i,5) Wi) A (2, 1) 2 a*(¢) +w for all ¢ € A(K). Since vex(d™) is
continuous, the correspondence F is upper hemi-continuous. The rest follows
{rom Theorem 1. ' q.e.d.

5 The Desirability of a Stronger Theorem

There is a major shortcoming of Theorem 1 and the corollary: For some
initial probabilities it is possible to have no joint plan equilibrium that is
initially good for either player but have an equilibrium bi-martingale that is
good and initially very good for the informed player and delivers for both
players average payoffs much better than from any joint plan equilibrium.

Consider the following Example 4. The moves of the first player are du-
plicated so that she can send signals.

See the diagram labelled Example 4 on the next page:
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Again, letting p represent the probability of state [I, the graph of the func-
tion a* is created by the line segments connecting the points (0,0). (1/4.1),
(3/4,1), and (1, 0}. Exactly the values of the convex function b* are obtained
for Player Two by the move “a” in the closed interval [0,.025], by the move
“b” in the closed interval [.025,1/4], by the move “d” in the closed interval
(1/4,3/4], by the move “f” in the closed interval [3/4,.975], by tLe move “g”
in the closed interval [.975,1], and by the moves “c” and “e” at the points
p=1/4 and p = 3/4, respectively. Due to the separation between the points
where “a” “c”, “e”, and “g” are optimal for the second player, for all initial
probabilities other than p € [0,.025], p = 1/4, p = 3/4, or p € [975,1] all
joint plan equilibria deliver (1, 1) to the first player. '

On the other hand, for every value of p & {0,1} there is an equilibrium
bi-martingale that is good and initially very good for the first player and
delivers for the second player an average payoff better than from any joint
plan equilibrium. Consider the following process: For p = 3/4, with 2/3
probability the joint plan equilibrium associated with the strategy “e” is
played, for a payoff of (0,4) for the first player. With 1/3 probability there
follows a lottery perforined by the first player between revealing the posterior
probability p = 1/4 (with 1/3 chance) and the posterior probability p = 1
(with 2/3 chance.) If p = | is revealed, then the equilibrium associated with
the mmove “g” is played, with a payoff of (3, 1) for the first player. Otherwise, if
p = 1/4 is revealed then the process is repeated, but symmetrically. Letting
(z,y) be the value of the above process to the first player and (y,x) the
value of the symmetric process starting at t = 1/4, we notice that z = 1 and
y = 3 satisfy (z,y) =2/3(0,4) +1/3 (3,1). Therefore there is a equilibrium
payoll of (1,3} for the first player for all values of p in [0,3/4] associated with
a payoll of 5/2 for the second player at the initial probability of 3/4 (and
likewise for all values of p in [1/4, 1].} For the initial probability of p = 1/2,
the most Player Two could get on the average from a joint plan equilibrium
is .9, while the use of either of these equilibrium bi-martingales gives him an
average of 2/3.5/2 +1/3-10=05.

This author suspects that for a shight variation of Example 4 and some
initial probability there would be no joint plan equilibrium initially good for
either player but an equilibrium bi-martingale very good for both players.

Examples 4 was based largely on the example in FORGES (1990); how-
ever in the Forges example only the equilibrium payoffs of the informed player
are improved in comparisou to all payofls from joint plan equilibria; further-
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more in the Forges example for every initial probability there exists a joint
plan equilibrium which is very good for the informed player.

Examples 4 demounstrates the desirability of a stronger theorem than The-
orem | that makes use of the greater generality of equilibrium bi-martingales.
Whether the possible improvements in equilibrium payoffs for both players
using equilibrium bi-martingales over joint plans are contingent on the ex-
amples studied, as suggested by Example 2, or are supported by a theorem
more advanced than that of Theorem 1, is something that this author has
not been able, as vet, to ascertain.
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