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Abstract

Without using the Tarski-Seidenberg Principle, we show that the va-
lue of a finite discounted stochastic game is an algebraic function of the
discounted factor in the neighborhood of zero.!

1 Intrdductibn

The idea of zero-sum two-person stochastic games goes back to Shapley [7].
Consider finitely many states,.each of them being endowed with two finite sets
of actions availabie for the players. In a given state, the simultaneous choice
b'y each player of an action induces a payoff and a probability to select a sub-
sequent state. From some initial state onward, a play proceeds as described
previously. The discounted average of the sequence of payoﬁ"s with a discount
factor 0 < A < 1, provides an overall payoff for which any stochastic game has a-
value v, as.Shapley proved it. This value can be achieved by the players using
stationnary strategies i.e. there is a prescribed mixed action for each state to
play independently of the past.

Bewley-Kohlberg [1] established the existence of Puiseux series expansions

of v, in A, when it is close enough to zero. The idea of their proof is to use 2
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consequence of the Tarski-Seidenberg Principle on real closed fields [4]. A real
closed field is an ordered field i.e. a field endowed with a total order relation
< compatible with the operations such that any algebraic extension cannot be
ordered.

A first order formula (for short a formula) is a boolean expression of finitely
many polynomial equalities or inequalities between fariables of the real closed
field T.iv-lth possibly qﬁa.ntiﬁers _a.tta.ched to them. It is assumed that the coeffi-
cients of these polynomials are pdsitive of negative integers. A free variable has
no quantifier attached to it. I '

The Tarski-Seidenberg -Pri’nciple asserts that given a formula with at Ieést
one quantifier, it is possible to find a logically equivalent formula with one
quantifier less and without any additionnal free variable. In other .words it is
possible to eliminate any variable which is'not free.

This implies that a true éenten-ce on a given real closed field , l.e. any true
formula without free variables, is also true on any rea) closed field since it is
equivalent to a true formula dealing with integers.

Bewley-Kohlberg remark that the Shapley Theorem can be written as a
true sentence on the field of real numbers, a real closed fields. As seen above,
this sentence is true on the real closed-ﬁeld of Puiseux series in X with real
coeflicients. By substituting the discount factor A for X in the ‘formal value’,
the series that we obtaln is coﬁvergent and it gives indeed an expansion of vy.

The expansion of the value in Puiseux series of A shows immediately the
T convergence .of vy, toward some limit v when A gdes to zero. This limit tutﬁs
out to be the value of the infinite average payoff game [5]. See [2],[9] for further
apphcations.

Infortunately such a proof does not give any insight of what is exactly going



on. It is difficult to understand why such expansicns arise.

There is a more intuitive approach [6} Consider the set of tuples figuring
the ‘tuples of values for each initial state, the components of the corresponding
optimal mixed acfion and A. This set can be seen as the set of tuples satisfying
finitely many polynomial equalities and inequalities i.e. it is a semi-algebraic
set. The coefficients of these polynomials are obtained from the pa;ra.meters
of the game. Using the Tarski-Seidenberg Principle, it is easy to see that the
projection of this set on the set of couples made of the value for any given
initial state and the discount factor A is also semi-algebraic, since this amounts
to eliminate quantifiers in a formula. Therefore we have shown that the value for
any initial state is a semi-algebraic function of the discount factor. As it is also
a continuous function of the discount factof, it can be considered as a.lgebra.i;:
function in the vicinity of zero and therefore it. can be expanded in Puiseux
Series {3] application of Puiseux Theorem.

The local algebraicity of the value around zero seen as function of the dis-
count factor is precisely what we intend to prove in this paper but without
invoking the Tarski-Seidenberg Prin.cipl'e. Bewley-Kohlberg {1] write:

‘At first sight, the problem we study might appear to require the use of
the methods of real analysis. However our approach is algebraic rather than
analytic.’

Our method uses elementary metﬂods of real analysis even if it is difficult to
avoid dealing with polynomials (of algebraic nature). The first interest of the

-paper is to provide a very clear proof from the viewpoint of intuition. Second,
we offer a new way to deal with the tuple of values (one for each initial state).
We show that it is indeed possible to work separately with each one of them.

The third interest is that we might have a tool to prove algebraic properties in



cases where maybe we cannot apply the Tarski-Seidenberg Principle.

To conclude this introduction, let us mention a complefely different method
to establish stronger properties on the values [8]. The idea is to write the fixed
" point equation satisfied bsr the tuple of values as a system of algebraic equations.

Then we see this system as defining a complex variety i.e. we extend our point
of view. This allows us to describe the behavior of the values with respect to
rthe discount factor.

The paper is organized as follows. In section 2 we give the basic definitions
and properties. .In section 3, the crucial Proposition 3 is presented. It will be
proved recursively on the number of moves available to player I. In section 4,
all the useful properties on algebréjc functions and polynomials are collected,
especially Proposition 4 on the resultant of two polynomials and Pro_position 5
which deals about the composition of algebraic functions.. Section 5 presents
the proof of Proposition 7 which is the cornerstone of the paper. Finally in
section 6 we proceed with the proof of Proposition 3 and Theorem 3 and section

7 delivers the last cormments.

2 Deﬁnitions

In this section, A(X) is the set of probability distributions on the (finite) set
X. Se;e [6] for an extended presentation of the topic of this section.

A {finite} set of states k € K is given and in each one of them finitely rﬁany
actions 7 &€ I(k) (resp. 7 € J(k)) are available for player I (resp. II). Let
plk,., ) I(k) x J(k) — A(K) be the transitions probabilities and g(k, )
I(k)x J{k) — [—1,1] the pa.}"o-if function for k € K. Remark that player I (resp.
II) is seen as a m;a\.ximizer (resp. minimizer). -

A stochastic game is a tuple T' = (I(k), J(k), p(k, -, .), g(k, ., Viex-



Denote by H; the set of histories h; = k1,41, 71,-. -, bt ofienéth t >0,
with for s =1,...,1, (¢,,7s) € I(ks) X J(k,). Assume that k; is fixed and let us
call it the initial state. |

A behavior strategy o {resp. 7} for player I (resp. II) is a sequence of
mappings '

o 1 Heoy — A(I(ke))

" (resp. T : Hi—y — A(J(ke))) fort > 1. A stationnary strategy of player I (resp.
ﬁlayer IT) ignores the full history i.e. &¢:(h;—1) (7:(h:—1) depends only on &, fér
allt > 1.

The Kolmogorov extension Theorem a.Héws us to define a family (Py . ))o,r

of probability distributions on the sét H of histories of infinite length such that:

Ps 1 (he) = Pd,f(htjl)P(k.t; it, Jo) [ket1]oe(he—1) e 7 (ha—1) [7:)-

The problem consists of studying the discrete process g: = g(k;, i, j;) defined

on (H, P, .) depending on ¢ and 7.

Definition 1 Let the discounted payoff be:

oo
=AYy (1-2)"g

t=1

for0< A<,

The game with initial state k£ and discount factor A is denoted by Ta(k). The
payoff associated to (¢, 1) is ga{o, 7) = E;-(gs). The Shapley Theorem (1953)

—can be expressed as follows:

Theorem 1 T, (k) has o value vy (k) achieved by stationnary strategies i.e. the-

re erists a couple of stationnary strategies (o, 7.} such that for all {e,7):
ga(o, ) < galoa,m) < galon, 7).

5



For any vector

denote by Ta(v) the vector
| o T

TE(v)
where T (v) stands for the value (in the sense of Von Neumann) of the finite

I{E) x J(k)-ga.mé

7 Pk )+ (1= 2) Y p(k, 4, ) [Rlen)s.
heK

Remark that T, is a contracting map. In order to show Theorem 1, it is

necessary to see that:

Proposition 1 The unique fized poini of Ty is precisely

'UA(].)
vy = :

ua(K)
Remark 1 Any family of optimal strategies of the finite games

Ptk )+ (1= 2) 3wk, i Ao

heK

induce an optimal staf.ionnary strategy.

On one side, the vector v,(T') can be seen as a function of A > 0 when the
-stochastic game [ is fixed. On the other side, it can be considered as a function

of stochastic games when A is fixed.

Proposition 2 Tke vector vy (I') is separetely continuous with respect o (A, I) €

10,1] x {T}.



The fundamental Bev-vley—Ko_hlberg Theorem (1976) means that v, can be

expanded in Puiseux Series ie.

Theorem 2 The veclor vy can be expanded in fractionnal powers of X ie.
L . . ,
vy=v+4 Ect)\‘/T
t=1
where T > 0 is a well chosen integer, v and the ¢;’s are constant vectors.
Remark that:

3 Main Results

Denote by P(X) the set of polynomials in X with real coefficients. Write P*(X)
for P(X) \ {0} and denote by deg P the degree of P.

Similarly denote by P(X,Y) the set of polynomials in X and Y with real
coefficients. Define P*(X,Y) as P(X,Y) \ {0}. 7

Given P € P(X,Y), degx P (resp. degy P) represents the degree of P with

respect to X (resp. Y).

Definition 2 A continuous function f(.) on a domein D C IR is algebraic if
there exists P(X,Y) € P*(X,Y) such that. .

Vz € D: P(:E, f(z')) = 0.
Remark 2 There exist (pm,...,p0) € (P(X))™ 1\ {(0,...,0)} such that
'P(X:Y) =Pm(XWY™ + ..+ PUX)Y + po(X)

le.

Ve €D, pr()f™(2) + ..+ p1(2)f(2) + po(2) = 0.



What we call the ‘non-trivial condition’ means that for all z € P:
P(z,Y)#0.
Here is the main result of the paper: _

Theorem 3 Given a stochastic game, there ezists A > 0 such that the function

A ua(k) is algebraic on the domain 0,3 fork=1,.. K.

From now on, we assume that 1 is the initial state. Write v»(1) = v and simply
call it ‘the value’.

Theorem 3 is consequence a consequence of Proposition 3 which is shown .
recursively on the cardinal of the I (k)’s. Call G(ny,s...,nk) the set of stocha-
stic .ga.mes with #I(k) = ni for k = 1,..., K whereas the #J(k)’s are given
constants indepéndent ofni,...,n K-

The transition probabilities and the payoffs are seen as parameters of sto-

. chastic games in G(n,, ..., ng).

Proposition 3 There are finitely many mappings ¢; : G(n1,...,ng) — P(X,Y)
such that each coefficient of ¢;(I) = PF(X, Y) is a polynomial function (inde-
pendent of ') of the parameters of T and:

VI, VA €]0,1], 3, ¢:(T) € P*(X,Y)A PF(A,v3) =0.

4 Basic Properties

"This section investigates some properties of polynomials and algebraic functions.

See [3] for instance.

Definition 3 P € P*(X,Y) is irreducible if it is not possible to decompose it

tn the product of two polynemials of sirictly positfve and strictly lower degree.

-



Definition 4 Let f(.) be an algebraic function with P(a', f(z')} = O for all
z' € D. Any pair (z, f(z)) such that:

Py(z, f(z)) 0,

where Py denotes the formal partial derivative of P with respect t0 Y, is called

an ordinary poini.
Remark 3 If P is irreducible, then there are finitely many such points.

Lemma 1 If (z, f(z)) is an ordinary poini, then the derivative fi(z) of f(.) at

x exists. Moreover:
‘ _ PX (35, f(x))
Py (z, f(z))’

where Py is the formal pertial derivative with respect to X ..

fiz) =

The following Definition 5, Proposition 4 and Corollary 1 are the basic tools for

this paper.

Definition 5 Let P € P*(Y) (resp. Q € P*(Y)) be of degree n > 0 (resp.
m>0) '

Fork=0,...,n—1 (resp. h=0,...,m—1), call (Y*P) (resp. (Y*Q)), the
roﬁ: of length n + m representing the coefficients of Y*P (resp. Y*Q) ordered
by the increasing powers on._ . -

The determinant:
(Yn— IP)

(P)
(Ym— 1 Q)
@

15 called the resultant of P and Q). Remark that it is of the same nature as the

coefficients of these polynomials,



Proposition 4 There erists N € P*(Y) (resp. M € P*(Y)) with deg M <
m—1 (resp. deg M < n—1) such thet: A

R=N(Y)P(Y) + M(Y)Q(Y).

Sketch of the proof:

Casé 1: R # 0. We are looking for two polynornials with unknown coefficients
NY)=bmey Y™ 4 451V + bo,
M(?) = c,,_lY"‘.A1 +...+aY +eq,
such that the following system is true:
b1t (Y™ 1P) 4+ .+ 0i(Y P) + bo(P)+

ea (Y™ ')+ .+ (YQ) + (@)= (0,.. ., R).
This system has one and only one solution since its determinant is R # 0.
Case 2: R = 0. Instead of the previous sytem, we solve the following one:

b1 (Y™ 1P)+ ...+ b, (Y P) + bo(P)+

na1(Y™IQ) + ...+ (Y Q) + co(Q) = (0, ... ., 0).
Since it is homogeneous, it is easy to find a non trivial solution. For in-
stance fix lasr many coefficients as possible to 1. Up to some multiplication, one
can insure that the coefficients of N and M are polynomial functions of the

coefficients of P and Q. Remark that there are finitely many such functions. O

| Corollary 1 Let R € P(X) be the resultani of P € P*(X,Y) and Q € P*(X,Y)

- with respect to Y. )
If R = 0, then there exists N € P*(X,Y) (resp. M € P*(X,Y)) with
degy N < degy Q@ — 1 (resp. degy M < degy P — 1) such that:

0= N(X,Y)P(X,Y) + M(X,Y)Q(X,Y).

10



Proof: For each = such that P(:c,Y) € P*(Y) (resp. Qz,Y) € P*(Y)), apply
Proposition 4 to find N, € P*(Y) (resp. M, € P*(Y)) with deg N; < degy Q-1
(resp. degy M, < degy P — 1) such that:

0= No(Y)P(2,Y) + My (Y)Q(z, Y).

Remark that the coeflicients of N, and M, are polynomial functions of z. Since
there are finitely many possiBle such functions, they are the same for infinitely
many z. Hence, it is possible to find N € P*(X,Y) (resp. M € P*(X,Y)) such
that: . | - ‘
0=N(X,YI)PX,Y)+ M{X,QX,Y}.
m}
The next Lemma 2 and Lemma 3 which are independent, are used to show

the fina! Proposition 5, the second goal of the section.

Lemma 2 For any integer n > 0 there arve finitely many mappings
di: {(QP) € (P | degQ < midegP < )
— {(H,H) € (P(X))? | deg H < n;deg H' < n} x R?
such that, with ¥;(@, P)= (H_;,H{,_ﬁ,ﬁ), each coefficient of H; (resp. H}), f;
(resp. f:) are polynomial functions (independent of Q@ and P) of the coefficients
of ) and P, and deg H; < degQ (resp. deg H! < deg Q).

Moreover, for any = € IR one has:

I

Pl) = Hi(2)Afi #OAfi #£0.

Q(z) =0 AP(z) £ 0= 3, £:P(z) = Hyz)A

Proof: Let us make the construction of the H! (resp. f!) recursively on deg Q.

l.deg@=1:
It is possible to solve @(z) = 0. It is clear that 1/P(z) (resp. P(z)) can

be expressed .as a rationnal functions of the coefficients of P and Q.

11



2. Assurne that we have finitely many mappings working for deg @ = p < n.

Let us make the construction when degQ = p + 1.

Take the resultant R € | of Q and P. If R 3 0 then there exist N €
P*(X) and M € P*(X) with deg M < deg Q such that each coefficient of

M (Ifesp.. N) is a fixed polynomial function of those of P and Q and
R = N{X)Q(X)+ M(X)P(X).

In particular, if Q(z) = 0, then P(z) % 0 and

R
—— = M(z).
Choose M(X) as one of the H!’s and R as one of the f’s.

On the other side, when R = 0, apply Proposition 4 to find N € P*(X)
and M € P*(X) with deg M < deg@ such that each coefficient of M

(resp. N) is a fixed polynomial function of those of @ and P with:
0= N(X)Q(X) + M(X)P(X).

Recall that there are finitely many such polynornial functions. Remark

that for z such that Q(z) = 0 and P{z) # 0, one has:
M(z).= 0.

Apply the recursive assumption, bearing in mind that ¢ is replaced by

M. This ends the construction of the H]'s and the f;’s.
" To conclude, let us make the construction for the H;’s and the fi’s. Take any
pair (Q, P) such that Q(z) = 0 and P(z) # 0. Let i be such that:

fi
P(z)

= H(z).

12



Considering the new pair (Q, H}) let i be such that:

fi
Hi(=)

= H:J (.’B)_
Remark that f.,P(z) = fl|H.(z). . . : =N

Lemma 3 There ezist finilely many mappings pry = (u}, ..., p47): (B")*H —
IR™ such that each p} is o polynomial function and for any (Ws)iz1, . .41 =

((ud,. .. ul))iz1,  at1 € (B*N\(0,...,0))**! there exists j such that:

Hi 71'-(0’=0)

and
n+l

ij—ui: (0,...,0). -
i=l
Proof: Remark that up to some permutation it is possible for some 7 € [2,n+1],
to e}"{press in a unique way (by splving some system) u; as a linear combination
of the uy’s with'é € 1,5 —1]. | O
Proposition 5 means roughly that if £ € IR is any algebraic number and

y € IR an algebraic function of z, then y is also algebraic. We require additional

stronger properties.
Proposition 5 For anry tnleger n > 0, there exist finitely many mappings
& {(Q.P) € PX(X) x PX(X,Y) | deg Q < n;degx P < n;degy P < n}
— P(Y) |

such that each coefficient of £;(Q, P) = L; is a polynomial function {independent
of P and Q) of the coefficients of P, (). Moreovér, for all (z,y) € R*:

Q(:L-) =0AP{z,Y)eE ’P*(Y} AP{z,y)=0=L; e P*(Y)A Li(y) = 0.

13



Proof:

Assume that Q{z) = 0- with deg @ = m’. One starts from:
P(z,y) = pm(z)y™ + ... + p1(2)y + po(z) = 0

with pm(z) # 0. We are going to make ﬁﬁitely times, operations on peolynomials
in such a way that we always obtain polynomials with coefficients being polyno-
mial functions of the previous ones. Depending on them, there are only finitely
many possible such functions. .

Using Lemma 2, find py 4 € P(X) with degpr s < degQ for k = 1,m — 1
and £; € IR* such that:

Ly =p1mor ()Y 4 + P11y + P10-

Recall that £; (resp. the coefficients of p; ;) are polynomials functions of the
coefficients of @) and P.

In other words:
m—1m-1

b= % Sty
_ i=0 j=0 ‘ _
For h = 1, mm’, by multiplying the previous expression by y* and by using
Lemma 2, write similarly: ' '

m'=1m-1

fh+1ym+h = Z Z ”?,jmiyj-

i=0 j=0

Two cases are possible:
o y=0: Take Y € ‘P*(Y) dmong the possible L;’s.

e y #0: Remark that (u*)sego mm:) € (ﬂ?,mm')""m“,"l with u® = (ul;)ij €
B™ \ {(0,...,0)} satisfies the assumptions of Lemma 3. Find a tu-

ple (ao0,...,¢mm’) € R +1 \ {(0,...,0)} of polynomials functions of

14



(0" )nefo,mm) € (IRmm’)mm"*‘l. such that :

5 Preliminaries

For P € P(X,Y) (resp. @ € P(X,Y)): ‘P divides Q" is denoted by P | Q. If
P | @ and @ | P then one writes P ~ @ and this means that they differ only by

some real constant factor.

Lemma 4 Let P € PX(X,Y) (resp- Q € P*(X,Y)) be irreducible of degree n

(resp. m}. One has:
#{z |3y, Plz,y) =0AQ(z,y) =0} < o0
or P~ Q. |
Proof: Let R(X) be the resultant of P(X,Y) and Q(X,Y) with respect to Y.
« R0, Remark that -
{z |3y, P(z,5) = 0AQ(z,9) =0} C {R(z) = 0}
and #{R(z) =0} < 0.

e R =0. Apply Corollary 1 and choose N € P*(X,Y) (resp. M € P*(X,Y))
with degy N < m — 1 (resp. degy M < n — 1) such that: .

N(X, Y)P(X, Y) + MX,Y)QX,Y)=0.

Since P (resp. @) is.irreducible and P | M (resp. @ | N) is not possible,
one has P | Q@ (resp. Q| P). ]

15



Lemma 4 has a very useful consequence:

Proposition 6 Let (Py,...,P.) € (P*(X,Y))" and f(.) be a continuvous func-
tion defined on the neighborhood D C IR of  such that:

v €D, P’ f(z')) = 0.
There ezists ¢ > 0 such that:
o Bi,V2' € VHe), B(e, f(z) =0.
e 3i,V2 € V-(¢), Pi(z', f(") = 0.
with V+(e) =]z, z + ] and V=(€) =]z — &, z[:

Proof: WLOG one can assume that the P;’s-are non'equivalent' irreducible pé—
Iynomials. Indeed: write F; as product of irreducible polynomials Py ;... Py -

Remark that P;(z’, f(z')) = 0 implies
P (' f(2) =0V ...V Py i(a', f(z')) = 0.
Remark:

Sublemma 1 There ezists € > 0 such that for all ' € Vt(e) (resp. 2’ € V™ (¢)

) there ezists a unique  (resp. j) with Pi(z’, f(2')) = 0 (resp. Pj(z’, f(2')) =0}

Proof of the Sublemma: Use the previous lemma to remark that for all i # j,
{z' | Pi(z', f(z')) = 0 A P2, f(z')) = 0} is a finite set. o

Let us continue the proof of Proposition 6. Fix an integer n > 0 large
enough. Assume that for any integer large enough m > 0, it is possible to find a
pair (z,,,2,,) €lz—e¢—1/n,z— 1/n[? with |z!, — /| < 1/m so that the unique
polynomials associated to each one of them by Sui)lemma 1 are different. Take

a convergent subsequence to F € [r—e—1/n,z - 1/n].

16



By continuity of f(.) at %, we obtain a contradiction to Sublemma 1.

Therefore, there exiéts m > 0, such that if |¢/ — 2”| < 1 /m then the unique
polynomials associated to 2/ and 2 are the same. This means that it is the
same on all Jz — ¢,z — 1/n[. Let n goes to infinity to obtain the result. Proceed

similarly for V. a

V Corollary 2 Let f(.) be an algebraic function on the domain D C IR charac-
terized by P(X,Y) € P*(X,Y). For a given € DU 8D assume that there is
Q(X,Y) € P*(X,Y) and a sequence of.distz'nct points £, — T as n — o0 such
that: , | '

Q(zn, f(zn)) = 0.

Then, there exisls € > 0 such that two cases are possible:
o Either for all ' € V= (€) or for all 2’ € V*(¢), Q(z', f(2')) =0 is true.
o Forallz' e V= (e)UVT(e), Q(z, f(2')) =0 is true.

Proof: Decompose P (resp. @) in a product Py...P (resp. Q1...Q,) of irre-
ducible polynomials. The assumptions of Proposition 6 are satisfied with the

P;’s. Hence, there exists € > 0, such that:
o 3i,Vz' € VH(e), P, f(z)) = 0.
o 3'\¥2' € V™ (e), Po(e, f(=)) = 0.

This means that for at least a pair (3, ;) or {7/, j') (possibly both) infinitely

-many z' € V*‘(‘e) or V~(¢) satisfy:

£

P!, F(=)) = 0 A Qs(e!, f(&)) = 0

or

Pu(z!, f(z") = 0A Q(z', F(x")) =0

17



By using Lemma 4, remark that P; ~ Q; or Py ~ Q. ' |

Proposition 7 is the main result of this section.

Proposition 7 For any inlegersn >0, m > 0 and p > —1 there exist finitely

- many mappz'ﬂgs
8;: {(P,Q) € (P*(X,Y))’|degx P < p;degy Q < p;degy P < n;degy @ < m}
| — P(X) |
(resp.
% {(P.Q) € (P*(X,Y))*|degx P < pidesx @ < pidegy P < njdegy Q < m}

- P(Y))

such that each coefficient of 6;(P, Q) = T; (resp. 8;(P,Q) = R;) is a polynomial
function (independent of P and Q) of the coefficients of P and Q). Moreover for
any local marimum ¢ € IR of a continuvous function f(.) defined on a domeain

D C R with:
o For allz’ < z close enough to r, P(z', f(z')) = 0.
e Foralz' >z close enough to z, Q(z', f(z')) = 0.

the following holds:
3, T eP*(Y)AT(f(z)) =0

or

3j, R; € P*(X) A Rj(z) = 0.

Proof: Denote by T(n,m,p) {(resp. T{(n,m,c0)) : ‘Proposition 7 holds for
(n,m,p) (resp. T(n,m,0)AT(n,m1)A..). |

18



The proposition will be shown recursively according to the following schemes:
T(1,1,p-1) = T(1,1,p),
which added to 7°(1,1, 0) implies 7(1, 1,00)-, and |
T{n,m, p~DAT (n,m—1,0)AT (n—1,m, 0)AT (n—-1,m—1,c0) => T(n,m,p),
wich added to 7(n, m, ) implies that:
T(n,m—1,00) A T(n - l,m,.oo) /\T(n —1,m—1,00) = T{n, m,_o.o).

Initial step:
I there is only one polynomial of degree 0 with respect to X, for instance

P(X,)Y)=0a,Y" + ...+ &1Y + ao, then we are done since:
an f*(z)+ ... +a1f(z) + e =0
can be taken among the T;’s.

Recursive Step:
.. Let us take P(X,Y) = pu(X)Y™ + ...+ p1(X)Y + po(X) and Q(X,Y) =
gm(X)Y™ + ...+ qu(X)Y + go(X) with p, € P*(X) (resp. ¢ € P*(X)) and

0 < max; ;{deg pi, degg;) = p.

Case L P# Q@
Take the resultant R(X) of P(X,Y) and Q(X,Y") with respect to the variable

e R # 0. Take R as one of the E;’s.

e R =0. Apply Gorollary 1 and select N € P*(X,Y) (resp. M € P*(X,Y))
with degy N <m — 1 (resp. degy M <n—1) and

0=N(X,Y)P(X.Y)+ M(X,Y)Q(X,Y).
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Clearly, this implies that for all 2’ < z (resp. 2’ > ) close enough to z,

M(a', f(=)Q(z', f(z')) = 0 (resp. N(', f(z))P(<', f(z)) = 0).

In view of Corollary 2, this implies that around z the same polynomial of degree
‘ min(r, m) can be chosen and we are led to Case II or instead of P or , M and
N can be considered. In the last case rernark that the degree with respect to Y

is strictly lower for at least one of the polynomials.

Case II: P = Q

This case means that f(.) is algebraic on some neighborhood V(¢) =]z —
6, z+e[of z.

Subcase A: (z, f(2)) ié an ordinary point.' Since the derivative f'(x) exists,
if = is a local maximum of f(.), then Px(z, f(z}) = 0. Consider two different

cases:

1. Px(z,Y) = 0. Since there exists i such that p; # 0, take p, among the

_’
R;’s.

2. Px(z,Y) # 0. Clearly Px(X,Y) # 0, so let -R(X) be the resultant of
P(X,Y) and Px(X,Y) with respect to Y. Remark that R(z} = 0 when

for Y, we substitute f(z).

e R# 0. Take R as one of the R;’s.

e R = 0. In view of Corollary 1, there exists N € P*(X,Y) (resp-
M ¢ P*(X,Y)) with degy M < n — 1 such that:

0= N(X,Y)P(X,Y)+M(X,Y)Px(X,Y).
This implies that for any z’ € V one has: ~
0= Nz, f(z)P(z, f(z')) + M(2, f() Px (', f(2)),
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0= M(<', f(z'))Px(<’, f(=')).

Invoke Corollary 2 to conclude that there is a neighborhood V(') =

Je — €', £ 4 €[ of = such that at least one of the following items is true:
vz' € V(), 0 - M(<', f(z)),
vz € V(e), 0 = Px(z', ('),
Va' € V*(¢), 0= Px(z, f(z')) AVa' € V-(¢), 0= M(z', f(z'),
Vo' € V= (¢'), 0= Px(z', f(2)) AVz' € VH(¢), 0= M(', f(2")).

‘We are led to polynomials with a lower degree in Y or'in X.

Subcase B: The point (z, f(z)) is not an ordinary point i.e. Py (2, f(z)) = 0.

Mirmick what we have done with Py instead Px.

O
6 Main Proofs
Proof of Proposition 3:
The assertion ‘Proposition 3is true for {n), . .., nx )’ is denoted by P{n,,... ,'n;{).

Proposition 3 will be shown recursively according to the following scheme:
P(na,...,ng)=>Png,...,me+1,...,nk)

for any k € [1,...,K}.
(i) Step P(1,...,1)
This means, that for all states k = 1,..., K player I has only one move

available i = 1. Therefore:

va(k) = maxAg(k, 1,5) + (1= 3) 3 p(k, 1, )alea(k)],
heK ’
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i.e. for some j;

oa(k) = [Ag(k, L3k + (1 = A) 3 p(k, 1, ji)[RJua(h)].
heK

Therefore (vA(1),...,va(K)) is the unique solution of the following linear sy-

stem: ) . :
ML) = (= (= Np(, L) ea(d) = (1= 3) Tas o1, L ) Ao (R)
M(K,1ix) = —(1-3) Toner P(L, 1, k) Rlua(h) + (1= (1= Np(K, LJ‘K)[K])ﬁ,\(K)-
Remark that .

(- -2p(L 1)) - —(1-A)p(1,1, 1)K} .
: : : #0.
—1-Np(L L0 .. (1= (1= Np(K, 1, jx)[KDoaA(K).
The system being a Cramer System, va(1) is expressed as the quotient of
two polynomial functions of all the parameters of the game. The polynomial of

degree 1 which describes v, (1) satisfies obviously ‘the non trivial condition’.

(ii) Step P(ni1,...,ng) = P(n1,...,m +1,...,nk).

Assume now that A €]0, 1] is fixed. Therefore, the polynomials that will be
considered do not mention it.

Let T bea ga:rﬁe of dimensions (nl? coanp 4+l ng). Call vits value: In
state k, choose the two rows ng + 1 and n; for instance. Define a m-ew one nj,

as follows:

Vj: Vh: p(ka n,’kl J)Ih] = Qp(k, nk:j)[h] + (1 - Q‘)P(]-, ng + 1:3)["’]1
i, gk, nf, ) = ag(b,me, 5) + (1 - a)g(k, mi +1,5).

where o € [0, 1] is some new parameter. The game obtained by substituting the
new row n} for nz + 1 and n; is denoted by I'(e). The value of. this game is
written v(a). According to Proposition 2, the function v(.} is continuous with

respect to «.
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We have this lemma:
Lemma 5 v = max, ﬁ(a).

Proof: If player I restricts himself to play the last two rows of state with relative

weight o (resp. 1 — a), then he shall receive a lower equilibrium payoff. Hence:
Ya, v(a) < v.

The value v is achieved by playing stationnary strategies by Theorem 1. It
prescribes to play the rows n; (resp. np + 1) with the relative weight o) (resp.
1—ay). Therefore:
v(aa) = v.
O
The problem is simply to d.escribe the set of parameters & where the ma-
ximum is achieved. Remark that the game I'(e) satisfies the conditions of
P(ni,...,ng).

There are two cases:

1. The maximum is achieved for & = 0 (resp. « = 1). Since P(n,,...,nx)
holds, one can find a polynomial P among a finite set of possible ones,

such that:
. P(0,v(0)) = P(0,v) =0 (resp. P(1,v(1)) = P(1,v) =0),
satisfying the ‘non trivial condition’ with respect to v.

2. The maximum is achieved only for some « €]0, 1[. Apply Proposition 6
to select ¢ > 0 such that there exists two polynomials P and () selected

among a finite set of possible ones, such that:
Vo' €ja - €,a], P(a/,v(a’)) =0,
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and

Yo' €la, a+¢€f, Q(e’,v(a)) = 0.

Now, apply Proposition 7, to deduce that forsome T3, ..., T; and Ry, .. ., Ry,

one have:

Ti(v)=0Vv..vT,(v) =0

or

Ri(a)=0V...VE.(a)=0.
In the first case, then we are done. In the second case, we will succeed
to reach the conclusion after application of Proposition 5. Remermber

indeed that there exists, among a finite set of possible choices, P(X,Y) €
P*(X,Y) such that P(a,Y) € P*(Y) and

Plo, v(a)) 2,0'

]

Proof of Theorem 3: Apply Proposition 6 to Prof)osition 3 on the interval
10,1[. m]

7 Discussion

We have also proved the following property:

Proposition 8 Let f be a function defined on the set of stochastic games {I'}

_such that;

- (i) Assuming that in each state player I has only one action, and given a fired
number of actions for player II, there exisis P(X) € P*(X} chosen among

a finite set of possible ones each coefficient being a polynomial function of
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_the parameters of the game, such that:
P(f(I))=0.

(i) supogagr F(T(e)) = A(T)-

(iii) The function f(T(.)) is continuous on ]0,1[.

Then, for any stochastic game I' there exists P(X) € P*(X) with each coefficient

being a polynomial function of the parameiers of the game such that:

P(f(T)) = 0.

Remark 4 Our proof is not much simpler than Tarski’s theorem. However, in
‘view of Proposition 8, it depends much more on the specific properties of the

games.

Remark 5 It should be interesting to find a non trivial example (at least dif-
ferent from a dicounted value) of a function satisfying the assumptions of the

previous Proposition.
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