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Abstract

Some authors present models in which they show that the Nash bargaining
solution fails to be Maskin monotonic and hence cannot be implemented in
Nash equilibrium. We find these results misleading and discuss how imple-
mentability of the Nash bargaining solution can be discussed in utility space.
Arguing that the status quo should be treated as initial endowments we keep it
fixed and show that with this assumption the Nash bargaining solution satis-
fies Maskin monotonicity. The key property used in the proof is independence
of irrelevant alternatives which also turns out to be a necessary condition for

~implementability. We also show that the Nash bargaining solution satisfies a

sufficient condition for implementability independent of the number of agents.
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1 Introduction

The seminal references in the bargaining literature are the two papers by Nash
(1950, 1953). Nash (1950) introduces the model of the bargaining problem consisting
of a set of feasible payoffs and a status quo point and presents a solution which is
uniquely determined by a list of properties and assigns to every bargaining problem
a point in its payoff region. This axiomatic approach is further clarified in Nash
(1953) where it is also complemented by the formulation of a noncooperative game,

Nash’s demand game, in which players strategies are individual utility levels and

*I thank W. Trockel for many stimulating discussions, as well as L. Corchdn for getting me
interested in and providing a good introduction to the implementation literature. [ also received
helpful comments from S. Chattopadhyay, N. Dagan, F. Marhuenda, I. Ortufio-Ortin, E. Naeve-
Steinweg, and William Thomson. This research has been supported by a TMR scholarship of
the EU, under Contract No. ERBFMBICT960626 while the author enjoyed the hospitality of the
University of Alicante.
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the payoff depends on the feasibility of the players’ demands, the Nash equilibria of
which are considered as candidates for a solution of the bargaining problem. With
complete informatior, the set of Nash equilibria of this game turns out to coincide
with the set of individually rational and strongly Pareto efficient points in the payoff
region. Introducing uncertainty about the exact shape of the set of feasible payoffs,
however, again the Nash bargaining solution emerges.

Following Nash, many different solution concepts have been proposed and ax-
iomatically characterized (e. g. Raiffa (1953), Harsanyi (1955), Kalai and Smorodin-
sky (1975), Kalai (1977a), Kalai (1977b), and Perles and Maschler (1981), see Thom-
son (1994) for a good survey of this field). Also, his noncooperative approach has
initiated a whole literature concerned with noncooperative foundations of coopera-
tive solution concepts.! This line of research is commonly referred to as the Nash
program. The classic contribution for bilateral bargaining is due to Binmore, Rubin-
stein, and Wolinsky (1986} who obtain the Nash bargaining solution as the limit of
the unique subgame perfect equilibrium of an alternating offer game a la Rubinstein
(1982) when the probability of breakdown of the negotiation goes to zero. Krishna
and Serrano (1996) generalize their approach to the case of more than two players.
Howard (1992) obtains the Nash bargaining solution as the unique utility payoff of
- the subgame perfect equilibria of a finite extensive form game with perfect infor-
mation. Trockel (1995) has shown that for the two-player case the Nash bargaining
solution can be obtained as the unique equilibrium in dominant strategies of a game
which is very similar to Nash’s demand game. '

While the Nash program is intended to support cooperative solution concepts
by constructing noncooperative games based on the data of the cooperative game,
the implementation literature focuses on the issue of information concerning the
underlying data of the cooperative game itself. Given that the planner cannot ob-
serve agents’ preferences, she needs to design a mechanism such that for all possible
preference profiles agents’ behavior, as modelled by some equilibrium notion, in the
noncooperative game induced by the mechanism leads to exactly the outcomes pre-
scribed by the solution to be implemented. This literature has been initiated by
Hurwicz (1972). His negative result on implementation in dominant strategies (cf.
also Gibbard {1973) and Satterthwaite (1975)) were overcome by Maskin’s (1977)
contribution on Nash implementation which was made thorough by Repullo (1987)
and Saijo (1988). The implementation literature has since provided results on im-
plementation in various equilibrium concepts®. Howard (1992) shows how the Nash

'See also Harsanyi and Selten (1972) who view Nash’s noncooperative game with complete
information as the starting point of the bargaining problem and his axiomatic approach as a way

to select a particular equilibrium of this game,
?E. g. subgame perfect equilibrium {cf. Moore and Repullo (1988) and Abreu and Sen (1990)),

backward induction (cf. Herrero and Srivastava (1992)}, perfect equilibrium, (cf. Sjéstrom (1993)),
equilibriumn in undominated strategies (cf. Palfrey and Srivastava (1991}), and virtual implemen-



1 INTRODUCTION 3

bargaining solution can be implemented in subgame perfect equilibrium of a game
with a finite number of stages and perfect information.

He as well as Serrano (1996), who offers a model which intends to reconcile the
different approaches of the Nash program and the implementation approach, claim
the Nash bargaining solution fails to be Maskin monotonic (cf. Maskin (1977)} and
hence cannot be implemented in Nash equilibrium. Trockel (1997) suspects that this
is due to the particular choice of the outcome space of the mechanisms these authors
consider and suggests a different approach which yields an implementation of the
Nash bargaining solution (evern in weakly dominant strategies). In this note a third
approach is taken to discuss whether the Nash bargaining solution is monotonic. The
main difference with the literature lies in the fact that the discussion stays completely
in utility space, which seems to be more faithful to the original formulation of
the bargaining problem by Nash (1950) and his attempt towards a rioncooperative
foundation of his bargaining solution (Nash {1953)). Also, we clearly distinguish
the set of feasible payoffs, which is represented in the agents’ preferences, and the
status quo, which is seen as initial endowments and hence, in a first step, assumed
to be fixed as it is customary in the implementation literature.

The paper is organized as follows. We start by giving a definition of the class of
problems under consideration and of the Nash bargaining solution. Then we briefly
review the arguments given in the literature to show that this solution fails to be
Maskin monotonic. In the next section we present our approach and show that the
Nash bargaining solution is Maskin monotonic if we fix the status quo. In fact, it
turns out that the axiom of independence of irrelevant alternatives is crucial for this
result. We show that if we restrict attention to individually rational bargaining solu-
tions, independence of irrelevant alternatives of the bargaining solution and Maskin
monotonicity of the associated social choice function are equivalent, Following this,
we consider sufficient conditions for implementability in Nash equilibrium. Since
the Nash bargaining solution fails to satisfy no veto power (cf. Maskin (1977)) and
strong monotonicity (cf. Danilov (1992) and Yamato (1992)), we turn to a condition-
presented by Moore and Repﬁllo (1990) and made more operational by Sjostrom
(1991), that is both necessary and sufficient for implementation in Nash equilib- -
rium with three or more agents. This condition has the additional advantage that
a slightly stronger version that has been independently discovered by Dutta and
Sen (1991) assures implementability with two players. We can show that both their
conditions hold for a class of bargaining solutions including Nash’s. We conclude

with some remarks on lines of further research.

tation (cf. Matsushima (1988) or Abreu and Sen (1991}).



2 THE BARGAINING PROBLEM AND NASH'S SOLUTION 4

2 The Bargaining Problem and Nash’s Solution

Let U be a set, the universe of players, with |U| > 2. U can be finite or infinite. Let
I={ICU: |I|eN,|I|>2} Zisthe set of possible sets of players that we will
consider. For I € Z with |I| = N we often identify [ with the set {1,... N}. For
I € T the space of utility allocations is R’. Define A== |J,.;R".

A bargaining problem for player set I € T is (S,d) where S C R and d € R
The interpretation is that S is the set of feasible utility allocations the players can
agree upon and d is the status quo, 1. e., the utility payoff the players obtain if they
do not reach an agreement. '

Definition 2.1
A bargaining problem (S, d) with player set I is reqular if the following conditions

are satisfied.

(i) S C R! is nonempty, closed, conver, and comprehensive®.

(ti) d € int S.
(iti) The set Ssg={z €S : z > d} is compact.

For fixed player set I € Z, and fixed status quo d € R! we will denote the set of
all regular bargaining problems with this player set and status quo by Bi. Also we
write B! = | J scri B 3 and B={J;.; B for the set of all regular bargaining problems
with fixed player set I and with any player set from Z, respectively.

A bargaining solution ¥ is a mapping ¢ : B — A, such that ¥((5,d)) € S for
all (S,d) € B. If ¥ is a bargaining solution, we will also use ¢ for its restriction
to subsets of B, in particular, for fixed player set I € 7 we view 3 as a mapping
v BT+ R

We will be especially interested in the Nash bargaining solution v (cf. Nash
(1950)) which is a mapping v : B — A, defined by

v((S,d)) = arg max {H z(i)—d(z) : z € Sgd}
i€l
for all (S,d) € B.
Next, we list some properties of bargaining solutions that we will use later in the

paper. * The first is actually the key property (axiom) used in the characterization
of the Nash bargaining solution {cf. Nash (1950, Assumption 7) or Nash (1953,
Axiom V)) and will also play a prominent role in our discussion.

3A set A C R’ is comprehensive, if A ~R{ = A.

“The domain we consider will always be B, while in general of course, all properties can be
formulated relative to different domains; whether a particular bargaining solution satisfies a certain
property usually depends on the chosen domain.
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Definition 2.2

A bargaining solution ¢ satisfies independence of irrelevant alternatives (I1IA)
if for all I € T and dll pairs ((S,d),(8,d)) € B! x B! if SC S and ¥((8,d)) € S
then ¥{(S,d)) = ¥((S,d)).

Definition 2.3

A bargaining solution 3 is individually rational if ((S,d)) € S>q for all (S,d) €
B. It is strongly individually rational if ¥((3,d)) € Ssa={z€ S : z>> d}
forall (S,d)eB.

Definition 2.4

A bargaining solution + is efficient if for all (S,d) € B the solution ¥((S,d)) is
weakly Pareto efficient in S, i.e, there does not exist x € S such that z > ¥ ((S, d)).
It is strongly efficient if for all (S,d) € B the solution 1((S, d)) is strongly Pareto
efficient in S, i.e, there does not ezist T € S such that z = ¥((S,d)).

Remark 2.5
The Nash solution satisfies all of the above properties on the domain B.

3 Non-monotonicity according to the Literature

Generally speaking, the arguments in the literature showing that the Nash bargain-
ing solution is not implementable in Nash equilibrium rely on the following proce-
dure. Starting with a class of bargaining problems in B an underlying economic
environment is specified. It is assumed that the grand coalition can achieve certain
allocations'in this economic environment and that players have utility functions on
these allocations. The set § of feasible utility allocations of a bargaining problem
is interpreted as the image of the set of feasible allocations under agents utility
functions. Thus, the same economic environment gives rise to different bargaining
problems depending on agents’ utility functions. Typically, the possible preferences
considered lead to bargaining problems for which both the set of feasible payoffs and
the status quo may vary. Now the planner is supposeci to know all relevant data
on the economic environment but players’ utility functions. The Nash bargaining
solution corresponds to a social choice correspondence (or function) for the class of
economies consisting of the economic environment and a class of possible preference
tuples. It is the monotonicity of this social choice correspondence which is discussed.

The demonstration of the non-monotonicity of the Nash bargaining solution is
then done by means of examples (cf. Howard (1992, p. 145) and (Serrano {1996,
Example 1, p. 4-5)). :

We will take a different in some sense dual approach which focuses on the problem
that the set of possible outcomes may not be known, while the utility consequences
for all outcomes are. '
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4 Maskin Monotonicity and 1IA

Nash formulated the bargaining problem in utility space. While his extremely ab-
stract approach has been criticized (e.g. by Roemer (1986, 1988), see also Roemer
© (1996, Chpts. 2 and 3)), the discussion of the possibility of implementation of the
Nash bargaining solution should take place in the same framework used in his origi-
nal formulation. Therefore, we will not leave utility space but will choose exactly the
space of utility allocations R! as the outcome space for our implementation problem.

Following the model of Serrano (1996), we will choose agents’ preferences to
represent different possible sets of feasible payoffs. The status quo will be treated
differently, though, namely assumed to be fixed. This is how initial endowments in
economies are customarily treated in the implementation literature, and we feel that
the status quo in a bargaining problem plays a similar role than initial endowments.
In particular, what changes for a player if her component of the status quo changes
are not her preferences between different possible agreements, but rather how she
evaluates possible outcomes of the bargaining problem relative to her outside op-
portunities, or what she will accept as individually rational. Note, however, that in
our model feasibility is unaffected by the status quo.

The question is, of course, how one should think of this setup The crucial as-
sumption is that the planner, who should be thought of as an arbitrator asked to
solve their bargaining problem by a group of players, can assign utilities to the play-
ers. Alternatively, one can think of a fixed economy with given utility functions,
where our outcomes are the images of some allocations in the economy under these
utility functions; this is exactly how Serrano (1996) presents his model. The planner
also knows the actual situation of everybody, i.e. the status quo for all possible bar-
gaining problems she may be asked to act as arbitrator in. A particular bargaining
problem should be thought of as some project a group of agents 1s planning to stage,
where the characteristics of this project, i.e. the set of possible payoff vectors it can
generate, is not known to the planner.

So we fix a set I € 7 and a point d € R’ and consider the set B! of regular
bargaining problems with player set I and status quo d.

The outcome space will be R!. The preferences of player ¢ € / when the set of
feasible payoffs is § C R are given by the utility function uy : RT = R defined by

(o sl fzes |
us(?) di) fzgs. 1)

The interpretation of (1) is that a point outside the feasible payoff set is equivalent
to the fajlure to reach agreement and hence results in the agent falling back upon
her status quo utility, while feasible payoff vectors give to every player exactly her
component. We prefer this straightforward interpretation and hence have chosen
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the definition of utility functions as given in (1) rather than Serrano’s (1996, p.
2) formulation, which amounts to assigning a utility of —oo to all infeasible payoff
vectors. The advantage of his formulation is that changes in the status quo do
not affect preferences at all, which strengthens the analogy between status quo and
initial endowments. '

We can index the possible preference profiles in a very natural way by the set
Bi. Indeed, the set of possible preference or utility profiles given I and d € R/ is
Uj = {us : (5,d) € Bl}, where us = (u),;.
utility functions for agent ¢ € I. Note that this implies that we have a strong

Also we will write U for all possible

restriction on the domain of preferences since we only consider preferences that can
be represented by utility functions of the form given in equation (1). Moreover, the
preferences of the agents are not independent of each other since they stem from
the same bargaining problem, that is, the set of possible preference profiles does not
have a product structure.

In this model we can interpret any bargaining solution ¢ : B! — R! as a
social choice function mapping a utility profile (us) to the outcome ¢((S,d)) € R,
Therefore, we will, in an abuse of notation, also use v for that social choice function.
To make sure that this abuse of notation does not backfire later, we shall include the
+ status quo in the argument of the social choice function, that is we write v (us; d).

We will now demonstrate that the social choice function v is Maskin monotonic
(see Definition 4.1 below). In fact, it turns out that the key property of the Nash
bargaining solution which yields Maskin monotonicity is independence of irrelevant
alternatives (see Definition 2.2 above). Indeed, we will show that any bargaining
solution which satisfies I11A together with individual rationality is Maskin monotonic.
More importantly, we will also show that Maskin monotonicity of a social choice
correspondence ¢ implies that the corresponding bargaining solution satisfies IIA,
provided it is individually rational.

We start by introducing the following piece of notation. For ¢ € [ and z € Rf
let

L(z,us) = {z' € R' : u(z) > u(<')} (2)

be the lower contour set for utility function uk at the outcome z. It is easy to see
that for our context for z € S with z(¢) > d(z), we have L(z,u%) = R\ S, where
for (S,d) € B} and z € S the set 5% is defined as

Si={zeS :a(i)>z(i)}. (3)
For z ¢ S the lower contour set is L(z, uk) = R\ S}, and for z € 5 with z() < d(3),
it is
L{z,us)={z€ S : z(3) < z(i)} .

The three different cases are depicted in Figure 1.

-
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Figure 1: Lower contour sets for ug

Definition 4.1
A social choice function v is (Maskin) monotonic if for all pairs of utility profiles
(us,ug) € Ul x U we have

z € ¥ (us;d) and L(z,u%) C L(z,ug) for all i € I implies z € v (ug;d) .

Proposition 4.2
Let o be a bargaining solution satisfying IIA and individual rationality. Then the

corresponding social choice function i on U} is Maskin monotonic.

Proof:
Consider two situations {us; d) and (ugz; d) satisfying the condition in the definition
of Maskin monotonicity, i. e., such that z = ¢ (ug; d) and L(z,u%) C L(z, u‘S) for all
¢ € I. Individual rationality of v yields z > d.

We first show that z € S. This is clear for z = d by assumption (ii} in the
definition of regular bargaining problems (cf. Definition 2.1). For z # d there exists
a player j € I for whom 2(j) > d(j). Now assume z ¢ 5. Then we have L(z,u‘;.,) =
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R’\S’. Since d € int S, there exists p € S such that d(j) < p(j) < 2(j). But this ’
leads to a contradiction because then p € L(z,u}) but p & L(z, u‘_’%,)

Given d < z, z € S and z € S, we can, for all i € I, rewrite L(z,u%) C L(z,u})
as R1\Si C R!\S: which yields 5! C Si. From the latter holding for all i € I we
can deduce that § C §.

Hence we have the two bargaining problems (S,d) and (5,d) with S C S, z =
¥((S,d)) and z € S. These are exactly the conditions in the ITA axiom. Hence

z=9((5,d)), i.e., z = ¥ (ug; d) as required by Maskin monotonicity.
<

Since the Nash bargaining solution is individually rational and satisfies IIA, we
immediately have the following corollary.

Corollary 4.3

The Nash bargaining solution is Maskin monotonic.

Other solutions that our result shows to be Maskin monotonic are nonsymmet-
ric Nash solutions as introduced by Kalai (1977a), the egalitarian solution of Kalai
(1977b)® or utilitarian solutions (cf. Harsanyi (1955)) whenever the domain is re-
stricted such that they are individually rational.

The following example of a bargaining solution satisfying IIA but not individual
rationality the corresponding social choice function of which fails to satisfy Maskin
monotonicity demonstrates, that we cannot dispense with individual rationality in

the prerequisites of Proposition 4.2.

Example 4.1
Let J = {1,2} and d = (0,0) and consider the solution % on B} defined by

J(5,4), i 0((S,4))(1) > 1

b((S,d)) =
71[)(( )) (max{z € R : (z,-1) € §},-1), otherwise .

It is easy to check that ¢ satisfies ITA. It does not satisfy individual rationality for
player 1, for all bargaining problems for which the Nash bargaining solution yields
less than 2.

To see that the associated social choice function is not Maskin monotonic consider
the two situations depicted in Figure 2. The lower contour sets of 1 (us; d) coincide
for the two situations ug and ug, but Vcontra,ry to what Maskin monotonicity would
require we have ¥ (us; d) # ¢¥(us; d).

o

3This solution satisfies IIA and individual monotonicity, but not scale covariance. For bargaining
solutions satisfying the latter, IIA and individual monotonicity are incompatible (see Kalai and
Smorodinsky (1975}).
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Figure 2: A solution being neither individually rational nor Maskin monotonic

AN
N

d=(0,0)

In the proof of Proposition 4.2 the key step was to use IIA. The next result shows

[ ]
)

that IIA is in fact a necessary condition for a bargaining solution to be Maskin
monotonic, given that we restrict attention to individually rational solutions.

Proposition 4.4
Let I € I, d € R! and ¢ be a bargaining solution on Bl satisfying individual
rationality. If the corresponding social choice function is Maskin monotonic, ¢

satisfies ITA.

Proof:
Let I, d and + be as in the formulation of the proposition and assume 1 is Maskin
monotonic. Let (S,d) and (5, d) be two bargaining problems in B} fulfilling the
conditions of the IIA axiom, i.e., such that § C § and 1,b((S, d)) =z€ S. We have
to show that z = 1[)((5', d)).

We know t¢(ug;d) = z and z € 5. Furthermore, since S C S we have, for
all i € I that §¢ C § which implies R\S? C RI\S':;. The latter is equivalent
to L(u'; 2) C L(ug; z), because 1 is individually rational and hence # > d. Thus, -
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Maskin monotonicity of the social choice function v yields ¥(uz; d) = z and therefore
=¥ ((5,d)).
o
We need individual rationality of the bargaining solution because if there exists
an agent j € I with z(j) < d(5), the fact that § C § implies L(z, us) D L(z,ug)
and we cannot use Maskin monotonicity to get the desired result. This situation is
depicted in Figure 3.

Figure 3: Problems without individual rationality

Proposition 4.4 tells us that other bargaining solutions in the literature like the
Kalai-Smorodinsky solution proposed by Raiffa (1953) and axiomatically character-
ized® by Kalai and Smorodinsky (1975), or the Maschler-Perles solution axiomati-
cally introduced by Perles and Maschler (1981) and Maschler and Perles (1981), are
not implementable in Nash equilibrium in our framework since they fail to satisfy
IIA and hence fail to be Maskin monotonic.

Serrano (1996) shows that in his model, the core is the only solution concept
which is Maskin monotonic. Clearly, if we also consider set valued solution concepts
we can extend the definition of IIA, and the result of Proposition 4.4 will hold for
set valued solution concepts as well. So the core has to satisfy IIA on the domain
B, which is indeed easy to see, given that for a bargaining problem (5,d) € B it is
the Pareto-frontier of the set S>4.

6The Kalai-Smorodinsky solution is characterized by replacing I1A in the characterization of the
Nash bargaining solution by an axiom of individual monotonicity. It is important to notice, that
contrary to what may be suggested by the terminology it is ITA and not individual monotonicity
of a bargaining solution which is related to Maskin monotonicity.
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If we try to also treat variations of the status quo with a similar approach, we
fail. In the original model of Serrano (1996) where the utility of infeasible payoff
vectors 1s —oo the reason can be seen directly, since we see immediately, that the
status quo does not enter at all in the definition of agents’ preferences, while it
obviously has an influence on the Nash bargaining solution.

In our model, though preferences do change with changing status quo, still an ex-
ample very similar to Example 1 in Serrano (1996) shows, that Maskin monotonicity

is violated.

Example 4.2

Consider the two bargaining problems (S5, d) and (S,d) both in B{(12} with payoff
set S = {z e R12} . D ieq2y T £ 1}, d = 0 and d = (0,0.5). Then we have
z = v{(8,d)) = (0.5,0.5) and % = v((S,d)} = (0.75,0.25) # z. The hypothesis. of

the monotonicity condition is fulfilled, however.
o

One might wonder if this example could be rectified by reformulating the utility
functions to capture changes in the status quo in a different manner. A first idea
might be to rewrite the utility functions u} as follows ufg g ° RT—= R defined by

wigg(e) = | ST e S @
0 frgsS. :

It is immediately clear, however, that this does not change the preferences at all.

As we stressed abové, the status quo is not related to preferences over different

payoffs but to the evaluation of payoffs in the bargaining problem relative to the -

failure to reach agreement, i.e. to some outside option. So a second idea would be

to explicitly include this in the outcome space. To do so, choose the outcome space

to be Rf U éup{w}, where w ¢ R’ represents the status quo or conflict outcorne.”
The utility functions are u% : R U cup{w} — R defined by

d(i) fr=w
us(z) =S z(i) ifzeS (5)
d(z) ifz g SU{w}.
As before, Example 4.2 shows, that Maskin monotonicity does not hold for this

variation of the model, either.

5 Sufficient Conditions

Given that we have seen that with fixed status quo the Nash bargaining solution
satisfies monotonicity as a necessary condition for implementability in Nash equi-

7We distinguish between the conflict outcome w and the utility payoff d € S.
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librium, we next inquire whether it also satisfies sufficient conditions.
The classical sufficient condition for implementability with at least three agents is
no veto power (cf. Maskin (1977), Repullo (1987) and Saijo (1988)). In our context,

no veto power reads as follows.

Definition 5.1

A social choice function ¥ satisfies no veto power if for all utility profiles us € U],
if there ezists a point z € RY and an agent 1 € I, such that L(z,u%) = R! for all
J € I\{i} then z = ¥(us;d).

Unfortunately, this is not fulfilled by the Nash bargaining solution as can be seen
with the following example.

Example 5.1 ‘

Take I = {1,2,3}, d = 0, and S the comprehensive hull® of the convex hull® of the
points (0,1, 1), (1,0,0), (0,1,0), and (0,0,1). The point (0,1, 1) is weakly preferred
to any other point in .S by players 2 and 3. Therefore it should be in the solution
according to the condition of no veto power. But clearly it is not the Nash bargaining

solution, which is the point (%, %, %) o

So we have to consider other sufficient conditions given in the literature. In a
model with finite sets of alternatives and linear orderings Danilov (1992) provides
such a condition, called strong monotonicity, for implementability with three or
more agents. His results have been generalized by Yamato (1992) by allowing for
infinite alternative sets and arbitrary preference relations.

To define the condition of strong monotonicity we first have to introduce the
concept of an essential alternative. So let I and d € R’ be given and let ¢ be a
bargaining solution on BJ. Let ¢ € / and A C R!. An alternative a € A is essential
for agent 7 in the set A with respect to the social choice function ¢ if there exists a
utility profile us such that a = ¥(us; d) and L(a,uk) C A. The set of all alternatives
which are essential for agent 7 in the set A with respect to v is denoted Ess*( A, #).

A social choice function © satisfies strong monotonicity if for all pairs of utility
profiles us and ug if @ = Y(us; d) and if Ess*(L(a,us),v) C L(a,u}), for all 7 € 1,
then ¢ = ¢ (ugz; d).

Proposition 5.2

The Nash bargaining solution fails to be strongly monotonic.

Proof:
We first show that for all utility profiles ug and all ¢ € I we have

Ess’ (L(V(us; dy, ufg), V) C RIS (6)

8For A C R’, the comprehensive hull is defined as compH(A) = A — RL.
For A € B! the convex hull is defined as cH(4) = {C CR! : ACC, and C convex}.
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To see this fix ¢ € [ and us and let @ = v{(ug;d). Since the Nash bar-
gaining solution is individually rational we know that L(a,u}) = R!\S:. There-
fore, Ess® (L(a, ufg),v) C R/\S:. For b € S with b(i) < d(i) we know that b ¢

Ess® (L(a, uk), u) since by individual rationality there can be no preference profile
ug for which b = v(uz;d). On the other hand, if b € S such that d{z) < b(z) < a(7),
the condition L(b,us) C L(a,us) for essential alternatives in L(e, us) implies S € 5,
that is in particular, a € 5. But then b # v(ug; d) because for the set S the Nash
product was maximized in e so, since b € S, it cannot be maximized in b over the
set 55 a. .

Now it is easy to construct an example which shows that v is not strongly mono-
tonic. Let @ € RL; and b € R! with d « b < a. Let § = compH (e} and S =
compH (b). Then we have ¢ = v(us;d) and Ess’ (L(a,uis-),v) C R¥\compH (a) C
R\ compH (b) C L(a,ug) for all i € I but @ # v{uz;d) =b.

<

Proposition 5.2 is most discomforting given the fact that Yamato presents strong
monotonicity as a necessary and sufficient result and stresses the fact that he allows
for restricted domains of preferences. It turns out, however, that our preference
domain is more restrictive than those he considers in his necessity result (cf. Yamato
(1992, Theorem 1, p. 487)), in particular, his condition D (cf. Yamato (1992, p.
487)) is not satisfied. This condition requires that for every a € R!, for every
preference profile ug, every agent ¢ € [ and every element b € L(a,u) there be an
alternative preference profile ug such that L(a,u%) = L(b,ug) and L(b,uz) = R,
for all 7 € I\{'&} This is not the case in our setup.

Consider the status quo d € R!, a preference profile us and a point a € Rf
with a() > d(:) and 8¢ # 0. Then we have L{a,uy) = R\S' # R!. Take
b € compH (a) C L{a,u%). Then there exists no preference profile ug such that
L(b, u'g) = L(a,u%). There are three possible cases:

(1) If (z) < d(i) we have L(b,uj;) C {zeR': z(:) <b(i)}. But then a ¢

L(b,v}) though a € L(a, uj).

(i) f b & S, b(3) > d(:), we have L(b,u"s—,) > R\S. By comprehensiveness of S it
has to be the case that also a ¢ 5. Therefore, since § is closed, there exists an
open neighborhood of a not contained in 5. But every open neighborhood of a

has nonempty intersection with Si. Thus there exists ¢ € 5! with ¢ € L(a, uk)
but ¢ € L(b, ug) :

(iii) f b € S, b(i) > d(i), we have L(b,u’) = R’\S}. Then either § = @, in which
case L(b,u%) = RY # L(a,u}), or Si # . In the latter case there exists ¢ € 5;
with bz} < ¢(z) < a(z). For this ¢ we have ¢ ¢ L(b, ul‘§) but ¢ € L(a,uk).
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Note that the above arguments go through even if we would allow to vary the
status quo. In this case just replace d(3) in the three cases by d(3).

Given the negative result concerning strong monotonicity, we have to turn to the
necessary and sufficient conditions presented by Moore and Repullo (1990). While
their condition is more complicated, it has the advantage that with an additional
requirement it also covers the case of two agents!® which for the case of bargaining
is especially desirable. We will follow Sjostrém (1991) who presents a reformulation
of their conditions!! and a tractable way to check whether they are satisfied by a
given social choice correspondence.

The condition introduced by Moore and Repullo (1990), which we need to under-
stand Sjostrom’s (1991) modified condition, adapted to our model reads as follows.

Definition 5.3

A social choice correspondence ¢ satisfies condition g if there is a set D C R!
and for all triplets (i,us,z) € I x Ul x R such that z = v (us; d), there is a set
C'(z,us) such that z € C'(z,us) C L(z,u%) N D and the following three conditions,

are satisfied
(i) For all ug € Ul, C(z,us) C L(z,u'is-,) for all 1+ € I implies z = P(ug; d).

(i) For all ug € Uf, c € C¥(z,us) C L(c,ul), and D C L{c,w}) for all j € I\{i}
implies c € (ug; d).

(i) For all ug € Ui, c€ D C Lc, u) for all + € I implies ¢ € (ug;d).

Theorem 1 of Moore and Repullo (1990) states that if |7] > 3, % on %! can be
implemented in Nash equilibrium if and only if it satisfies condition .

Sjostrom (1991) presents an equivalent condition which is easier to check. To
present his condition, we need to define two additional sets.

Definition 5.4
D is the union of all sets D C R satisfying condition (iii) in Definition 5.8.

Definition 5.5
For all (i,v%,z) € I x Ui x R such that z = Y(us;d), C¥(z,uk) is the union of all
sets C* C L(z,uk) 0 D satisfying condition (ii) in Definition 5.3 with D = D.

19The condition they present for this particular case has also been discovered independently by

Dutta and Sen (1991).
1'Even though Sjéstrém (1991) assumes that the space of preferences has a product structure,

this is not used anywhere in his paper. Therefore, his results apply to our setup as well as those
of Moore and Repullo (1990) who explicitly allow for arbitrary domains of preferences (cf. their
footnote 4, p. 1086).
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Definition 5.6

A social choice function 1 satisfies condition M if for all triplets (1,us,z) €
I x UL xR such that z = 1 (us; d), the following holds: z'€ C¥(z,u%) and condition
(i) of Definition 5.8 is satisfied for C'(z,us) = C'(z,uk).

Lemma 3 of Sjostrom (1991) states that condition M is equivalent to condition
. Hence by Theorem 1 of Moore and Repullo (1990) it is necessary and sufficient
for implementability when there are at least three agents. We will use this result
to show that the Nash bargaining solution is implementable in Nash equilibrium
when |I| > 3. Actually, we will again demonstrate that this is the case for a class
of bargaining solutions including the Nash solution. We start with two lemmata

concerning the sets D and C*(x,uk), respectively.

Lemma 5.7
Let 1 be a bargaining solution satisfying strong efficiency. Then for the correspond-
ing social choice function ¥ on ULy we have D = RY.

Proof:
Since the bargaining solution 1 is strongly efficient the corresponding social choice
 function ¢ satisfies unanimity.'? To see this, let c € R}, == {z € R! : z > d} and
us € U such that R? C L(c,uk), for all i € I, i.e., such that c is everybody’s best
element in R’ under the utility profile us. From R? C L(c, uk) for i € [ it follows
that St = 0. This for all « € ] together with comprehensiveness yields S = compH(c)
and hence ¢ = ¥((S, d)) = v (us; d), because ¢ is the only strongly Pareto efficient
point in S.

By unanimity of 1, condition (iii) of Definition 5.3 is satisfied for all D = R/
and thus D = R1.1®

<

Lemma 5.8

Let 1 be a bargaining solution satisfying IIA, strong efficiency, and strong individual
rationality. Then for the corresponding social choice function ¢ on UT; we have
Ciz,ul) = L(z,u%) = RI\S! for alli € I, all uy € U3, and all z € Y(us; d).1*

Proof:
By Lemma 5.7 D = RI, and by its proof, the social choice function ¥ satisfies

unanimity.

12 A social choice correspondence 9 satisfies unanimity, if any allocation ¢ which is most preferred
by all agents is chosen by 1.

13Cf. Sjostrom (1991, p. 335) the example after the definition of B* (which is D in our notation.

“Note, that by the example given directly after the definition of the set C7(a, R;) in Sjostrom
(1991, p. 335); which corresponds to C*(z, u%) in our notation, this is exactly how C¥(z, u’) would
be if ¢ would satisfy no veto power.
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We are going to employ the algorithmic method to construct C*(z, u%) presented
by Sjdstrém (1991, p. 336, bottom). Fix (i,u%,z) € I x U x RY such that z =
Y(us;d). Ci(z,us) = L(z,u%). That is Ci(z,us) = RA\S!. Continuing with the

algorithm next we compute

for all ug € U] satisfying
Ci(z,us) = { £ € Ci(z,us) : z € Plug;d) (1) Ci(z,us) C L(:c,ufg)
(2) RY C L(z,u}) for all j # 4
Take z € Ci(z,us) = R\S:. Let ug € Ui such that the conditions in the definition
of Ci(z,us) are satisfied. Then we have Ci(z,us) = R\ St C L(z,u}). fz ¢ S we
would have L(z,u%) = RA\S:. But since S5 € S because of the strong individual
rationality of i, this cannot be the case. Hence it must be that z € §. Then
Liz,uy) = R\S¢ and thus §¢ C S°.
We have to distinguish two cases. First, if z # 2, we have that S? C 5* implies
5 = 0. Together with the second condition in the definition of Ci(z, us) this implies
R? C L(z,u}) for all i € I and hence by unanimity = € ¥(ug; d).
Second, consider z = z. Then §* C Si and R! C L(:c,ug) for all j # ¢ implies
S C §. Since we also have z = z € 5, IIA yields z € ¥(ug; d).
Together, we have that Cj(z,us) = Ci(z, us) and therefore by Proposition 4 of
Sj6strém (1991) also C¥(z,u%) = Ci{z,us). Thus, Ci(z,ul) = L(z,u}) = RI\S.. .

Proposition 5.9 :

Let ) be a bargaining solution satisfying ITA, strong efficiency, and strong individual
rationality. Then the corresponding social choice function 1 on U 4 is implementable
in. Nash equilibrium if [I] > 3.

Proof:
We will check that Sjéstrom’s (1991) condition M holds which is a sufficient condi-
tion for implementability in Nash equilibrium with [I]| > 3.

Let (z,us,z) € I x U] x R! be such that z = ¢ (us; d). Since C(z,u%) = R\ S,
obviously we have z € C(z,u%). It remains to demonstrate that condition (i) of
Definition 5.3 is satisfied for C*(z, us) = C*(z,u%), that is, that for all utility profiles
ug € UJ such that C%(z,uk) C L(z,ug,) for all : € I we have z = ¥ (ug; d).

As before, C*(z,uk} C L(z,ug) excludes the possibility that z ¢ 5. Therefore,
we have z € §, and hence C%(z,u) € L(z, u%) is equivalent to RI\S: C RIS or
S, € Si. This condition holding for all i € [ implies S C §. Again, we can apply
ITA: § C S and (S, d) = z € § implies z = ¥(3, d) = (us; d).

<
Implementability of the Nash bargaining solution v for |I| > 3 comes as an

immediate corollary, given that v is strongly efficient, strongly individually rational
and satisfies [TA.
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Corollary 5.10 7 .
The Nash bargaining solution is implementable in Nash equilibrium when the number
of agents is at least three.

In the context of bargaining, the case of |/| = 2 deserves special attention. For
this case, Sjostrom (1991) presents condition M2, which is a strengthened version
of condition M. The condition reads as follows.

Definition 5.11

The social choice function v satisfies condition M2 if it satisfies condition M and
in addition the following is true.’® ,

() Forall (2,ug, z,us) € RIxUI xRIxU! such that 2 € (ug;d) and z = P(us; d),
there is an alternative ¢ (2,ug, z,us) € C—’l(é,uls.) N C*(z,u2) such that, for all ug €
Uj, if C'(2,u}) C L(¢(2,ug 2,us),ul) and C*(z,u%) C L($(2,ug, 2,us), ul),
then ¢ (2, ug,z,us) € Y(ugd).

By Lemma 4 of Sjostrém (1991) condition M2 is equivalent to condition u2
which by Theorem 2 of Moore and Repullo (1990) is necessary and sufficient for
implementability when |I| = 2.

Proposition 5.12

Let ) be a bargaining solution satisfying ITA, strong efficiency, and strong individual
rationality. Then the corresponding social choice function v on U4 is implementable
in Nash equilibrium for all I € 7.

Proof:

Implementability for {I| > 3 follows from Propesition 5.10. Furthermore, in the
proof of that proposition we have already shown that ) satisfies condition M. Hence,
we only need to demonstrate that condition (iv) in Definition 5.11 holds true.

To facilitate notation, we will assume I = {1,2}. Let (2,us,z,us) € R x U x
RY x U} such that z € ¢(usd) and z = Y(us;d). We know that C’l(é,ulg) =
RN\S! and C%z,u%) = R/\S?. Thus C’l(:ﬁ/,ué) N C?z,uk) = RN\ (S’:U,S'f)
Let ¢(2,ug, 2, us) = max{2,z} + (1,1), where, for z,y € R, max{z,y}:=
(max{z(1),y(1)}, max{z(2),y(2)}) € R1"?. Clearly, we have ¢(2,ug,2,us) > 3
and & (%,ug, z,us) > z so that ¢ (2, ug, z,us) € C_’l(é,ug.) N C*z,ud).

Now let uz € U] such that C'(2,u}) C L (6(2,us,2,us),u) and C*(z,u?) C
L (q& (2,ug, z,us) ,uzs-) With arguments that are by now familiar we can conclude
that L (q’; (2,ug, z,us) ,ulg) =Rland L ((Jb(é,ug,z,us) ,ug) = R!. Therefore, una-

15The additional condition will be labeled (iv} to stress the connection to the conditions of
Definition 5.3.
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nimity yields ¢ (2, ug, z,ug) € 9(uz; d). Hence M2 is satisfied by ¢ and thus ¢ can

be implemented also if |I| = 2.
<

As before, the result for the Nash bargaining solution is a corollary.

Corollary 5.13
The Nash bargaining solution is implementable in Nash equilibrium.

Since the proof of Theorems 1 and 2 of Moore and Repullo (1990) is construc-
tive, it provides a mechanism that implements the Nash bargaining solution. This
mechanism is of the same type as the mechanism of Repullo (1987). Therefore the
well-known criticism against this mechanism applies here as well, especially the ar-
guments against the use of “integer games” (cf. Jackson (1992)). Another point that
has been raised against this type of mechanism, namely the complexity introduced
by the size of agents’ message spaces, in particular the fact that they are required
to report complete preference profiles, seems to have less bite in our model, how-
ever. This is due to the fact, that because of the restriction in the space of possible
preference profiles, by reporting one’s own preference, the preferences of all other

agents are automatically given.

6 Concluding Remarks

The setup we chose to investigate whether the Nash bargaining solution is imple-
mentable is somewhat orthogonal to the standard approach in the literature. Rather
than analyzing bargaining problems by viewing them as images of some underlying
economic situation where the planner’s basic problem is that she does not know
players’ utility functions, we work directly in utility space. In our model, however,
this does not imply that there is no problem for the planner since we assume that
she does not know the set of feasible utility allocations. Rather than interpreting
implementation theory to be concerned with “real” economic problems, we take a
more abstract view that we feel to be much closer to the Nash program. While there
the question is, whether it is possible for every bargaining problem from a certain
class to construct a noncooperative game the equilibrium of which yields the Nash
bargaining solution, we basically reverse the order of the quantifiers and ask, if there
exists a game form yielding the Nash bargaining solution as its equilibrium for every
bargaining game from a certain class. Even though we have cast this in the termi-
nology of implementation theory and worked with results from this area, maybe it
would be more appropriate to see our note as a contribution to the literature on the
Nash program. Tackling the problem in utility space, then, seems faithful to Nash’s
demand game which initiated this line of research. And stretching the parallels, one
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might even claim that the idea to consider the shape of the set S as unknown to
the planner is inspired by the smoothed version of Nash’s demand game, where the
idea is that players may not be completely sure as to how this set looks like.

A comprehensive discussion of the scope and philosophy of implementation the-
ory, though undoubtedly interesting and as far as we can see not available yet, clearly
is beyond the scope of this note. So we restrict ourselves to just one other point,
namely the interpretation of the outcome function in the implementing mechanism.
In our model, the outcome functions maps into utility space. How is this to be
interpreted? Having in mind, that agents value infeasible outcomes as if they were
the status quo, it cannot be the case, that the planner hands out utils to the players.
Rather, the outcome of the mechanism should be interpreted as a proposal to the
agents to chose this utility allocation, for example by realizing some joint plan of
actions. The main strength of such a proposal would be that it is a coordination
device. If agents after having participated in the mechanism were not to follow the
proposal, they would almost surely end up with a failure to cooperate, i.e. in the
status quo. This interpretation stresses the fact, that the planner does not really
need to have full control over players’ utilities. Indeed, even without being able to
observe if what agents did in the end resulted in the proposed utilities, she may have
sufficient reason to believe that it did.

Accepting our framework, the most interesting point we make with our model
seems the strong relation between the IIA axiom of Nash, which has often been
criticized in the literature, and Maskin monotonicity. In fact, Proposition 4.4 could
be seen as a defense of the IIA axiom on the grounds of asking for implementability
of the bargaining solution.

In this context it may also be interesting to compare our results to those in the
literature on rationality of bargaining solutions (cf. e.g. Peters and Wakker (1991},
Bossert (1994), and Sanchez (1996)), where IIA also figures as a key condition.

As we have stressed above, the a.ssufnption of a fixed status quo, corresponding
to constant initial endowments in the standard models, is a very common one in
the implementation literature. Nevertheless, 1t seems unsatisfactory and the next
logical step would be to investigate, how we can treat variations of the status quo.
For implementation in the standard model of pure exchange economies as well as a
model with production the problem of varying initial endowments has been discussed
by Postlewaite (1979) and by Hurwicz, Maskin, and Postlewaite (1995). Since their
framework is different from ours, we cannot directly use their results, of course.
Given the negative results obtained towards the end of Section 4, we think, however,
that their general insight, that with variable endowments the mechanism’s message
spaces have to depend on the endowment will also apply to our model.

Finally, we take up the discussion Howard (1992) starts in his introduction where
he deals with the question of implementability of the Nash bargaining solution in
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different equilibrium concepts. Qur paper refutes his assertion that implementation
in Nash equilibrium is impossible, at least for the case of fixed status quo. For
implementation in subgame perfect equilibrium his contribution provides a positive
answer by constructing a particular mechanism. At the same time, it 1s true that the
results on sufficient conditions for implementation in subgame perfect equilibrium
of Moore and Repullo (1988, Theorem 2) and Abreu and Sen (1990, Theorem 2)
require no veto power and at least three agents, and hence are not applicable to our
model by Example 4.1. As for Nash implementation, however, no veto power is a
sufficient but not a necessary condition. Therefore, Howard’s result falls in the gap
between these two and stresses the fact that it would be interesting to also have a full
characterization for implementability in subgame perfect equilibrium. The situation
with respect to implementation in equilibrium in undominated strategies discussed
by Palfrey and Srivastava (1991) is exactly the same, i.e., one could either search
for necessary and sufficient conditions or try to explicitly construct a mechanism
implementing the Nash bargaining solution in undominated strategies. The results
of Herrero and Srivastava {1992) regarding implementation in backward induction
and those on implementation in perfect equilibrium by Sjostrém (1993) are appli-
cable neither in Howard’s nor in our model because they deal with a finite set of
alternatives. As to virtual implementation introduced by Matsushima (1988), the
generally positive results of Abreu and Sen (1991, Theorem 1) while being exactly
in line with Howard’s setup do not directly apply to our model, since they work with
lotteries over a finite set of alternatives. More significantly, however, there does not
exist a result for the case of two agents. In summary, to apply general results on
implementability in any equilibrium concept to our mode] one would like to have a
full characterization of implementable social choice functions, i.e. conditions that
are necessary and sufficient and include the two-player case.

Because such results are not yet available for most equilibrium concepts, it may
be more fruitful to try to find explicit, preferably simple, or natural mechanisms,
which implement the Nash bargaining solution. It may be possible to find such
mechanisms taking advantage of the particular structure of the social choice function

v, in particular the restricted preference domain.
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