INSTITUTE OF MATHEMATICAL ECONOMICS WORKING PAPERS

No. 258

A Note on Existence of Equilibria in Generalized Economies

Ъy

Bezalel Peleg

June 1996

University of Bielefeld
33501 Bielefeld, Germany

Abstract

If the budget constraints of a generalized economy are continuous and balanced, then there exists a generalized Walras equilibrium.

A Note on Existence of Equilibria in Generalized Economies

Let $N = \{1, ..., n\}$ be a set of traders and let R_+^l be the commodity space. A generalized economy is a (2n+1)-tuple $E = \langle w^1, ..., w^n; u^1, ..., u^n; t \rangle$ where $w^i \in R_+^l$ is the initial endowment of trader $i \in N$; $u^i : R_+^l \to R$ is the utility function of $i \in N$; and $t \in R^l$ is the net trade vector of E (with the outside world). We shall assume in the sequal that

$$\sum_{i=1}^{n} w^{i} + t \in R_{++}^{l}(R_{++}^{l} = \{x \in R^{l} \mid x_{j} > 0 \text{ for } j = 1, ..., l\})$$
(1.1)

 u^{i} is continuous, quasi-concave, and strictly monotonic for all $i \in N$ (1.2)

Generalized economies were introduced in Thomson (1992). Let $E = \langle w^1, ..., w^n; u^1, ..., u^n; t \rangle$ be a generalized economy.

Definition 1.1 A system of budget constraints for E is an n-tuple of function $v^i: \Delta^l \to R_+, i \in N$, that satisfy

$$v^i$$
 is continuous for all $i \in N$; (1.3)

$$\sum_{i=1}^{n} v^{i}(p) = \sum_{i=1}^{n} p \cdot w^{i} + p \cdot t \text{ for all } p \in \Delta^{l} .$$
 (1.4)

(Here Δ^l is the (l-1)-dimensional standard simplex.)

Example 1.2 Let $w = \sum_{i=1}^{n} w^{i} \in \mathbb{R}^{l}_{++}$ and define

$$v^{i}(p) = p \cdot w^{i} + \frac{p \cdot w^{i}}{p \cdot w} p \cdot t \text{ for all } i \in N \text{ and } p \in \Delta^{l}.$$
 (1.5)

Thus, we obtain Thomson's proportional rule. It satisfies (1.3) and (1.4).

Definition 1.3 A competitive equilibrium of E relative to the budget constraints $v^1, ..., v^n$ is an (n+1)-tuple $\langle x^1, ..., x^n; p \rangle$ that satisfies

$$x^{i} \in R_{+}^{l} \text{ for } i \in N \text{ and } \sum_{i=1}^{n} x^{i} = w + t \text{ (here } w = \sum_{i=1}^{n} w^{i} \text{).}$$
 (1.6)

$$p \in \Delta^l \ . \tag{1.7}$$

$$p \cdot x^i \le v^i(p) \text{ for } i \in N.$$
 (1.8)

$$[y \in R_+^l, i \in N, \text{ and } u^i(y) > u^i(x^i)] \Rightarrow p \cdot y > v^i(p).$$
 (1.9)

Theorem 1.4 Let $E = \langle w^1, ..., w^n; u^1, ..., u^n; t \rangle$ be a generalized economy that satisfies (1.1) and (1.2). If $v^1, ..., v^n$ is a system of budget constraints for E that satisfies (1.3) and (1.4), then there exists a competitive equilibrium of E relative to $v^1, ..., v^n$.

Korthues [1995] proved the existence of proportional equilibrium, that is, equilibrium relative to (1.5).

Proof: STEP 1: Let $q = 2[\sum_{i=1}^{n} w^{i} + t]$ and let $Q = \{x \in R_{+}^{l} \mid x \leq q\}$. We claim that if the (n+1)-tuple $(x^{1}, ..., x^{n}; p)$ satisfies (1.6), (1.7), (1.8) and

$$[y \in Q, i \in N, \text{ and } u^i(y) > u^i(x^i)] \Rightarrow p \cdot y > v^i(p),$$
 (1.10)

then it also satisfies (1.9), that is, it is an equilibrium. Assume, on the contrary, that there exist $y \in R_+^l$ and $i \in N$ such that $u^i(y) > u^i(x^i)$ and $p \cdot y \leq v^i(p)$. Clearly, $y \neq 0$. Hence, there is $z \in R_+^l$, $z \leq y$, $z \neq y$, such that $u^i(z) > u^i(x^i)$. For every $0 < \lambda < 1$ $u^i(\lambda z + (1-\lambda)x^i) \geq u^i(x^i)$. Thus, by strict monotonicity, $u^i(\lambda y + (1-\lambda)x^i) > u^i(x^i)$. However, $x^i \leq w + t << q$. Hence, for $\lambda > 0$ sufficiently small, $\lambda y + (1-\lambda)x^i \leq q$ contradicting (1.10).

STEP 2: For $i \in N$ and $p \in \Delta^l$ we denote

$$\hat{B}^{i}(p) = \{ x \in Q \mid p \cdot x \le v^{i}(p) \}$$
 (1.11)

Then $\hat{B}^i(\cdot)$ is upper hemicontinuous. Furthermore, if $v^i(p) > 0$ then $\hat{B}^i(\cdot)$ is lower hemicontinuous at p. Indeed, upper hemicontinuity of $\hat{B}^i(\cdot)$ follows from the continuity of v^i . Assume now that $v^i(p) > 0, x \in \hat{B}^i(p), p(k) \in \Delta^l, k = 1, 2, ...,$ and $p(k) \to p$. Let y(k) be defined by

$$\hat{B}^i(p(k)) = \hat{B}^i(p(k)) \cap [0,x]$$

Clearly, if $p \cdot x < v^i(p)$ then y(k) = x for k sufficiently large. Thus, assume $p \cdot x = v^i(p)$. We claim that $y(k) \to x$. Assume, on the contrary, that there exists a subsequence $y(k_j) \to y$ and y < x. Then $p \cdot y (because <math>p \cdot x = v^i(p) > 0$). Hence $p(k_j) \cdot y(k_j) \to p \cdot y . Thus, for <math>j$ sufficiently large, $p(k_j) \cdot y(k_j) = v^i(p(k_j))$, and, therefore, $v^i(p(k_j)) \to p \cdot y$ while $p \cdot y < v^i(p)$, which is impossible because $v^i(\cdot)$ is continuous.

STEP 3: For $i \in N$ and $p \in \Delta^l$ define

$$\hat{D}^{i}(p) = \{ x \in \hat{B}^{i}(p) \mid u^{i}(x) \ge u^{i}(y) \text{ for all } y \in \hat{B}^{i}(p) \}.$$
 (1.12)

 $\hat{D}^{i}(p)$ is i's demand correspondence for the bounded economy. Further, let

$$F^{i}(p) = \begin{cases} \hat{D}^{i}(p), & \text{if } v^{i}(p) > 0\\ \hat{B}^{i}(p), & \text{if } v^{i}(p) = 0 \end{cases}$$
 (1.13)

Then $F^i(p)$ is upper hemicontinuous. The proof is straightforward. We also notice that if $x \in F^i(p)$ then $p \cdot x = v^i(p)$.

STEP 4: Let $\hat{e}(p) = \sum_{i=1}^{n} F^{i}(p) - w - t$ and $y \in \hat{e}(p)$. Then $y = \sum_{i=1}^{n} x^{i} - w - t$ where $x^{i} \in F^{i}(p), i \in \mathbb{N}$. Thus

$$p \cdot y = \sum_{i=1}^{n} p \cdot x^{i} - p \cdot w - p \cdot t = \sum_{i=1}^{n} v^{i}(p) - p \cdot w - p \cdot t = 0$$
 (1.14)

Therefore, by Lemma AIV.1 of Hildenbrand and Kirman (1988) there exists $\overline{p} \in \Delta^l$ such that $\hat{e}(\overline{p}) \cap R^l_- \neq \emptyset$. Thus, there exists a feasible allocation $\overline{x} = \langle \overline{x}^1, ..., \overline{x}^n \rangle$ such that $\overline{x}^i \in F^i(\overline{p}), i \in N$.

STEP 5: $\langle \overline{x}^1,...,\overline{x}^n;\overline{p} \rangle$ is a competitive equilibrium of the bounded economy. By strict monotonicity of $u^1,...,u^n,\ \overline{p}_j>0,\ j=1,...,l.$ Hence, by (1.13), $\overline{x}^i\in \hat{D}^i(\overline{p})$ for $i\in N$. Q.E.D.

References

- [1] W. Hildenbrand and A.P. Kirman (1988), *Equilibrium Analysis*, North-Holland, Amsterdam.
- [2] B. Korthues (1995), "Existence of generalized Walras equilibria for generalized economies", IMW WP No.241, University of Bielefeld.
- [3] W. Thomson (1992), "Consistency in exchange economies", mimeo, Department of Economics, University of Rochester.