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Conservation of Energy

in Nonatomic Games

Abstract

The Shapley-Value for games with a continuum of plavers of finitely many
types can be uniquely characterized hy the potential approach. The proof
gives a clear insight in the problem and might be extended to a more
general setup. Moreover like in physics there is a theorem of conservation
(of energy). In this sense the Shapley—Value is the only efficient solution

concept which conserves the ability of obtaining utility.



1 The Shapley—Value

Hart and Mas-Colell® offered in 1989 to extend the potential approach to games
with a continuum of players of finitely many types. Here now is a proof of this
ideca. It is based on partial differential equations and might be extended to a

more general setup.

1.1 Axiomatization

For ZeR] let BY := {zeR7% : z; <z, t = 1.---,n}. Then there is the following

definition.

Definition 1.1 A game with finitely many types is a tupel & = (2, f), where

ZeRY. nelN grand coalition
f+ BfCD—-R, f{0) =0 characteristic funktion

Remark. The number of different types is n. A coalition is represented by
a profile zeBY, where z; is the mass of players of type 5. The worthes of the
coalitions are given by the function f. Sometimes one designates a characteri-
stic function already as a game, if per definitionem the grand coalition and the

domain of definition can be recognized.

Now for the types there is the question of allocation .

Definition 1.2 A solution concept is an operator which assigns to every game

Y =(z.[) exactly one element of R".

Remark. For arbitrary, but fixed ZeR} and arbitrary f : Bf — R with

f{0) = 0 a solution concept may be viewed as a functional ®; : Bf — R™.

Yef. 2], [3]



Definition 1.3 A solution concept ®; : Bf — R" is efficient. if for all zeB7
it 15 true that
< ®4(z), = >= f(5) (1)

Theorem 1.4 Let ZeRY and feC'(BF) with f(0) = 0 be arbitrary. Then the-
re 15 exactly one solution concept Wy : BY — R"™ which fulfills the following

properiies,

(1) Wy s efficient.
(1) Wy is a gradient field, i.c.. there exists a conlinously differentiable potential
Vi o BY — R such that
U, = grad V5 (2)
Proof. Let ¥ : Bf — R" be defined as followed:

Ui(z) = /grad f(tz) dt

Therefore Wy is a gradient field. Hence (i) is true. It remains to show effiency.

For for arbitrary zeB7 it is true that

<Vyz),z> = </grad flz) dt, =z >



Now let &; : B} — R" be an additional solution coucept with the demanded
properties (i) and (ii). Then consider the difference wy := ®; — ¥,. Because of
linearity of the gradient therc is a continously differentiable potential v, : BY —

R, such that w; = grad v;. And for zeBY

<wg(z),z> = < Pp(z) = Wy(z),z >
= <Py(z).2> - < Uyp(z),z >

= 0

This implies a homogencous linear partial differential equation for v;.

> 2 (3)

=1

Every constant function fulfills this equation. Suppose there is a function vy
Bf — R which is twice continously differentiable and not constant. Then
there are two different points z). 2, B3\ {0} where v; has the different values v,
respectively v,. Now one considers the two curves £,7 : R — R", defined by
£(1) = z1exp(t), n(t) = =2 exp(t). 1t is true while £(¢)e B

dos(E1)) ié)t’f(f(t)) déi(1)

df 5 9E() dt
avf £(t))
;5 20N

=0

Thus vy is along the curve £ and mutatis mutandis also along 5 constant. This
means, the sets {(£(t).v1) : teR. &(t)eBF} and {(n(t),vs) : teR, n(t)eB7F) are

two contour lines of the function vy. Hence 1t follows

lim £(t) = and lim n(¢t) =0

f—oc {—o0
but
lim v/(€(1)) = 1 # v = Jim vy(n(1))

t—o0

Thus is vy not continous in zero in contradiction to the assumption. Therefore

vy can only be constant and hence wy is equal to zero. Thus ¢, = ¥, Q



Remark. The demand for continuity in the origion is very strong. It gives the
uniqueness. If one deals only with grand coalitions Z >> 0 then this demand
might be dropped with the result that there is a whole family of solution concepts

wich fulfill the properties (i) and (ii) everywhere except in the origion.

Definition 1.5 For arbitrary, but fired ZeRY} and arbitrary feC'(BI) with
f(0) = 0 the solution concept ¥, : BY — R" defined by

1
U,(z) -——/grad flt=) di (4)
0
s called the Shapley-Value.

Remark. In the class of infinite games with continously differentiable charac-
teristic function f the Shapley-Value ¥ can be uniquely characterized by the

properties (i) and (ii) of theorem 1.4.

1.2 Conservity

With analysis one can verify the following corollary.

Corollary 1.6 Let ZeR} and [eCY{BF) with (0} = 0 be arbitrary. Then it is

equivalen! for a solution concept ¥U;: Bf — R"

(1) Wy is the Shapley-Value, 1.e., VU, is a gradient field, i.e., thereis a conti-
nously differentiable potential V;: BY — R such that ¥; = grad Vy.

(1i1) ¥y is conservative, i.e., for every piecewise continously differentiable closed

way v : [0.1] — Bf with v{0) = 4(1) it is true that

j{ < Ui(z),dz >=0 (5)

“

If feCY(BY) then (i), (ii) are equivalent to



(i) Uy fulfills the integrability condition, i.e.. foralli =1.--- . n and all ze BT
holds

B:j N a:;‘

A=) B(Wy),(=) (6)

With the following definition one can make the property of conservity more

clear.

Definition 1.7 For arbitrary. but fired ZeRL and arbitrary feCY(BF) with
f(0) = 0 let &y : Bf — R" be a solution concept, z,,z.eBF two arbitrary
coalitions and v : [0,1] —» B} a piccewise continously differentiable way with

¥(0) = z, and (1) = z.. Then

W (D), 2020 y) 1= / < @y(z),dz > (1)

Zayy

is the expenditure of ®y for the pair (z,.z.) with respect to the way ~.
Then there is the following well known proposition.

Proposition 1.8 With the assumptions of the preceeding definition the follo-

wing 1s equivalent
(1) @4 is conservative.
(11) The cxpenditure W(dy, z,, ze,7) is independent of the way ~.

If O, is conservative, then there exists a potential Vi : BY — R, such that
VW, = grad V. Hence particularly for the erpenditure W

”/'((Df-:a::ea An') = Vf(ze) - ‘/f(:a) (8)

In the physical sense the expenditure corresponds to the work which is indepen-
dent of the way just for conservative forces. The sign is an agreement with the

author.



The expenditure has a clear interpretation®. Imagine the grand coalition of
a given game ¥ = (Z. f) has come in terms with a certain solution concept @.
Now let there be a dynamic situation in which z(¢) is the grand coalition at
time ¢. Plavers might leave the game by receiving their pavofls according to ¢
from a certain master of the game. And they can enter the game by transfering
exactly the amount of utility to the master which they will afterwards get by
¢ according to the new situation. It is only required that z(?) is piecewise
continously differentiable. That means changes in the grand coalition shall be

smooth enough.

The master himself may be viewed as a "deus ex machina”. Every arbitrary
coalition zeBt can be the master if the plavers for example want to play the

game on their own or want to gain utility on certain closed ways.

The expenditure W(dy, z,. 2., v} then is exactly the amount of utility which
has to be transfered to the master if the coalition z, comes into the game accor-

ding to 5 while starting with the coalition z,.

If one deals with a solution concept which is not conservative then there is
at least one way for which the expenditure is positive. This utility is deprived
from the grand coalition Z. A repetition might be done such that more and more
utility is deprived from the players. For conservative solution concépts on the
other side the whole transferable utility of the players is the same at every time.

This will be proofed formaly in the following.

2 Conservation of Energy

In classical physics conservative forces play an important role. Examples are the
graviational force, the Coulomb force, the force of an linacar harmonic oszillator
and so on. Conservaty implies conservation of energy which means that the
whole mechanic energy is the same at every time. This theorem is the most
important one in mechanics. To have a corresponding one in game theory would

be highly desirabie.

2cf. [7)



2.1 Characterization of Movement

First it is useful to watch at a time dependent grand coalition. The payofls
according to the arranged solution concept are the cause of movement of the
grand coaliton. According to the interpretation above it is possible for the
players to enter the game by paying the master or to get out by receiving a certain
amount. Therefore the solution concept is the moving force. Quantitatively
speaking players which will receive a hugh amount of utility’ are more interesting

for the master,

The next aim 1s to give a complete foretell of this movement analog to clas-
sical mechanics. To do so one needs an axiomatization of the movement corre-

sponding to Newton's Law.

Postulat Every grand coalition has a scalar property given by a positive real

number which is called psychical inertia.

In general « is time dependent as well as dependent of the grand coalition. But
in the following the psychical inertia shall be independent of inner processes of
the grand coalition and time. Hence x might be viewed as a constant. Thus one

has the following definition.

Definition 2.1 The product of psychical inertia and velocily of the grand coali-
tion is called impulse p.
p=rz(l) (9)

Thus all notions have been defined which are necessary for the game theoretical

generalization of Newton’s Laws.

Lex prima The time dependent change of the impulse is equal to the moning

force.
£r=—(rz(1)) (10)

o0



This law of movement will be the fundamental dvnamic equation of cooperative
game theory. It has to be solved to give an exact foretell of the movement. Just

for completeness there are two other laws.

Lex secunda A grand coalition without influence stays stidl or in the stafe of

straight uniform movement.

Remark. In the physical sense this law is the theorem of conservation of im-

pulse. With constant psychical inertia it is a special case of law one.

Lex tertia [f there arve the Fy,-- | F,, acting upon the same grand coalition,

then they may be added.
F=YF (11)

2.2 Energy

The notion of energy is very important in mechanics. In the physical sense

energy is the ability of doing work. There are different kinds of energy.

The game theoretical analogon to energy is the ability of obtaining utility
(from the master). They are also two kinds. Let ®; be a conservative solution
concept and V; a potential of ¢;. Set V4(0) = 0, then the potential Vj(z)
describes exactly the amount of utility which has to be transfered to the master
to bring the members of the coalition into the game. In this sense —V;(z) is
the potential ability of the coalition > to obtain utility (from the master). It is
the game theoretical analogon to the potential energy in physics. The sign says

that this amnount has to be paid from the master.

The next proposition makes it possible to extend the notion of potential

energy to arbitrary solution concepts.



Proposition 2.2 Let © = (2. f) be an arvbitrary infinite game and let &, :
BY — R™ be a continously diffcrentiable solution concept. Then there erists
a unique function Ceons : BT — R” such that the following two properties ar

fulfilied

(1) Peons 18 conservative

(1) < Yeons{z)z> = < Bp(z). 2> VzeBt
This peons is called the corresponding conservative concept.

Proof. Consider the game ¥ = (Z,< ®,(z),z >). Then by assumption
< ®4(z),z > is continously differentiable. Hence by theorem 1.4 and corol-

lary 1.6 there is a unique solution concept oons which fulfills (i) and (ii). =

On the other side there is an analogon to kinetic energy as well. Once the grand
coalitions has begun to move, it can only change direction or be stopped by
transfering utility to or from the master. This type of energy is implied by the
fact that z(¢) shall be piecewise continously differentiable. Changes of the grand
coalition have to be smooth enough which implies that "queues” of players will

arisc. As in physics the kinetic energy T at time ¢ is defined by T' = Jx2%(¢).

Now there is a formal definition of energy resulting by a solution concept.

Definition 2.3 Let ¥ = (z, f) be an arbitrary infinite game and let &; : Bf —
R"™ be a continously differentiable solution concept. Moreover let ¢oons be the
included conservative concept and let Vi @ BY — R be such that ¢eons =

grad Veone. Then one has the following kinds of energy.

o The kinetic energy is given by T = 13%(¢).
o The potential energy s given — V.

o The whole energy is given by £ =T + (—V ons).

10



2.3 Conservation of Energy

By time going on kinetic energy permanent]y changes to potential energy and
vice versa. In conservative fields the whole energy is the same at every time.
In the game theoretical context this means that the ability of obtaining utility
(from a master) is conserved. That is the theorem of conservation in game

theory.

Theorem 2.4 Let ¥ = (2, f) be an arbitrary infinite game and let &; : BY —
R™ be a conservative solution concept. Then the ability of obtaining utility is the

same al every fime.

Proof. The law of movement is here
®;(=(1) = F = k(1) (12)

For two arbitrary points of time ¢,,1. it is true for the work

z(te)
W(®;, 2(ta), 2(t), ) = / < F(2(t)), d=(t) >
z(ta)
= f< F(z(1), =(t) > dt
= f< k=z(1), z(t) > dt
_Fd s
S Jd 2 dt
G
= =

= T(t.) - T(L)

where T'(t) = 532(—5) is the kinetic energy of the grand coalition at time ¢. On
the other side by corollary 1.6 there is a potential V; : BY — R such that
¢, = grad V. Therefrom by proposition 1.8

W(be,z(ta), 2’(1‘6)1 Z) = Vf(te) — Vf(ia)

11



Hence
. T(ta)""'(*Vf(ta))ZT(te)‘F(_Vf(te)) (13)

The sum of kinetic and potential energy is the same at every time. a

This theorem describes formaly the impossibility of being tricked with conser-
vative solution concepts. Here it is not possible to gain utility from the players

by acting as a master in contrary to non-conservative solution concepts,

With the additional coustraint of effiency the Shapley—Value can be uniquely

characterized.

Theorem 2.5 Let & = (2, f) be an arbitrary infinite game and let b;: Bf —
R™ be a continously differentiable and efficient solution concept. Then &4 con-
serves the abilily of obtaining utility, if and only if ¥, is equal to the Shapley-
Value Wy,

Proof. "«<" W, is continously differentiable per definitionem and efficient by

theorem 1.4. By corollary 1.6 and by theorem 2.4 the conservation of energy is

true.

"=" Now let &; : B} — R" be an additional continously differentiable and

efficient solution concept. For the time dependent derivative of the kinetic energy

d | d /1,
ol = 5(5“ “.))

T 1t is true that

and the time dependent derivative of the potential energy (—Vi..) is

d

E(_l’ions) = —< gl'ad ‘/;:()!151 Z(t) >



By theorem 1.4 and corollary 1.6 @ is not conservative. Then there is a closed

way 7. such that for the difference w; := ®; — grad V., holds

% <wg(z),dz > = f < By(z) - grad Vegns. dz >

¥ ¥

- f< &(z).d= >

£ 0

Therefrom there is a teR, such that < w;{=z(¢)). 2(¢t) ># 0. Hence

DT 4 (V) = <@y (=(0).2(0) > — < Wy(=(0)). 50) >

dt
= <wy(=(t)), 1) >
# 0
for at least one teR. Therefore ®; does not conserve energy. o

Premises for these two theorems are an axiomatization of the movement and the
definition of kinetic energy. If one is not concerned with the given definitions
then this doesn’t matter. It is possible to propose an arbitrary law of movement
resulting in another definition of kinetic energy. But mutatis mutandis the

theorems remain true.

13
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