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Abstract

The positive prekernel, a solution of cooperative transferable utility games, is
introduced. It is shown that this solution inherits many properties of the prekernel
and of the core, which both are subsolutions. We prove that the positive prekernel
on the set of games with players belonging to a universe of at least three possible
members can be axiomatized by nonemptiness, anonymity, reasonableness, the weak
reduced game property, the converse reduced game property, and a weak version
of unanimity for two-person games. Additionally, we show that aronymity and
reasonableness can be replaced by covariance and the strong nullplayer property, if
at least four potential players are present.
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0 Introduction

The positive prekernel is a set-valued solution of cooperative transferable utility games.
Its definition is strongly related to the definition of the prekernel. A preimputation be-
longs to the prekernel of a game, if for distinct players : and j the maximum surplus of
i over j coincides with that of j over i. The only difference that occurs in the definition
of the positive prekernel is that the maximum surplus is replaced by its positive part.
Therefore the positive prekernel is a supersolution of both, the prekernel and the core,
thus it is a nonempty supersolution of the core. The positive prekerne] has all characteriz-
ing properties of the prekernel except the equal treatment property. Especially it satisfies
the converse reduced game property and the nullplayer property. That may be regarded
as an advantage over the prebargaining sets mentioned below which do not have these
properties. Moreover, it is a subsolution of the prebargaining set and even of the prere-
active bargaining set in the sense of Granot and Maschler (1997) (see Section 2). In the
special case of the market game discussed in Maschler (1976) the positive kernel coincides
with the bargaining set. Orshan (1994} showed that every nonsymmetric prekernel is a
subsolution of the positive prekernel. ‘

Our main results (see Sections 4 and 6) show that the positive prekernel has axiomati-
zations that are similar to an axiomatization of the core of totally balanced games (see
Peleg (1989)). Hence the positive prekernel is the only known solution that is nonempty
for every game, contains the core, and is axiomatized.

The paper is organized as follows: In Settion 1 the notation and some definitions are
presented.

In Section 2 it is shown that the positive prekernel coincides with the reactive bargaining
set in the sense of Granot and Maschler (1997) for both the T-person projective game
and a 5-person market game. Moreover, an example of a balanced game is presented, in
which the positive prekernel is strictly placed between the prereactive bargaining set and
the union of the core and the prekernel. In this example the prereactive bargaining set is
a proper subset of the prebargaining set.

In Section 3 it is shown that a preimputation belongs to the positive prekernel, if and only
if there is a preimputation of the prekernel which yields the same positive part of the excess
of every coalition. Alike the prekernel, the positive prekernel is a finite union of convex
compact convex polytopes. The positive kernel, an individually rational modification,
coincides with the positive prekernel for weakly superadditive games. Moreover, it is
proved that the positive prekernel satisfies the reduced game property and its converse.

Section 4 presents two characterizations of the positive prekernel on the set of games with
player set contained in some universe of at least three members. This solution concept
is uniquely determined by nonemptiness, anonymity, reasonableness (a preimputation is
reasonable, if it assigns to every player at least her minimal and at most her maximal -
marginal contribution), the weak reduced game property, the converse reduced game
property, and weak unanimity for two-person games (a solution concept satisfies this last
property, if it contains the set of all imputations for every two-person game). If covariance
under strategic equivalence is added, then we can replace reasonableness by some weaker
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property which resembles individual rationality in an obvious way.
In Section 5 the logical independence of the axioms of the first characterization is proved.

Section 6 presents an additional axiomatization which essentially arises from the first
one by replacing reasonableness and anonymity by the strong nullplayer property and
covariance.

1 Noi_:ation and Definitions

A cooperative game with transferable utility — a game — is a pair (N, v), where N
is a finite nonvoid set and

v:2¥ 5 R, v(@) =0
is a mapping. Here 2 = {§ C N} is the set of coalitions of (N, v).

If (N,v) is a game, then N is the grand coalition or the set of players and v is called
coalitional function of (N, v).

‘The set of feasible payoff vectors of G is denoted by
X*(N,v)={z € R" | 2(N)< v(N)},

whereas
X(N,v)={z € B"| z(N)=v(N)}

is the set of preimputations of (N, v) (also called set of Pareto optimal feasible payoffs
of (N,v)). Here

z(S) = Lieszi (z(0) =0) ,
for each z € RN and S C N. Additionally, let 5 denote the restriction of z to S, i.e.
ts = (%i)ies € R®. |
For disjoint coalitions $,7 C N and = € RY let (is,a:rp) = IguT.

A solution o on a set I of games is a mapping that associates with every game (N,v) € T
a set o(N,v) C X*(N,v).

If T is a subset of T, then the canonical restriction of a solution ¢ on I' is a solution on T.
We say that ¢ is a solution on I', too. If I is not specified, then o is a solution on every
set of games. '

Some convenient and well-known properties of a solution o on a set I' of games are as
follows.

(1) ¢ is anonymous (satisfies AN), if for each (N,v) € I' and each bijective mapping
7: N — N with (N,rv) €T

a(N',Tv) = T(J(N,’U))
holds (where (rv)(T) = v(r~YT)), 75(2) = 2.—1; (x € RY, j € N', T C N")).

In this case (N, v) and (N',7v) are isomorphic games.
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(2) o satisfies the nullplayer property (NPP) if for every (N,v) € I'"every z €
a(N,v) satisfies z; = 0 for every nullplayer: € N. Here i is nullplayer if v(SU{:}) =
v(S) for S C N.

(3) ois covariant under strategic equivalence (satisfies COV), 1ffor (N,v),(N,w) €
T with w = av + 3 for some a > 0,8 € RV .

g(N,w) =ac(N,v)+ 1
holds. The games v and w are called strategically equivalent.
(4) o satisfies nonemptiness (NE), if o(N,v) # @ for (N,v) € I.
(5) o is Pareto optimal (satisfies PO), if o(N,v) C X(N,v) for (N,v) € r.
(6) o satisfies reasénabieness (on both sides) (REAS), if
z; > min{v(SU{i}) —v(S)| S C N\ {1 }} d™™(N,v) (1.1)

u

z; < max{v(SU {i}) —v(8) | § C N\ {i}} = ™ (N, v) (1.2)
fori € N,(N,v) €T, and z € a(N,v). |

and

With the help of assertion (1.2) Milnor (1952) defined his notion of reasonableness.

It shouid be remarked (see Shapley (1953)) that the Sha,pley value ¢ (to be more precise
the solution & given by o(N,v) = {¢(N,v)}) satisfies all above properties.

Some more notation will be needed. Let (N,v) be a game and = € IRY. The excess of a
coalition. & C N at x is the real number

e(S,z,v) = v(8) — z(5).
For different players 7,7 € N let
- S,‘j(.’L‘,’U) max{e(.S,J.,v |? €0 CN\{J}}

denote the maximum surplus of : over j at z.

The core of (N, v) is the set
C(N,v) ={z € X"(N,v) | ¢(5,z,0) <0VYS C N}

of feasible payoff vectors which generate nonpositive excesses. The prekernel of (N, v)
is the set

PR(N,v) = {2 € X(n,v) | sij{z,v) = s;i{x,v) V1,7 € N with 2 # j}

of preimputations that balance the maximum surplusses of the pairs of players.



Definition 1.1 The positive prekernel of a game (N,v) is the set
POPK(N,v) = {z € X(N,v) | sij(z,v) < (s;i(x,v))4 Vi, j € N with ¢ # 7},

where v, = max{r,0} denotes the positive part of a real number r.

Remark 1.2 (1) It is well-known (see, e.g., Davis and Maschler (1965) and Peleg
(1986)) that both the prekernel as well as the core (restricted, of course, to balanced
games) satisfy all above properties.

(2) The positive prekernel of a game contains both the core and the prenucleolus of the
game by definition.

(3) The positive prekernel satisfies anonymity, the nullplayer property, covariance, non-
emptiness, Pareto optimality, and reasonableness. A proof of AN and COV is
straightforward and skipped. The other properties can be shown by suitably mod-
ifying the corresponding proefs used for the prenucleolus.

2 Examples

The positive prekernel of a game (N, v) is contained in the prereactive bargaining set, as
defined in Granot and Maschler (1997), of the game. Indeed, if z € POPK(N,v) and 1, j
are distinct players in N, then player ¢ has' an objection against player j at z, if and only
if s;;(x,v) > 0. In this case such objection can be countered by any coalition attaining
s;i(z,v), because s;;(z,v) = sji{z,v). We start with two examples discussed in Sections 3
and 4 of the paper mentioned before. '

Example 2.1 For the 7-person projective game, which is @ monotone simple game, whose
minimal winning coalitions are ' '

{1,2,4},{2,3,5},{3,4,6},{4,5,7},{1,5,6},{2,6,7} and {1,3,7}, .

the reactive bargaining set coincides with the (pre}kernel of the game. This game is weakly
superadditive, thus its positive (pre)kernel coincides with ils reactive bargaining set by

Remark 3.8.

Example 2.2 For the 5-person market game (N,v), defined by N = {1,2,3,4,5} and
o(8) = min{|§ 1 {1,2}], alS N {3,4,5}]},

where a > 0, Granot and Maschler (1997) showed that the reactive bargaining set is the
union of the core and of the kernel of the game. Again by weak superadditivity the postlive
(pre)kernel coincides with the reactive bargaining set in this case.



The following example shows the existence of games for which the core is nonempty and for
which the union of the core and the prekernel is a proper subset of the positive prekernel,
which itself is a proper subset of the prereactive bargaining set. Moreover, the prereactive
bargaining set is a proper subset of the bargaining set.

Example 2.3 Let N = PUQU R, where P = {1,2}, Q = {3}, and R = {4,5,6,7,8}.
Let (N, v) be defined by-

(1)

(2)

(3)

'3

0, z'fS:@orS:N

2, fISNER| =3 and SN (PUQ) € {P,Q}
—1, if S={i}U{j} forsomei€ P, j€ R

~2, fS=QUT forsome T C R with |T| =2
-5, if S = {i} for somei € P

—40, otherwise

Claim: C(N,v) # @ _
As the reader may check, (=5, —5,—10,4,4,4,4,4) is in the core of the game. (In-
deed, the core is a singleton.)

Claim: The union of the core and the prekernel is a proper subset of the positive
kernel.

In order to show this clatm observe that z' = (—1, 1,0,0,0,0,0,0) is not a member
of the core (because e({3,4,5,6},2',v) = 2) and not a member of the prekernel
(because sy3(x,v) > su(z,v)). However, a coalition S satisfies ¢(5,z',v) > 0, iff

e(S,z',v) = v(S) = 2. The proof that both “types” of coalitions of positive excess

balance the mazimum surplus of players 1, j satisfying {i,j} # P is straighiforward.
Pareto optimality of x' together with the fact that a coalition of positive excess either
contains P or does not intersect P shows Claim 2, '

Claim: The prereactive bargaining set PM" (N, v) is a proper subset of the prebar-
gaining set ’PMS"). - ‘ _

Let % = (0,0,0,0,0,0,—2/3,2/3). First we show that 2? does not belong to the pre-
reactive bargaining set PM™(N,v) by verifying that player 7 has a justified objection
against player 8 in the sense of the reactive bargaining set. Precisely the coalitions
S=PUTU{8} and S = QU T U {8}, where T C {4,5,6} with |T| = 2, are
the coalitions with nonnegative ezcess containing 8 and not containing 7. Of course
player 7 can take every player i € T to define a justified objection against S by using
the coalition (N \ S) U {i}.

In order to show that z° € 'PMgi)(N,v) note that (s;;{z%,v))y = (s;i(z?,v))4 for

~ distinet players with 1,7 ¢ {7,8}. Of course s7j(z%,v) > sj7(z2,v) for j # 7 and

sis(x?,v) > sgi(2?,v) for 1 # 8. It remains to show that there is no player i # 8
who has a justified objection against 8 and that 7 does not have a justified objection
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(4)

‘against any player j # 7 in the sense of the prebargaining set. Every objection

(S,y) of a player i # 8 against 8 using a coaltion S not containing player 7 can
be countered by the coalition (N.\ S)U {k}, which has the same ezcess as S, where
ke Sn{4,5,6}\{:}. If7 € S, then e(S, 2%, v) = 8/3. Nevertheless there are at least
two distinct players k,l € R\ {i}, thus one of them improves by at most 4/3, let
us say yr < zi +4/3. The excess of (N\ S)U {k} is 4/3, thus this coalition can be
used to counterobject. A similar argument shows that' 7 does not possess a justified
objection.

Claim: The positive prekernel is a proper subset of the prereactive bargaining set.
Let 2* = (-10,-10,-20,8,8,8,8,8). Then

. .

1, f S={i}u{s} forsomeie P, € R
= 2, if §=QUT for someT C R with |T| =2

e(S, z°, v)
ﬁ 5, if S={i} for someie P

(2.1)

| < 0, otherwise

. Players inside P (or R) do not possess justified objections against players of P (or

R), because the are interchangeable and they are treated equally. Moreover, every
objection of player 1 or 2 can be countered by using some coalition of the “second
type” (coalitions that occur in the second row of (2.1)). Every objection against 1 or
2 can be countered using {1} or {2} respectively. Every objection of 3 against some
player of R can be countered using a coalition of the same second type. Finally,
every objection of some player in R against 3 can be countered by some coalition of
the second type. : '

Properties of the Positive Prekernel .

In this section we prove that the positive prekernel satisfies the reduced game property
and its converse. Moreover, we show that every preimputation of the positive prekernel
of a game can be “supported” (in the sense of Theorem 3.1) by some member of the
prekernel of the game.

Theorem 3.1 [f (N.v) is a game, then

POPK(N,v) =

{y € RN | 3z € PK(N,v) such that (e(5,z,v))+ = (¢(5,3,v))+ Y5 € N}.

Proof:

(1) D: This inclusion is a direct consequence of the corresponding definitions.

"~
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(2) C: Let y € POPK(N,v) and define |
X = {o € X(N,0) | (e(S,2,0))+ = (e(S,y,0)) ¥S C N}.

It remains to show that X intersects PK(N,v). Let N (N, v; X) denote the nucleolus
of (N, v) with respect to (w.r.t.) X, ie.,

N(N,v; X) = {z € X | 6(e(S,z,v)scn) <iew 8(e(S,y,v)scn) Yy € X},

where 6(z) € R™" is the vector whose components are those of z € R ar-
ranged in nonincreasing order. The set X is a nonvoid compact polyhedron, thus
N(N,v; X) consists of a unique member v by Schmeidler (1969). In order to show
that v € PK(N,v) let i,j € N, 1 # j. If s;;(v,v) > su(v,v), then si5(v,v) <
0 by the definition of X. Therefore there exists ¢ > 0 such that +* € X and
Be(S, 15, v)scN) <iew O(e(S,v,v)scn ), where v° € RN is defined by

v+ €, ifk=1
Vi, otherwise
which is impossible. ‘ g-e.d.

Remark 3.2 Let (N,v) be a game. Then 'POP:’C(N,U) is a finite union of conver poly-
topes. Indeed, there is only a finile number of sets

X?* =

{y € X(N,v) V5, T C N :

(E(vasv) > e(T,z,v) 20 = e(S, y,v) > e(Tsya‘U) 2 0)
and (e(S,w,-v) <0=e(S,y,v) < 0) . 1

where z € X(N,v). If e € POPK(N,v) then X7 is a polytope containing © and contained
in POPK(N,v). , :

We recall the deﬁnitions’ of the reduced gamé (see Davis and Maschler (1965)); of the
reduced game property and its converse (see Sobolev (1975) and Peleg (1986)).

Definition 3.8 Let (N,v) be a game, let @ # 5 C N, and £ € X*(N,v). The reduced
game w.rt. S and z is the game (5, v5%) defined by

0, fT =10
v5%(T) = v(N)—»:c(N\S),. fT =S5
max{v(TUQ)—z(Q) | &N \ S}, otherwise

Definition 3.4 Let o be a solution on a set T of games. Then o satisfies the
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(1) reduced game property (RGP), if the following condition holds: If (N,v) €
T, 0+ S CN, and & € o(N,v), then (S,v5%) €T and z5 € o(S, v5:®).

(2) weak reduced game property (WRGP), if the following condition holds: If
(Nyv) e T, 0 £ S C N, IS| €2, and z € o(N,v), then (5,05%) € T and
zs € a5, v5%). :

(3) converse reduced game property (CRGP), if the following condition holds: If
(N,v) € I'; z € X(N,v), and for every S C N with two members (S, vs’”) el and
zs € o(S, vs"”) then = € cr(N v).

Note that Definition 3.4(2) is due to Peleg (1989) and that RGP implies WRGP. Further-
more, note that the prekernel and the core satisfy CRGP and RGP, if the set I' of games
is rich enough. The following lemmata show that the same properties hold in the case of
the positive prekernel. If U is a set (the universe of players), then let 'y denote the set
of games with player set contained in U.

Lemma 3.5 The positive prekernel on [y satisfies RGP.

Proof: If (N,v) €'y, z € 'POPIC(N v), and § # S C N, then (S,v57) is a game, thus
it is a game of ['y. Let 7,7 € S, 1 # j. Then Definition 3.3 implies

Sij(ﬂ:S’US'z) = St'j(wyv)y (31)

thus the positive prekernel satisfies RGP. ' q.e.d.
Lemma 3.6 The positive prekernel on Iy satisfies CRGP.

Proof: Let (N,v) be a game and z € X(N,v) be a preimputation. If z ¢ POPK(N,v),
then distinct players 7,5 € N exist such that 0 < s;;(N,v) > (s;:(N,v)4), thus equation
(3.1) implies that z; ;; ¢ POPK({i, 7}, vlivh, _ _ q.e.d.

Remark 3.7 For every two-person game (N, v) the positive prekernel is either the prek-
ernel, i.e., consists of the standard solution ¥, {defined by

= (v({f}) —v(N\ {t}) + v(N))/2 Vi € N)

only, or it coincides with the core of the game. '

The kernel of a game (N, v) is the set

z; > v({i}) Vi€ N and }

K ]\T’U = X j\r’v
(N, v) {IE S (s,;j(a:,v)ésji(z,v)‘or x; = v({j}) Vi,j € N, i#j)




In view of this definition we define the positive kernel of (N, v) by

POK(N,v) = {:1: e X(N,v)| > v({i}) Vi € N and _ } |

(sij(z,v)  (sji(z,v))4 or z; = v({s}) Vi,5 € N, 1 # j)
Of course, the positive kernel of a game is contained in the (reactive) bargaining set of
the game. ' '

Remark 3.8 If (N,v) is a game that is weakly superadditive, i.e.,

d™(N, v) = v({i}) Vi € N,

then
POPK(N,v) = POK(N, ’U)_.

Indeed, by REAS, POPK(N,v) C POK(N,v). To show the other inclusion, let z €
POK(N,v). If sij(z,v) > (8;i(z,v))4, then z; = v({j}). Let S C N be a coalition of

mazimal excess. Then i must be @ member of 5, because otherwise
sii(z,0) > e(SU{j} 2, v) > e(S,7,v) > sij(x,v).

Let |S| be of maximal size. Then S # N by Pareto optimality of z. Moreover, x5 > |
d¥o(N,v) = v({k}) for every k € N\ S by mazimality of S. Take k € N\ S and a
coalition T C N with i ¢ T 3 k attaining spi(z,v). The observation :

sii(w,v) > e(TU{j},z,v) 2 e(T,x,v) > sie(z,v)

directly leads to a contradiction.

4 A Characterization of the Positive Prekernel

In this section we shall assume that the universe U of players contains at least 3 members.
We recall Peleg’s (1989) notion of unanimity for two-person games (UTPG). A
solution o on a set ' of games satisfiles UTPG, if

o(N,v) = {z € X(N,v) | z: 2 v({i}) Vi € N}

holds true for every two-person game (N,v) € I'. This property, together with WRGP,
CRGP, and individual rationality (z € X*(N,v) is individually rational, if z; > v({r})
for every i € N) can be used to axiomatize the core of the set of markets games with
player set in U (see, Peleg (1989)). If [' contains a two-person game with an empty core,
then there is no solution satisfying NE and UTPG. A weaker property will be used.

Definition 4.1 A solution o on a set I' of games satisfies weak unanimity for two-
person games (WUTPG), if

a(N,v) 2 {z € X(N,v) | z; > v({i}) Vi € N}

holds true for every two-person game (N,v) € I.
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Now we present the main result of this section.

Theorem 4.2 The positive prekernel is the unique solution on 'y that satisfies NE, AN,
REAS, WRGP, CRGP, and WUTPG. .

The following lemmata are useful in the proof of Theorem 4.2.

Lemma 4.3 Let o', o? be solutions on Ty. If o' satisfies WRG’P, o? satisfies CRGP,
and if e1(N,v) C ¢%(N,v) for every game (N,v) € I' with at most two persons, then o’
is a subsolution of o2, i.e.,

o'(N,v) C o*(N,v) V(N,v) € Ty.

Proof: It suffices to show o'(N,v) C 0?(N,v) V(N,v) € T with [N| > 3. If z € o'(N,v),
then z5 € ¢'(S5,v5*) for every coalition § # § C N with |§| < 2 by WRGP of o
Therefore zg € 0%(S,v"*) for these coalitions by the assumption, thus z € 0(N,v) by
CRGP of ¢ q.e.d.

Lemma 4.4 Ifo is @ solution on L'y that satisfies NE, AN, REAS, WRGP, and CRGP,

then o is a subsolution of the positive prekernel.

Proof: By REAS (only condition (1.1) is needed here) ¢ is Pareto optimal on one-person
games. WRGP directly implies that ¢ satisfies PO. In view of Lemma 4.3 applied to
ol = ¢ and ¢? = POPK it suffices to show that o(N,v) C POPK(N,v) for every
two-person game (N, v) with N C U. If C(N,v) # 0, then it coincides with the core (see
Remark 3.7}, thus o(N,v) C POPK(N, v) by REAS and PO in this case. Let (N,v) € [y
with [N| =2 and C(N,?) = 0. Let z = 2* € RY denote the standard solution. We have
to show that o(N,v) = {z}.

Claim 1: z € o(N,v)
Assume, on the contrary, = ¢ o(N,v). Take * e U\ N (Wthh is possible by |U| > 3), let
N = {i,;}, and define (N U {*} w) by

0, ‘ ifS=0

Cw(S) =14 u(N), S =NU{x} ,

z(SNN)+ a, otherwise
where a = e({1},z,v) = e({“’} x,v). A straightforward argument shows that y = (z,0)
RNV} is an element of the positive prekernel of w. (Indeed it is well-known (see, e. g ,

Sudhélter {1993)) that the prekernel of a three-person game is a singleton, thus Theorem
3.1 also shows that y is the unique element of the positive prekernel.}
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The reduced game ( N, w™*¥) coincides with (N, v), thus y ¢ o(NU{*},w). Take 2z € o(NU
{+},w) (which is possible by NE) and assume for simplicity reasons N U {*} = {1,2,3}
and

Yyi— 71 2 Y2 %2 2 Y3 — 23 (4.1)

By condition (1.1) of REAS y; —a < z; V2 = 1,2,3. By PO z; < y;, 23 > ys and one of
the inequalities of (4.1) is strict. Two cases may occur.

Dwy—=zn1>m—2
If 4, > 75, then define ({1,2,3},u) by
w({2,3}) - zo, if S = {3}
u(8)=< v(N)—= -1, if §=4{2,3}

w(S), otherwise

and observe that % = ws'z for every proper nonvoid subcoalition § # S C N U
{*}, S # N U{x}, because :
e({2,3}, 2z, w) < e({2},z,w), e({3},z,w) < e({2,3}, 2, w) < e({1,3}, 2, w)

aﬁd v(N)—-21—1< w({2,3}.). By CRGP z € ¢({1,2,3},u). However,
dfn({1,2,3},u)
= H_liﬂsg{z,s} u(S U {1}) — u(S) -
= min{u({1}), ({1, 2}) — w({2}), u({1,3}) - u({3}),u({1,2,3}) — u({2,3})}
= min{w({1}),w({1,2}) - w({2}),w({1,3}) - w({2,3}) + 22,21 + 1}

’ =_ mln{a + Y,Y1,4 — Y2 + 22, %1 + 1} > Zy,
which yields a contradiction to condition (1.1) of REAS.
If 4, < z,, then define ({1,2,3},u) by

, if $=42,3
u(s) =1 i {2,3} ’
w(S), otherwise

where ¢ < min{w({3}) + 22, 22+ 23}, and observe that u>* = 52 for every proper
nonvoid subcoalition § # 5 C N U {*}, S # N U {+}, because

e({2,3}, z,w) < e({2}, z,w), e({2,3}, 2, w) < e({3},2,w).
By CRGP z € 6({1,2,3},u). However,
d({1,2,3},u) = min{a + y1, ¥, v(N) — g} > 21,
which yields a contradiction to condition (1.1) of REAS.
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(2) Yp— 21 =Yz — =2

This implies z; < y,. Therefore s3;(z,w) is attained by {2,3} and sz(z,w) is at-
tained by {1,3}. Define ({1,2,3},u) by

(5} — { “w(S), ?fS £ {3}
s—1, if § = {3}

and observe that u%* = w>* for every proper nonvoid subcoalition P#£SCNU
{*}, S # N uU{*}. By CRGP z € ¢({1,2,3}, u). However,
dgnax({]., 2, 3}1 u) = maXsc{1,2} U(S U {3}) — ’LL(S)

=max{zz — 1,y3,y3 — a} < 23,

which yields a contradiction to condition (1.2) of REAS.

~ Claim 2: o(N,v) = {z} _

Assume, on the contrary, there exists y € o{ N,v)\ {z}. Assume without loss of generality
N ={1,2}, 3 € U, and 41 < 71, y2 > 2 Define ({1,2,3},w) by w({1}) = w({2}) =
v({2}), w({1,2}) = o(N) +v({2}) — v({1}), and w(S U {3}) = w(S) + d, for 5 C N,
where d = v({1}) — v({2}) + y2 > y1? Moreover, define z € R¥(*} by z; = 2, = y; and
z3 = y1. Then '

0, . ’ _ ifsS=40
wh*(8) =4 2y, ifS=N ,
max{v{{2}),v({1}) + y2 —wn}, otherwise
thus
wMH(N) = o(N) + g2 — 1 < v({2}) + v({1}) + 32 — 31 < w4 ({1}) + w7 ({2}).

This last observation shows that C(N,w™?) = 0, thus zx € o(N, w™*) by Claim 1.
By construction ({1,3},w{"3*) and ({2,3},w{*3"%) are isomorphic and it can easily be
checked that they are isomorphic to (N, v). Therefore z5 € o(S,w"*) for every two-person
" subcoalition of {1,2,3} by AN. CRGP directly implies z € o({1,2,3},w}), but player 3 is
inessential (i.e., strategically equivalent to a nullplayer) of worth d, where

dTn({1,2,3},w) = d = d7**({1, 2,3}, w),

thus z3 < d establishes a contradiction to condition (1.1) of REAS. o gqed.

Corollary 4.5 The j).os:itive prekernel is the marimum solution on Ty that satisfies NE,

AN, REAS, WRGP, and CRGP.
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Proof: The positive prekernel satisfies the required properties by Remark 1.2, Lemma
3.5, and Lemma 3.6. Lemma 4.4 completes the proof. g-e.d.

Proof of Theorem 4.2: By Remark 1.2 the pos1t1ve preLernel satisfies WUTPG. Corol-
lary 4.5 and Lemma 4.3 complete the proof. : q.e.d.

The core on the set of market games contained in 'y is the unique solution that satisfies
individual rationality (IR), WRGP, CRGP, and UTPG. We used WRGP, CRGP, and
WUTPG, a property that is weaker than UTPG, in our characterization. In some sense
REAS replaces IR. However, it is possible to weaken REAS in such a way that a weak
version of IR is obtained. A solution o on a set I' of games satisfies reasonableness from
below (REASB), if condition (1.1) of REAS is satisfied. Now the positive prekernel
can be characterized by weakening the axioms for the core and adding some “standard
axioms”.

Theorem 4.6 The positive prekernel is the unique solution on I'y that satisfies NE, AN,
COV, REASB, WRGP, CRGP, and WUTPG.

Proof: Only the uniqueness part has to be shown. In the proof of Lemma 4.4 condition
(1.2) of REAS is only used once, namely in Claim 1, part (2). This case directly leads to a
contradiction, because z{ ) is the standard solution of the game ({1,2},w {1212} with an

empty core. This game is isomorphic to a game that is strategically equivalent to (N,v),
thus WRGP, AN and COV establish a contradiction. ' q.e.d

5 On the Independence of the Axioms

The following examples show that the properties used in Lemma 4.4 and Theorem 4.2 are
logically independent. We start showing that these results are not valid, if [U| = 2.

Example 5.1 If jU| =2, then define
o%(N,v) = {z € X(N,v) | z is reasonable} Y(N,v) € I'y.

Then ¢ satisfies NE, AN, REAS, COV, RGP, CRGP, and WUTPG, but it is not a

subsolution of the positive prekernel.
From now on we assume that the universe I/ of players contains at least three members.

Example 5.2 The solution o' on I'y is defined by distinéuishing cases.

(1) If N = {i}, then o'(N,v) =lX(N,'u) = {v({tH}.

14



(9) IfIN] =2, N = {i,j}, then

(N, v) = { C(N-v). | if C(N,v) # 0
| {z € X(N,v) | 2 = v({1}) or z; = v({j})}, otherwise

assigns to every two-person game with an empty core the extreme 'points of its set
of preimputations.

(3) cY(N,v) = {z € X(N,v) | zs € o' (S,v5F) VS C N, |8] =2}, if [N] >2.

This solution satisfies AN, COV, and CRGP by definition. The core is a subsolution of o*,
thus it satisfies WUTPG. Moreover, o' satisfies RGP by the transitivity of reducing:

UT,.'D — (US,I)T,IS V(N,’U) € FU; 1) 75 T (_-'_'- g g N, = X‘(N,’U)

o' does not satisfy NE (even if |U| = 3), because its application to the game (NU{x}, w)
of Claim 1 of the proof of Lemma 4.4 yields the empty set.

Claim: o' satisfies REAS.

Assume, on the contrary, there is a game (N,v) and z € ¢'(N,v) that does not satisfy
reasonableness. Then there is a player i € N such that (1.1) or (1.2) of REAS is violated

al 1.

(1) z; < d™(N,v)

Then si;(z,v) > 0 V) € N\ {z}, thus s;i(z,v) = 0 by definition of o*. Take S C
N\ {i} which is mazimal (under C) such that e(S,z,v) = 0. Then 5 # N\ {z}.
Take T''C N\ {i} attaining 0 = s;;(z,v) for some j € N\ (SU{i}}). By mazimality
of S there exists k € S\ T. Therefore

sui{z,v) > e(S Ui}, 2,0) > 0 < e(T U {i}, 2, ) < sz, v),

a contrediction.

(2) z; > dM™(N,v)

Then sji(z,v) > 0 V5 € N\ {i}, thus si;(z,v) = 0 by definition of 0. Take S C
N\ {i} which is minimal such that>e(S U{i},z,v) = 0. Then S # 0. Take 7 € §
and T C N\ {i} such that s;j(z,v) is attained by T U {i}. By minimality ofS we
have T\ S # 0. Let k € T\ §. Then

spi(z,v) = e(T,z,v) >0 < e(S,z,v) < s;(z,v),

a contradiction.
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Example 5.3 In order to show that AN is independent we proceed similarly to Example
5.2 by defining o®. The only difference in the definition occurs for two-person games (N,v)
with an empty coré. Choose two different players, let us say 1 and 2, of U and define

z?, ' otherwise

(N, v _‘{ {r e 'X(N,v) | 21 = v({1}) or 3 = v({2}) or e = ), if N =1{1,2}

where z° is the standard solution of (N,v). As in the last example it is easy to verify that
o? satisfies NE, COV, RGP, CRGP, WUTPG. It does not satisfy AN.

Claim: ¢? safisfies REAS.

By construction x € o?(N,v) implies
(skz(m,v))+ = (s;k(m,v))+ Vk,l = N with k # l, {k,f} 74 {1,2}. (5.1)

Therefore = € POPK(N,v) for every N satisfying {1,2} € N. Assume, on the contrary,
z € o}(N,v) is not reasonable, thus, x ¢ POPK(N,v) and [N| > 2. Property (5.1)
implies that (1.1) and (1.2) of REAS ave satisfied fori € N\{1,2}. Moreover, siy(z,v) >
0 and sa1(x,v) = 0 can be assumed (otherwise exchange 1 and 2). Hence '

xp > dy™(N,v) orzy < d'f'i“(Nl,v).

Two cases may occur:

(1) z2 > dT**(N,v)
Then
si2(2,v) = sy(z,v) ViEN \ {172} (5.2)

If S C N has mazimal excess, then § C N\ {2}, thus § = {1} by (5.2). This
. observation contradicts |[N| > 2.

(2) z; < (N, v)

The fact that si(z,v) = sa(z,v) > 0 fir i # 1,2 implies that N \ {2} is the
unique coalition of mazimal excess. Take j € N\ {1,2} and observe that sj(z,v) =
s2;(z,v) > 0 yields a contradiction.

Example 5.4 The solution ¢®, defined by o3(N,v) = X (N, v), shows that REAS is logt-
cally independent.

Example 5.5 The solution o' is defined inductively on |[N|. If|[N| <2, then o*(N,v) =
POPK(N,v). If N| > 2, then two cases are distinguished.

(1) If (N,v) does not contain inessential players, then a'(N,v) is the set of all reason-
able preimputations of (N, v). '

16



' (2) Ifi € N is an inessential player of (N,v), then
o*(N,v) = {z € X(N,v) | zmygy € (N \ {i}, omip)}-

An inductive argument shows that o* is well-defined. In view of the fact that POPK is
a subsolution of o' which coincides on games with at most two persons, o' satisfies NE,

WUTPG, and CRGP. COV, AN are straightforward and WRGP is violated.

Example 5.6 Define 65(N,v) = {x € X(N,v) | zs is reasonable for (§,v5%) VB £ 5 C
N}. Then o satisfies NE, AN, REAS, COV, and WUTPG. Moreover, RGP is a direct
consequence of the transitivity of reducing. Of course o violates CRGP.

Example 5.7 In order to show that WUTPG is independent, let o be some subsolution
of POPK on 'y satisfying NE, COV, RGP, and CRGF. We define the anonymous
extension & of ¢ by the following conditions: '

(1) 5(N,v) = o(N,v), if IN| =1.

(2) 3(N,v) = {r(z) | 7: N' = N is bijective, 7v' = v, (N',v) €y, z € o(N',v")}, if
N] =2 |

(8) 5(N,v) = {o € X(N,v) | zs € 5(5,v5°) YS C N, |S] =2}, if |IN| > 2.
By AN of POPK, the transitivity of reducing, and its construction, the solution & satisﬁes

NE, AN, REAS, RGP, and CRGP. In order to present an explzcxt example, define o® on

games with at most two playev s by

. X(N,v), | A C(N,v) # 0
o’ (N,v) = .
{z € X(N,v) | z; = v({i}) for somei € N orz =2z"}, ifC(N,v)=10
(compare with Sudhélter (1993)). Note that o is a special case of an anonymous extension

of a nonsymmetric prekernel in the sense of Orshan (1994). Furthermore, note that the
prekernel itself may serve as a further ezample that does not satisfy WUTPG.

Note that we do not know whether Theorem 4.6 remains valid, if COV is dropped as a
condition.

6 An Additional Axioniatization

A strong version of NPP is employed to axiomatize the positive prekernel. We assume
that U contains at least four members.



Definition 6.1 A solution o on a set ' of games salisfies the strong nullplayer prop-
erty (SNPP), if it satisfies NPP and if the following condition is fulfilled: If (N,v) €T
is a game with af least two persons and if i € N is a nullplayer of v, then 0(5,vs) = {zs | -
z € o(N,v)}, where S = N \ {i} and vs 1s the coalitional function of the corresponding
subgame, whenever this subgame belongs to I'.

Note that the positive prekernel satisfies SNPP. The following result resembles Lemma
4.4, -

Lemma 6.2 If o is a solution on [y that satisfies COV, SNPP, WRGP, and CRGP,
then o is a subsolution of the positive prekernel.

Proof: COV and SNPP imply that o is Pareto optimal on one-person games, thus o
satisfies PO by WRGP. Let (N,v) € 'y be any two-person game. In view of Lemma 4.3
it suffices to show that a(N,v) C POPK(N,v).

We assume that {1,2,3,4} is contained in U and that ¢ is not a subsolution of the core.
Let
I ={(N,v) €Iy | IN] =2}

and

r'*® = {(N,v) eT? lC(N,v) = P}.

Claim 1: o(N,v) # 0 ¥(N,v) € 29

Take (N, %) & T2, let us say N = {1,2}, with o(N,8) € C(N,?) and take € a(N,v)\
C(N,?). Define ({1,2,3},w) to be the game which arises from (V,%) by adding the
nullplayer 3, ie., @(S) = v(5N N). Then § = (z,0) € o({1,2,3},w) by SNPP. Let
(N, %) = ({1,3}, w{*h¥) denote the reduced game. By WRGP g5 € o(N, ). Note that

a({1}) = max{v(1), &1}, - (6.1)
({3}) = max{0,5({2}) — =}, (6.2)
a(N) = 7. : (6.3)

In order to complete the proof of Claim 1 we proceed by showing that (IV, %) has an empty
core. V

v({1}) or &1 > &(N) — 9({2}).

(a) 2 <v{{1})
Then #; > ©({2}), hence

A({1) + ({3} = o({1}) + 0 > & = YN)
by (6.1,6.2,6.3), thus (N, ) € [??,

(1) Case: C(N,5) # 0
Then 7, <
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(b) 21 > #(N) — v({2})

Then T, < v({2}), hence
a{iD+a({3}) =z +5({2}) @ > 3 =a(N)
by (6.1,6.2,6.3), thus (N,Ia) € r2e,
(2) Case: C(N,v) =10
Then z; < v({1}) or 2 < v({2}).
(a) 21 <o({1})
Then 5
a({1}) +u({3}) 2 5({1H + 0>z, = U(N)

by (6.1,6.2,6.3), thus (N,u) e 2t

(b) z, < B({2})
Then ' )

o w{Ih+a3h 2 a+e{2) - &> E = a(N)

by (6.1,6.2,6.3), thus (N, ) € 2P,

By COV a(N, v) # 0 holds for all (N,v) € ['*® with |[N N N| = 1. Repeating the same
procedure (only the second case has to be considered) for a game (N,v) € I'2? with
IN N N| =1 yields Claim 1.

Claim 2: The standard solution z* belongs to o(N,v) V(N,v) € I'2?
Assume N = {1,2} and define (N U {3,4},w) b
 w(S) =v{jeN|j+2€ 5},
By Claim 1 there exists = € o({3,4},w4), thus y = (0,0,z) € G(N U {3,4},w) by
SNPP. However, with u = w™¥ we come up with
O ul{) = u((2)) = max{e{l) - .02} — 2a),
thus (0,0) = yy is the standard solution of (N,u) € [*?, thus COV and WRGP show

this claim.

Claim 3: If there is (N, %) € T*? and some Z € o(N,?) which is not reasonable, then
there exists (N,v) € I'%? such that at least one extreme point of the set of reasonable
- preimputations belongs to o(N,v). '

Let (N, it) be defined as in Claim 1. A careful inspection of (b) of the second case implies
this claim.

Claim 4: o(N,v) = {2*} for all games (N,v) € I'*?

Assume the contrary. Then, by Claims 1 and 3, there exists (N,v) € I'2? and some
reasonable member y € ¢{N,v) which does not coincide with the standard solution z".
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Without loss of generality we may assume that N = {1,2} and 4, < z}, y» > 23. Add an
inessential player 3 with worth yg, i.e., define ({1,2,3},w) by

w(S) =

?

v(S), i SCN
v(SNN) + vz, otherwise

and define z € IR123} by z; = ¢ and 23 = 23 = y». Then z € ¢({1,2,3},w) by SNPP and
COV. By WRGP z(y 33 € ({1, 3}, wit?%), Moreover, this reduced game is isomorphic to
(N,v). Define ({1,2,3},u) by

u({2}) = u({8}) = v({2}), w({2,3}) = v(N) + v({2}) —v({1})

and

w(SU{1}) = u(S) +y + v({1}) —v({2}) VS C N

By reasonableness and Pareto optimality of y we obtain

u™H({1}) = maX{u({l}),U({la3}) - y2} = max{yz + v({1}) — v({2}),v({1})} = v({1})

and

WMe({2}) = max{u({2)), u({2,3}) - o} = max{u({2}),v({2}) — v({1}) + ma} = 0({2)),

thus (N,ﬁN'z) = (N,v). Moreover, ({1,3},u3%) = ({1,3},w!’**) and z(3) is the
standard solution of ({2,3},u{?®%), thus z € ¢(N U {3},w) by Claim 2 and CRGP.
Player 1 is inessential with worth y, + v({1}) = v({2}) # y1. Hence SNPP and COV yield.

a contradiction.

Claim 5: It remains to show that o(N,v) C C(N,v) for every two-person game (N,v) €
'y with a nonempty core.

Assume, on the contrary, there exists a two-person game (N, %) with C(N,%) # @ and
some Z € o(N,v)\ C(N,%). Let (N, i) be defined as in the proof of Claim 1. A careful
inspection of (b) of the first case shows that {Z;,0) is an extreme point. of the set of
reasonable preimputations of (N, ). This observation contradicts Claim 4. g.e.d.

As in Section 4, using Lemma 6.2 instead of Lemma 4.4, we get the following result.

Theorem 6.3 The positive prekernel is the unique solution on Ty that satisfies NE, COV,
SNPP, WRGP, CRGP, and WUTPG.

The following examples show that the axioms in Theorem 6.3 are logically independent.
The solution o? (see Example 5.3) satisfies all properties except SNPP. Moreover, o?
satisfies NPP, thus SNPP cannot be weakened to NPP. ¢* and o° (Examples 5.5 and
5.6) satisfy all properties except WRGP and CRGP respectively. Example 5.7 shows the
independence WUTPG. The core satisfies all properties except NE. Independence of COV
is shown by the following solution.

20



Example 6.4 Let o be defined by |
o(N,v) = {z € X"(N,v) | s;j(z,v) < (s5i(x,v))4 Vi, j € N, i # 5}

Define 0" by the requirements z € o' (N,v), if

(1} = € o(N,v) and
(2) If there exists B # S C N such that i is a nullplayer of (S,v5%), then z; = 0.

The positive prekernel is a subsolution of o7, thus 0" satisfies NE and WUTPG. RGP is
satisfied by definition. To show CRGP, let z € X(N,v) satisfy zs € 07(S,v>") VSC N
with |S| = 2. By Pareto optimality of z, thus of zs w.r.t. the reduced game, we have
z5 € POPK(S,v5*%). By CRGP (of POPK) ¢ € POPK(N,v), thus € o"(N,v). In
order to show that o° satisfies SNPP, it suffices to show z € o'(N,v) implies (x,0) €
o"(N U{*},w}, where (N U{*},w) arises from (N, v) by adding the nullplayer x. Assume
that there isi € N and § C N U {i} with i € S such that ¢ is a nullplayer in the
reduced game (S, w5*). Then i is also a nullplayer in (SN N,v5"V7), thus SNPP follows
immediately. :

Of course these examples can be used to show that the properties of Lemma 6.2 are
logically independent. Example 5.2 shows that this Lemma is false in the case |U| = 3.
However, we do not know whether Theorem 6.3 remains true for a universe U of three

players. ' '
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