


Abstract

In 2x2 bimatrix games with 2 equilibria in pure strategies and 1 in mixed strategies -
existing models like the risk dominance (J.C. Harsanyi, R. Selten 1988) or the .Nash—
criterion (J.F. Nash, 1950b and 1953) applied to the selection in 2x2 bimatrix ‘games
predict the selection of one of the 2 equilibria in pure strategies. The equilibrium in
mixed strategiés is never selected. A new model based on the theory of prominence
(W. Albers, G. Albers, 1983, W. Albers, '1997) whiéh describes the perception of
numbers (especially payoffs) predicts the selection of a mixed equilibrium poiﬁt for
some games. An experiment using the strategy method was performed to test the
predictions of the different models. A result of the experiment is that the equilibrium
point in mixed strategies is selected by the subjects for several games. The predictions
of the models based on the theory of prominence are in a better agreement with the
data than the other models. The predictions of the model based on the theory of

prominence and related to risk dominance cannot be rejected by this experiment.



1. Introduction

A solution conéept for non-cooperative games is the Nash equilibrium (J.F. Nash,
1950a and 195 1). An existence theorem can be proved for the mixed extension of all
bimatrix games. In non degenerated 2x2 bimatrix games there are three possible cases:
there is one equilibrium point in pure strategies, or there is one equilibrium point in
mixed strategies, or there are three equilibrium points (two in pure strategies and one

in mixed strategies).

In 2x2 bimatix games in which more than one equilibrium exists the equilibrium
selection is a problem. A solution of this problem is proposed by the model of risk
dominance (J.C. Harsanyi, R.Selten, 1988). For 2x2 bimatrix games this solution is
given by an axiomatic approach. Another model that can be applied to the equilibrium
selection is the Nash-Zeuthen bargaining model (J. Nash, 1950b and 1953, F. Zeuthen,
1930). All of these models select equilibria in pure strategies and none in mixed

strategies.

Two models (model I and model II) select the equilibrium in mixed strategies for some
games. Both models use the theory of prominence (W. Albers, G. Albers, 1983 and
W. Albers, 1997) which models the perception of numbers. Model I is based on the

Nash-Zeuthen bargaining model and model II is related to risk dominance.

An experiment in which players can select between pure and mixed equilibrium points
should be a test of the models. It should also be a test of the "instability" of mixed
equilibria (in 2x2 bimatrix games) which are often not perfect.

In this paper 2x2 bimatrix games with 2 equilibria in pure strategies and 1 in mixed
strategies are examined. In the first part some considerations concerning the principal
structure of these games are described. In the second part models describing the
selection between the equilibria are presented (compare B. Vogt, W. Albers, 1997). In
the third part the experiment is described in which 399 games were played by means of
the strategy method to test the predictions of the models. |



Some notations, basic definitions and basic theorems about 2x2 bimatrix games:

The normal form of a game G is G(N,St, a).

N={1,..,n} is the set of players. |

The strategies of player i (ié N) are denoted by s; and the strategy set of a player i is |
denoted by St; (s; eSty).

A strategy combination is denoted by s: s=s] X 57 X. X sp,.

The strategy combination setis St=St; x Stpx .. x St .-

a 1s the payoff function: a: St—RD.

A 2-person game (N={1,2}) with m strategies of player 1 and n strategies of player 2
(m and n are countable numbers) is called an mxn bimatrix game. It can be represented
by two mxn matrices A = (ajj) and B = (bj;) or the mxn bimatrix (A,B) of the paifs
(aij>bij)- For m=n=2 the game is called a 2x2 bimatrix game. In the following parts of
the paper the notations of figure 1.1 will be used for a 2x2 bimatrix game. A 2x2

bimatrix game is non degenerated if the two matrices are not degenerated.

Figure 1.1 : The normal form of a 2x2 bimatrix game

Uj Vo
Ur| airbir aj2,b1n
V1| a21,by1 ap2,b2o

In the following parts of the paper only games with finite strategy sets of each player

are considered.



The mixed extension of a game G(N,St a) with finite strategy sets of each player 1 is
the game G(N, St,a). '
The set of players is N={1,...n}.

A mixed strategy oj of player i is defined as: oj: St;— [0,1]
with 6i>0 and >’ g, (s;) =1 for all players i.
si€ Sti

A mixed strategy combination is denoted by O=0] X 02 X.XOp.
The mixed strategy combination set is St = St; X Stz X .. X Sty

The payoff function is: ‘2 a0 )= 20,50, *o,(s)*a(s).
seSt

A pair (61%,00™) of mixed strategies of the bimatrix game (A,B) is in a (Nash)
equilibrium, if for all mixed strategies o7 and o5’

A(o1507%) < < A(o1%07%)

| B(c1%07) < B(o1%05%) holds.

A pair (01%,62") of mixed strategies of the bimatrix game (A,B) is in a strong (Nash)
equilibrium, if for all mixed strategies o and 07_

A(o1502%) < A(o1%69™)

B(o1%07) < B(c1%02™) holds.

An equilibrium is called an equilibrium in pure strategies, if in the equilibrium for all
players it holds oj(s{)=1 for one pure strategy s; of player i. An equilibrium is called an

equilibrium in mixed strategies in all other cases.

The following well known theorems may be mentioned.

- Theorem (J.F. Nash, 1950a and 1951):

The mixed extension of a bimatrix game has at least one equilibrium point.

- Theorem (C.E. Lemke, J.T. Howson, 1964): ‘
The mixed extension of a non degenerated bimatrix game has an odd number of

equilibrium points.



- Theorem (see P. Borm 1990, p. 60):

The mixed extension of a non degenerated 2x2 bimatrix game has 3 equilibrium

points.

There are 3 possible cases:
one equilibrium point in pure strategies.
one equilibrium point in mixed strategies.

two equilibrium points in pure strategies and one in mixed strategies.



2. Models of the equilibrium seleétion |

In this part of the paper models describing the equilibrium selection in 2x2 bimatrix
games are discussed. As a result of the comparison between 2 equilibrium points one
equilibrium point is selected. In this part of the paper the models which describe the
selection between 2 equilibrium points are described. It is assumed that one player
prefers one equilibrium pdint and the other player prefers the other equilibrium point.
None of the equilibrium points dominates the other one in payoffs, i.e. in none of the
two equilibrium points the payoff for both players is higher than in the other one.
Using the notations of figure 1.1 (if without loss of generality V=V U, and U=U1V2
are the equilibrium points) it holds:

ag1-a11>0; by1-b2y>0, ajp-ap>0, byy-byy>0; with

(ag1>a12 and b12>by1) or (a12>ap1 and bz1>b12.).

In the following parts of the paper it is also assumed without loss of generality that
a>1>aj2 and byp>>bo1. In this situation player 1 prefers to select the strategy Vi,
because he gets the highest payoff ay; for the strategy combination V=V {Uy. Player 2
prefers to play V, because his payoff is maximal for the strategy combination
U=U{Vy. The conflict case occurs if both players insist on playing their preferred -
strategies which leads to a strategy combination of V1V The strategy combination
U1U> occurs in the case of miscoordination: both players select the non preferred
strategies. Then the payoffs in the bimatrix can be denoted acéording to figure 2.1. The
maximal payoff is denoted by amax and byax, the second highest equilibrium payoff
by aajt and b,jy, the conflict payoff by apin and byip and the miscoordination payoff
by apyig and byyjs. This notation will be used in the following parts of the papér.




Figure 2.1 : The notations used for a 2x2 bimatrix game

Uy Va
U1 amis,Omis aalt-Pmax
Vi amax;Dalt amjn:bmjn

2.1 The Nash-criterion

For the selection between two equilibria of 2x2 bimatrix games the Nash-criterion JF.
Nash, 1950b and 1953, Zeuthen, 1930) can be considered. It is bargained about pairs
of payoffs (a,b). A threat payoff (which can be interpreted as conflict payoff) is given
by (amin,Pmin)- The Nash-criterion selects that payoff (a*,b™) for which the product
(*-amin)*(b”-bmin) is maximal.

This idea cdn be applied to the selection between the equilibrium points of 2x2
bimatrix games. The two equilibrium points are the alternatives. The threat point is
given by the conflict payoff. The equilibrium preferred by the Nash-criterion is

selected. Using the notations of figure 2.1 the selection critierion is:

V dominates U [U dominates V] iff e
(amax-3min)*(balt-bmin) > [<] (aaltfamjll)*(bmax'bnﬁn)

This criterion is equivalent to the criterion:

'V dominates U [U dominates V] iff
(amax-aal)/(@alt-2min) > [<] (bmax-balt)/(balt-bmin)




2.2 Risk Dominance

J.C. Harsanyi and R. Selten (J.C. Harsanyi, R.Selten, 1988) developed the concept of
risk dominance for the equilibrium selection in all games. For the class of games
considered here they give an axiomatic characterization. Using the notation of figure

2.1 the criterion of risk dominance is:

V dominates U [U dominates V] iff
(3max-2mis)*(®alt-bmin) > [<] (@alt-2min)*(Bmax-bmis)-

An equivalent formulation is:

V dominates U [U dominates V] iff |
(amax-amis)/(3alt-a3min) > [<] (bmax-bmis)/(balt-bmin)-

2.3 Models using the Theory of Prominence

Before describing the models that use the theory of prominence (W. Albers, G. Albers,
1983 and W. Albers, 1997) the results of the theory of prominence used in the models
is described. One result of the theory of prominence is that some numbers are easier
accessible than others. The numbers that are most easily accessible are the prominent

numbers P:
P={z*100neZ, ze{1,2,5}}={...0.1,0.2, 0.5, 1, 2, 5, 10, 20, 50, 100,....}.

If the perception is spontaneous the so called spontaneous numbers S are the numbers |

that are accessible. These are:
S={z*100neZ, ze{-7, -5, -3, -2,-1.5,-1,0, 1, 1.5, 2, 3, 5, 7} }.

The spontaneous numbers include the prominent numbers and one additional number

between any two neighboured prominent numbers.



The perception of numbers (also payoffs) is described as difference of steps between
spontaneous numbers. The difference between two prominent numbers (ordered
according to their size) is 1 step and between two spontaneous numbers (ordered

according to their size) 1/2 step.

Another important empirical observation is that the perception is limited for small
numbers. There is a smallest unit that can be perceived. In the theory of proﬁu'nence
this is modeled by assuming a smallest full step money unit A which permits to define
a perception function PA mapping monetary payoffs to the perception space. Table 2.1
gives the function for A=10, for A=20 and the spontaneous numbers between -150 and

+150 (which are relevant for the experiment).

Table 2.1: Transformation of the spontaneous numbers between

-150 and 150 by the P-function for A=10 and A=20.

number: -150, -100, -70, -50, -30, -20, ~-15, -10, -5, O,
Pip : ~-4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0,
Pyg : -3.5, -3, -2.5, -2, -1.5, -1,-0.75, -0.5,-0.25, O,
number : 5, .10, 15, 20, 30, 50, 70, 100, 150
P1g 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5

The exact numbers are a further refinement of the spontaneous numbers. The exact
numbers between 0 and 100 and the Pa-functions are given for A=10 and A=20 in

table 2.2 (which are relevant for the experiment). _
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Table 2.2:.The exact numbers between 0 and 100 and the
PA-function for A=10 and A=20.
A=10:
0 5 10 s 20 30 50 70 100
2,3 7:8. . 13,4¥ 17,18 25 35,40 60 80

P1g: O 9.25 0.5 0.75 1 1.25 1.5 1.75.2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

A=20: -
0 ; 10 20 30 50 70 100

5 15 25 35,40 60 80

For numbers higher than A the function PA(s) ié (nearly) equal to 3*log(s/A)+11.

Below the smallest unit A the function is linear (compare table 3. 1).

This description of the perception is similar to the Weber-Fechner Law (for example in
G.T. Fechner, 1968) which describes the percepﬁon of stimuli in psychophysics. The
perception is proportional to a logarithmic function above a smallest unit. Comparisons |
between stimuli are performed by forming differences (not quotients). This seems to be
plausible, since the stimulus has been transformed‘by a function proportional to the
logarithm.

! For numbers x > A it holds: [P (x)/(3*log(x/A)+1)-1|<7%
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2.3 Model I

All payoffs are transformed by the P-function:

Pa:a- — Pa(a ) and

PA: b — PA(b ), where the indéx .. can be max, min, alt and mis.

The selection criterion is obtained by a comparison of differences as shown

schematically in figure 2.2.

Figure 2.2: Schematic presentation of the comparisons of model I

player 1 player 2
oP (a,,;ax ) best alternative o o P, (b )
1 P, '
oP (a4 ) second best alternative OF (b, )
s Y
P a conflict Or, (b _ )
A e ) . A\ min

In this model the differences p1=PA(amax)-PA(aay) and p2=PaA(bpmax)-PA(balr)

between the best and second best alternatives are compared with the differences
q1=PA(aa10-PA(@min) and qr=PA(ba10)-PA(bpin) between the second best alternative

and the conflict payoff. The selection criterion is:

V dominates U [U dominates V] iff
P1-d1 >[<l p2-q2.
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Replacing p and q results in
V dominates U [U dominates V] iff |

(P Amax) P A@al) - P Aal)PAGmin) > [<
(PAGMax)-PAML1D) - PADLa1D-PA(bRin))

Interpretation: For each player the incentive to deviate from the second best alternative
(for example (PA(apax)-PA(aa1y) for player 1) is compared with the possible loss, if

the game ends in a conflict ((P A(aah)-P A(amin) for player 1). The player for whom

the difference between the incentive to deviate from the second best alternative and
possible loss is bigger has "more arguments" for the equilibrium point favored by him.
This point will be selected. |

72.3.1 Relations between model I and the Nash-criterion

For a comparison the criterion of Model I and the Nash-criterion are presented in a

way that the same terms are at the same places.

V dominates U [U dominates V] iff ‘
Nash:  ( amax- @) /(  2alt-  8min) > [<]
Nash:  ( bmax- bai) /(  balt-  bmin) v
Model I: (PA(amax)-PAal) - (PA(3al)-PAGMin) > [<]
Model I: (PA(byax)PAGal) - (PA®al)-PAbmin)

The difference between the two models is that in model I payoffs are transformed by
the P-function and that after the transformation quotients in the Nash-criterion

correspond to differences in model I This is compatible with the fact that after a
transformation by the P -function (which is for values bigger than A a logarithmic

function) the quotients are transformed into differences.

Another difference of these approaches is that the PA-function operates on payoffs and

not on differences of payoffs. For example the difference (aa]t - amin) 1 transformed
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into PA(ag)y) - PA(amin) and not into PA(agys - amin)- This will be discussed in

chapter 2.3.2.1.

2.4 Model II

All payoffs are transformed by the PA-function:

PAara > Pa(a ) and

PA: b — PA(b ), where the index .. can be max, min, alt and mis.

The selection criterion is obtained by comparison of differences as shown

schematically in figure 2.3.

Figure 2.3: Schematic presentation of the comparisons in model II

playér 1

P

best alternative *a

second best alternative

conflict

|

A @pnin

G
o

o

player 2

OPA (bmvax‘ )

N
o PA (aalt ) O P, (balt )
&L—— o-

) P, (b, )

In this model the differences p1=PA(amax)-PA(ag)y) and P2=PA(bmax)-PAMa1)

between best and second best alternative for each player are compared with one
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another. The difference p1-pp is then compared with the difference q=PA(byip)-
PA(amin)) between the conflict payoffs. The selection criterion is:

V dominates U [U dominates V] iff
p1-p2 > [ q

Replacing p and q leads to the criterion:

V dominates U [U dominates Vj iff |
(PA(@max)-PA(2a1)-(PA(bmax)-PAba1y) >1<]
(P A®min)-PA(@min))?

Interpretation: in this model an advantage (higher transformed payoffs) in comparing
the equilibrium payoffs can be compensated by a disadvantage in comparing the
conflict payoffs. The equilibrium point is selected if its advantage is bigger than its

disadvantage.

A different approch to the criterion is given by the following consideration. Every
transformed payoff can be seen as an “argument” supporting one equilibrium point or
the other. Giving a weight of +1 and -1 for supporting one or the other one,
respectively, a sum of ”arguments” can be calculated. That equilibrium is selected for
which the sum is greater than for the other. The "arguments" of player 1 for the
equilibrium point V are: -

+PA(@max): -PA(2a1t) and + PA(amin).

The "arguments" of player 2 for the equilibrium point U are:

+PA(bmax), -PA(ba1t) and + PA(brin).

The weight for the maximal and minimal tranformed payoffslof the players is +1
because a high maximal and minimal payoff support the preferred equilibrium point,
The weight for the second beést alternative is -1 because a high payoff for the second
best alternative supports the other equilibrium point and not the preferred one. The

selection criterion is given by a comparison of the sums of arguments:

21t is assumed that ap,j=b:=0.
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V dominates U [U dominates V] iff
PA(max)-PA@a1) +PAGMin)>1<]
PA(bmax)-PA(ba1) P A(bmin)
This is the same selection criterion as the one given above.

Another presentation of the selection criterion is:

V dominates U [U dominates V] iff :
PA(amax)+PA(balt)+PA(amjll)>[<] PA(aalt>+PA(bmax)+PA(bmjn)

Here the criterion can be interpreted as the sum of the two criteria:
PA(amax) PAGa1) <] PA(@a1)tPA(may)  '"Nash-sum"

¥ PA(amin) >[<] PA(bmin) "Conflict"

= P A(amax) P AD 210+ PA@min>[<] PA(2a10 P A(Gmax)+PA(min)

The first criterion is called "Nash-sum" because it corresponds to the Nash-product

without threats’ , as it can be seen below:
if PA(x)=log(x) then

log(amax)t1og(baip) >[<] log(aaip)+log(bmax);
- .

log(amax*balt) >[<] log(aalt*bmax)-
=

amax*balt >[<] 2alt*bmax ("Nash-product")-

The second part is a standardform of the comparison of the conflict payoffs.

3if the payoffs are higher than 0.
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2.4.1 Model I and Model II if threats are not used

In Model II an agreement can be obtained without using threats. This agreement is
obtained by the criterion that the "Nash-sum" is maximal. The conflict payoffs are not
compared. The resulting model is called "model II, 2 cases". In the first case an
agreement can be obtained without using threats according to the maximal "Nash-
sum". In the second case (if the first case docé not apply) the selection criterion ‘using
the conflict payoffs is applied. Whether case 1 is applied in games depends on the
players and the negotiation. A discussion of such examples will be given in the
experimental part (compare part 5.2). Model 11 ihcluding the conflict payoffs is the

regular case.

Similar to model II model I can be extended to 2 cases. In the first case the selection of
an equilibrium is according to the maximal "Nash-sum" without taking conflict payoffs

into account. The 2. case is as described in part 2.3.

2.4.2 The comparison between model II and risk dominance
To compare model II and risk dominace the selection criteria are written below one
another (Again the criteria of risk dominance and model II are taken in a form

equivalent to the original ones).

V dominates U [U dominates V] iff

Risk Dominance: ( amax -4mis)/(  aalt -  2min) > [<]
Risk Dominance: ( bmax -bmis)/ (  balt - bmin)
Model II: PA(amax) - (PA(aglp) - PA(amin)) > [<]
Model II: ~ PA(bmax) - (PA(balD - PA(Pmin))

One difference between the 2 models is again the transformation by the Pa-function

and the correspondence of quotients (in the model of risk dominance) and differences
(in model II). The reasons for this have been discussed above, i.e. the PA-function 1s

for values bigger than A a logarithmic function and the_refdre quotients are transformed
into differences.
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Another difference is that the payoffs for miscoordination are not taken into account in
model II. A reason of this is that in the experiment preplay communication is possible
and therefore miscoordination might not occur. '

An extension of the risk dominance by considering the perception of payoffs and the
correspondence of quotients and differences leads to the following criterion:

'V dominates U [U dominates V] iff

(P Az -PACGmis) - PA@g) - PAG@min) > [<]
(P AGmax) -PAGmis) - PA®Gale) - PAGMin)

Besides the differences discussed above the main difference is that the PA-function

operates on the payoffs and not on differences of payoffs (as risk dominance does). For
example the difference (ag)t - amip) is transformed into Pa(asye) - PA(amin) and not

into PA(ag)t - amin)- An explanaﬁon for this is that the strategic equivalence does not

hold for the percepted payoffs. It must be replaced by another form of equivalence for
perceived payoffs (B. Vogt, 1997).
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3. The Experiment

The experiment was performed by means of the strategy method. In the experiment the
subjects had to select strategies for 399 bimatrix games simultaneously. The games

were of different types: with one equilibrium point, or with three equilibrium points.
The 399 different games were constructed by means of the symmetric 2x2 bimatrix
game shown in figure 3.1. The equilibrium points in pure strategies are given by the

strategy combinations V=V Uy and U=U1V5. The conflict payoff is obtained for the
strategy combination V{V2.

Figure 3.1: The bimatrix game used for the construction of all games.

Uy Va

Uq- 42.0, 42.0 -34.0, 118.0

Vi 118.0, -34.0 -138.5, -138.5

In the mixed extension of this bimatrix galhe with the payoff matrices M for player 1
ahd N for player 2 every player (i=1,2) has the opportunity to "mix" his pure strategies
by“ playing them with probabilities oj(Uj) and oj(Vj) with cj(Uj+ci(V)=1. In the -
experiment the players could choose between 20 probabilities oj(Uj).
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The row player (player 1) and the column player (player 2) could select between their
mixed strategies in steps of 1/19. This results in 20 steps of mixed strategies:
(0;(Up=0/19,5{(V;})=19/19), (c;(Up=1/19,0;(V{=18/19), ..., (o3(Uyp=19/ 1§,Gi(Vi)=O/ 19).
with the corresponding payoffs: |

6 1M(op)t for the row player and
o1N(op)t for the column player.

The calculation of the payoffs of all 20x20 strategy combinations results in the two
20x20 matrices A and B with the payoffs aj for the row player and by for the column
player:

19-k ,19-1
= *

1 k. 19-1
*42 0+—*(-34.0)) +—
19 ( 19 52 ( )

*
19(19

1
A #118.0+ % (-138.5))

19-1 19-k . k
- . 42,04 < %(=34.0)) +
bu 5 ( 5 5 ( )

*
19(1

.3 19_k>»<118.0+£=x<(—138.5))
9 19

The resulting 20x20 bimatrix is presented in figure 3.2.
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In this bimatrix game both pl_éyers can select between 20 strategies: the rows and
columns denoted as 0,.,19. The payoffs for the strategy combination
(row k, column 1) are aj for the row player and by for the column player. The three
equilibrium points are the two strong equilibrium points 19,0 and 0,19 and the mixed

equilibrium point 8,8.

For every value Z (0<Z<19) and S (0<S<19) we consider the bimatrix game G(Z,S)
obtained by restricting the strategies of player 1 to {0,..,Z} and the strategies of player
2 to {0,..,S}. The bimatrix representing the game G(Z,S) is obtained by the reduction
of the 20x20 bimatrix to its first Z+1 rows and S+1 columns. This results in a
(Z+1)x(S+1) bimatrix. Figure 3.3 shows the result for Z=7 and S=5, the lighted area of
the 20x20 bimatrix represents the game G(7,5). It may be remarked that the obtained
game is the mixed extension of the 2x2 Bimatrix game deduced from the four corners

in which the steps in which the strategies can be mixed are restricted.

Figure 3.3:  The construction of the game G(7,5) from the 20x20 bimatrix.
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399 different games G(Z,S) can be constructed by this procedure. These games have
different strategic structures:
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Type 1: The games G(Z,S) with (0<Z<8, 0<S<8) are of the type of the prisoner's
dilemma. '

Type 2: The gamés G(Z,S) with (8<Z<19, 0<S<8) have one equilibrium point;
(Z,0). The games G(Z,S) with (0<Z<8, 8<S<19) have one equilibrium
point, (0,S).

Type 3: The games G(Z,S) with (8<Z<19, 8<S<19) have two strong
equilibrium points, namely (Z,0) and (O;S), and one equilibrium point in

mixed strategies, namely 8,8. The conflict payoff is given by Z,S. |

Every game G(Z,S) is obtained from the game G(S,Z) by exchanging the players.

3.1. The payoffs

The marginal worth of 1 point of the matrices was 0.5 DM (~ $0.35). The payoff of a
playér was determined as difference of the obtained result to the mean result of the
other players in the same position in the same game (only those games were considered
in this mean of the others in which the player did not participate in any position). One
of the 399 games was selected by chance and paid. Losses up to 100 DM had to be
payed by the subjects. If the losses were higher than 100 DM the subjects could choose
whether to pay or to work for 15 DM per hour.

3.2. The subjects
The subjécts were 13 students of economics and business administration after their
"Vordiplom". |
3.3. The communication

The communication was free and anonymous via computer terminals. The subjects

could also fill their planned strategy choices into a 20x20 matrix. For every game
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G(Z,S) the strategy choice (i.e. the selected strategy (i.e. the selected row or column))
was written into the position (Z,S) of the matrix. This matrix was submitted

anonymously to the other player
3.4. The experimental procedure

The players were matched in pairs. Each pair played the complete set of 399 games.
Such a set of 399 games played by two players is denoted as a "399 fold strategy

game". A set of games was played according to the following 4 stages:

1)4 Free communication via computer terminals and exchange of the planned
sﬁategies. ’

2) Simultaneous announcement and exchange of the planned strategies for all
games.

3) Simultaneous selection and exchange of the finally selected strategies for all
399 games. ‘

4) A random selection of one of the 399 games. The payoffs were according to the

strategies selected for this game.

4 The announcements in stage 1 and 2 were not binding.
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4. The predictions of the models

The predictions of the different models are described by means of a scheme like. in
figure 4.1. Every field of the matrix corresponds to a game G(Z,S). The prediction for
a game G(Z,S) is given in the corresponding field (Z,S) by the row and column
numbers selected by the model. Games with identical predictions are presented as an
area in the matrix.

For games with one equilibrium point (type 2) this equilibrium point is predicted by all
models. ‘

4.1. The vpr’edictions of the Nash-Zeuthen model

Figure 4.1 shows the predictions of the Nash-Zeuthen model (shortly the Nash model)
applied to the selection between any two equilibrium points. For games G(Z,S) with
Z>S the equilibrium point Z,0 is selected by this model and for games G(Z,S) with
Z<S the equilibrium point 0,S is selected. For games G(Z,S) with Z=S the equilibrium
points Z,0 and 0,S are selected. The equilibrium in mixed strategies 8,8 is not selected
in any case.

Figure 4.1: The predictions of the Nash-Zeuthen model
0 | \ . :
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___ __:__j;_; —————— Z.,0and 0,S
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4.2 The predictions of the risk dominance

The predictions of the risk dominance are shown in figure 4.2. They are the same as
the ones of the Nash-Zeuthen model. This model does not select the equilibrium in
mixed strategies 8,8 in any case.

Figure 4.2: The predictiohs of the risk dominance
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4.3. The predictions of model I

Figures 4.3a and 4.3b give the predictions of model I for the smallest units of A=10
and A=20, respectively.’ In contrast to the Nash-Zeuthen model and the risk dominance
the mixed equilibrium point 8,8 is selected for some games. Depending on the smallest
unit one obtains different predictions for 48 of the 121 games with 3 equilibrium
points. -

Figure 4.3a: The predictions of model I for a smallest unit of A=10

7.0 and 0,S

1715

5The smallest units of A=10 and A=20 are chosen for the predictions of the models using prominence theory
according to the rules for the smallest unit used for the evaluation of a prospect (W. Albers, 1997). The smallest
unit is between 10% and 20% of the maximal payoff. If one takes the prominent numbers near to 10% or 20%
of the maximal payoff of this bimatrix this results in the smallest units of A=10 and A=20.
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Figure 4.3b: The predictions of model I for a smallest unit of A=20

7.0 and 0,S
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4.4. The predictions of model II

Figure 4.4 presents the predictions of model II for a smallest unit of A=10.

Figure 4.4: The predictions of model II for a smallest unit of A=10
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_For the games considered and a smallest unit of A=20 the predictions of this model are
the same as the predictions of the risk dominance . |
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4.4.1 The predictions of model I and II without threats

Model I and model II permit to select strategies without using threats. In this case the
equilibrium point with the highest "Nash-sum" is selected (compare part 2.4.1).
Whether in certain games threats are used or not is discussed in the analysis of these
games. The prediction for this case is given in figure 4.5.

Figure 4.5: The predictions of model I and model II without threats for smallest units
of A=5 and A=10

7,0 and 0,S

1941

In these cases 8,8 is selected for most of the games with 3 equilibrium points.

For a smallest unit of 20 the equilibrium Z,0 [0,S]¢ is selected for all games.

6Tn the following parts the predictions for symmetric games are given in brackets [ 1
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S. Experimental results

In this section the predictions of the models are tested by means of the experimental
data. A binomial-test is used. The hypothesis:" the prediction is wrong." is rejected on
a 5% level. Because the payoffs of some games are very similar only 16 games of the
games with 3 equilibrium points are used as data for the experimental test. These

games are given in figure 5.1 with the results of these games as the éXperimental data.
5.1. The test of the predictions of the models

Figure 5.1 shows a comparison of the predictions with the experimental data. G-1 to
G-6 denote the 6 different 399 fold strategy games of the 20x20 bimatrix. For each of
the 399 fold strategy games the hypothesis " the prediction is wrong" is rejected for
one 399 fold strategy game if the predictions are correct for 12 or more games of the
16. The total number and the total percentage of correct predictions are given in the

last columns of the figure.

Except for the 399 fold strategyv game G-4 the predictions of the Nash model do not
agree’ with the résults. In 2 of 6 of the 399 fold strategy games an agreement between
the predicitions and the experimental data is not even obtained for at least one game.
The total percentage of correct predictions is below 50%. The predictions of the Nash

model show the worst agreement with the experimental data among these models.

“For thesé‘garnes the predictions'of the risk dominance are the same as those of the
- Nash model. |

The predictions of model I with a smallest money unit of 20 coincide with the data of
the 399 fold strategy games G-1, G-3 and G-6. The predictions of model I with a
smallest unit of 10 coincide with the experimental data of the 399 fold strategy games
G-2 and G-5. No agreement is obtained for the 399 fold strategy game G-4. Permjtting

7In this section it will be denoted as agreement with the experimental data if 12 or more correct predictions
occur.
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solutions of the case without using threats alternatively does not improve the result of

the test of model I. The total percentage of agreements is 75% (72 of 96 cases).

The predictions of model IT with a smallest unit of 10 coihcide with the data for the
399 fold strategy games G-1, G-3, G-4 and G-6. Permitting solutions without using
threats alternatively (model II, 2 cases) leads to the result that the 399 fold strategy
games G-2 and G-5 agree also with the model. Reasons that support the assumption
that players did not use threats in the 399 fold strategy games G-2 and G-5 are given in

the next section.

.Permitting solutions without using threats alternatively (model II, 2 cases) and using a
smallest money unit of 10 is in agreement with all 6 strategy games. The total
percentage of cases in which the predictions and the experimental data agree is 81%.
No agreement is obtained for symmetric games and for some games of the 399 fold
strategy games G-2, G-4 and G-5. This will be discussed in the next section.

A result of the test is that the predictions of the models using the theory of prominence
are in better agreement with the data than risk dominance and the Nash model. One
reason of this is that the equilibrium point in mixed strategies is selected very often in

the experiment .

5.2. Discussion of the results

First it will be discussed whether an agreement without threats ‘was obtained in the 399
fold strategy games G-2 and G-5. In these 399 fold strategy gameé the equilibria in
pure strategies Z,0 and 0,S are not selected in any case. Figure 5.2 shows the result of
G-5 which is typical for this behavior®. In the games with three equilibrium points
either the strategy combination 7,7 is selected instead of the mixed equilibrium 8,8,
namely for the games G(Z,S) with Z>13 or S$>13 (and (G(13,13)) or the strategy
combination 6,6 is selected, namely for the games G(Z,S) with Z<13 and S<13 (except

8The result of G-2 differs only slightly from the one of G-5
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of G(13,13), G(9,8) and G(8,9)). These are not equilibrium points®. These strategy
choices can be explained within a model using the theory of prominence with a
smallest unit of 10 and in which threats are not used. The selected strategy
combinations correspond to payoffs with maximal "Nash-sum". For 7,7 the payoffs are
(17.5, 17.5) and for 6,6 the payoffs are (24,24). The "Nash-sum" is 3.5 for 7,7 and it is
>425 for 6,6. A comparison | with the payoffs for Z,0 [0,S] shows that the
corresponding "Nash-sums" are smaller than 4.25 for the games G(Z,S) with Z<13 or
S<13 and that the corresponding "Nz.ish-sums" are smaller than 3.5 for the other games.
The selection of 7,7 and 6,6 follows from this as in the experiment if the criterion of a

maximal "Nash-sum" is used.

Figure 5.2: The strategies selected in the 399 fold strategy game G-5.

= 0,8-1

>

9In the test these selections are used as a selection of 8,8, because these strategy selections are deviations from
8.8. ' '
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The strategy combinations 6,6 and 7,7 are not equilibrium points. Both players get
higher payoffs for these combinations than in the equilibrium point 8,8. If one player
would deviate he would increase his payoff, but no player deviates from his

strategies!®. This supports again that threats are not used in these 399 fold strategy

games.

A separation of the games of the 20x20 bimatrix in symmetric games G(Z,Z) which
correspond to the diagonal of the 20x20 bimatrix and non symmetric games G(Z,S)
with Z#S leads to the following results for the other 399 fold strategy games G-1, G-3,
G-4 and G-6. | |

In the 399 fold strategy game G-4 the result of the non symmetric games is that Z,0 or
S,0 are selected which are the equilibria in pure stratégies. This corresponds to the

predictions of the Nash model, the risk dominance and model II with a smallest unit of
20.

The experimental results of the non symmetric games .of the 399 fold strategy games
| G-1, G-3 and G-6 agree with the predictions of model II with a smallest unit of 10 for

all games.

For all 399 fold strategy games the result of the symmetric games of the 20x20
bimatrix is that 8,8 (or 7,7 or 6,6) is selected and not Z,0 or 0,S. One explanation of
this fact might be that it is easier to obtain an agreement for symmetric games. Another
explanation could be that the players were undecided between .Z,0 and 0,S and
therefore selected 8,8 (8,8 was also selected in the 399 fold strategy game G-4 in
- which for non symmetric games only Z,0 and 0,S were selectéd).

A result of this discussion is that the predictions of model II with 2 cases (with and
without threats) show the best agreement with the data. If the symmetric games which -
have a special structure are excluded model II predicts correctly the outcomes of all

games.

10The stability of these combinations seems also be due to the fact that the incentive to deviate is small
(normally < 5 which is less than A/2).
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5.3. The games for which the subjects were indifferent whether to
play the equilibrium in pure strategies or the mixed equilibrium

After the experiment the subjects were asked for which of the games they would
change their equilibrium selection. The games for which they decided to play 8,8
instead of Z,0 [0,S] if threats were used are given in figure 5.3. The answers were
given for the games G(13,S) and G(19,S) (with 8<S<Z; these are in row 13 and 19 of
the bimatrix). | | '

Figure 5.3: Change of the equilibrium selection between the equilibria in pure
strategies Z,0 [0,S] and the equilibrium in mixed sfrategies 8,8.

TOW column of the equilibrium changefnumber of subjects
13 12,13 . 13 (all)
19 12,13 2
19 13, 14 0
19 14,15 5
19 15, 16 2
19 16,17 2
19 _ 17,18 2
19 18,19 0

For all games G(13,S) all players preferred o play Z,0 ﬁp to S=12.

The results for the games G(19,S) are given in figure 5.3. The median of the S-values

where the subjects changed their selected équilibrium was between S=14 and S=15.

A comparison with the predictions of the models leads to the following result. The
Nash model and the risk dominance do always predict Z,0. No agreement between

prediction and data is obtained.

For a smallest unit of 10 model I predicts a change in the equilibrium selected between

S=8 and S=9 (compare figure 4.3) or a change between S=11 and S=12 (for a smallest
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unit of 20). 2 subjects give a response of S=12/S=13. This is near to the prediction of

model I with a smallest unit of 10. The agreement between data and predictions is
rather bad. |

The predictibn of model II (with a sinallest unit of 10) are given in figure 4.4. The
figure shows a change between S=14 and S=15. This 1S theysame»as the median of the
responses. 5 subjects give the response S=14/S=15. 2 subjects answer S=15/S=16 and
two more subjects answer S=16/S=17 which is near to the prediction of model II. The
difference to the predi'ction might be due to rounding in the numerical perception, 1e.
the perception of 118 might be different for these subjects (varying from P1o(118)=4
tolPlo(l 18)=4.25). Permitting all these possibilities of perception would include also

the responses of these additional 4 subjects.
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6. Conclusions

In this paper the selection of mixed strategies in 2x2 bimatrix games is analysed. The
risk dominance and the Nash-criterion applied to the selection between equilibrium
points predict only the selection of pure strategy equilibria. Additional models using
the theory of prominence (model I and‘inodel IT) predict also the selection of the mixed
equilibrium for certain games. In these models an agreement without using threats is
possible. The prediction for this case is the selection of the mixed equilibrium for most

of the games played.

~ An experimental test of the predictions was performed by using the strategy method. 2
subjects selected their strategies for the 399 mixed extensions of the 2x2 bimatrix
games in one 399 fold strategy game. The basic game used for the construction of the
399 games was the mixed extension of | a symmetric 2x2 bimatrix game with 20
possible mixed strategies of each player. By reducing the strategies of each player to
19,18,..,1 and combining these strategies with all redubed strategies of the other player
new mixed extensions of 2x2 bimatrix games were constructed‘. The players played all

of these games simultaneously.

A rtesult of the experiment is that the equilibrium in mixed strategies is selected in
certain games. Model II based on the 'theory of prominehce and related to risk
dominance shows the best agreement with the data. Playing the mixed equilibrium for
most of the games was also observed. This behavior can be explained by a model

based on the theory of prominence in which threats are not used.
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