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Abstract

Moulin and Shenker (1992, 1993) discussed two cost sharing rules for one-output cost
sharing problems. Average cost pricing divides the total cost generated by the aggregate
demand proportionally to the demands among the agents. Serial cost sharing depends
on both, the demand profile and the cost function evaluated at certain distinguished
"derived" demands. Other cost sharing rules, which are based on the costs for the
aggregate demands of all subgroups of agents only, can be obtained by considering
solution concepts on the associated cost games. In the cost sharing context the Shapley
value, prenucleolus, and anti-prenucleolus are called Shapley rule, nucleolus rule, and
anti-nucleolus rule respectively. These game theoretical rules possess "covariance under
strategical equivalence" as a common property. Together with "equal treatment of
equals" and two versions of additivity on the one hand and some consistency property
on the other hand the Shapley rule can be characterized. The nucleolus rules can be
axiomatized analogously by changing the definition of the "reduced cost sharing
problem" adequately. In the special case of concave cost functions a strong version of
consistency can be used to axiomatize the nucleolus rule. Moreover, the anti-nucleolus
rule is shown to be a core selector in this case. Cost functions for which the proposed
game theoretical solutions coincide for fixed aggregate demand with average cost
pricing are characterized by a simple functional equation. Cost functions with globally
coinciding cost sharing rules are shown to be linear or parabolic.
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0. Introduction

The problem how to allocate the total production cost of a single homogeneous good is
discussed in this paper. A cost function C, i.e. a nondecreasing function on the nonnega-
tive reals which intersecis the origin, is used to model the production costs depending
on the demanded quantity. Here C(y) should be interpreted as the cost for producing y
units of the good. If the agents or players in a finite group N possess the production
technology and agent i has demand q, then the question how to divide the total cost

C(Ei eNqi) among the players is answered in general by proposing any cost sharing rule.

Several applications occur in the literature (see, e.g. Shenker (1989, 1990).

A cost sharing rule assigns an allocation to any cost sharing problem (N,C,q), where
q is the demand profile of the agents in N and C is the cost function. This allocation has
to be feasible in the sense that the proposed aggregate payment of the players covers
the total cost. An example is average cost pricing. With respect to this rule every agent
i has to pay her proportional part of the total cost. This means that average cost pri-
cing only depends on the total cost and the demand profile, regardless of the special
shape of the cost function. A further cost sharing rule, serial cost sharing, also takes
into account the evaluation of the cost function at several distinguished arguments (see
Moulin—Shenker (1992)). These authors (see Moulin—Shenker (1993)) showed that both
rules can be characterized by certain intuitive properties. They also proposed to con-
sider the cost games generated by the cost sharing problems and apply classical solution
concepts for games with transferable utility to these cost games. Indeed, they menti-
oned the Shapley value and nucleolus as possible cost sharing rules for the cost sharing
problems. The present paper, which is organized as follows, discusses the game theoreti-
cal solutions in detail.

In Section 1 the necessary notation is presented. It is shown (see Remark 1.3 and
Figure 1) that individual rationality, i.e. every player has to pay not more than her
individual cost, cannot be a general property of a cost sharing rule. Indeed, individual
costs may not cover total cost. Consequently individual rationality is dropped as a
property for cost sharing rules in general. In view of this fact we define the nucleolus
rule to be the prenucleolus of the corresponding cost game. Well-known intuitive
properties for cost sharing rules, e.g. Pareto optimality, "equal treatment of equals",
the null property (players with zero demands do not have to pay), monotonicity, and
additivity properties, are defined formally. Moreover, it is shown that similar well-ac-
cepted properties for solution concepts on games imply the properties on cost sharing



problems. To {ranslate a cost sharing rule into a solution concept on the arising cost
games this rule should yield the same result in case it is applied to different cost sharing
problems which possess the same underlying cost game. A slightly stronger property is
"covariance under strategical equivalence". Average cost pricing does not satisfy covari-
ance. The solution concept which arises from a covariant cost sharing rule inherits
many properties of the rule as shown in Corollary 1.8. Covariance is the basic property
of the game theoretical cost sharing rules discussed in the following sections.

In Section 2 three different axiomatizations of the Shapley rule are presented. The
common properties of all characterizations are covariance and equal treatment of equals
(i.e. agents with coinciding demands are proposed to pay coinciding amounts). Together
with the null property and additivity (i.e. if the cost function is the sum of two cost
functions, then everybody has to pay the sum of the fees of both cost sharing problefns)
or minmax additivity (a modification of additivity) Theorems 2.1 and 2.2 are similar to -
the results of Shapley (1953) and Dubey (1975). Here covariance is strongly used and
cannot be replaced by Pareto optimality as in the classical context. Especially Theorem
2.2 is no trivial analogon to Dubey’s result, which is shown by the fact that in the cost
sharing context these properties are not strong enough to uniquely determine the
Shapley rule on the restricted class of cost sharing problems which generate monotonic
simple cost games. Note that Dubey’s 1esult applies to this class of games. In a further
axiomatization null property and additivity are replaced by some reduction property
which is analogous to that introduced by Hart-Mas-Colell (1989). Clearly consistency
can only be applied to classes of cost sharing problems with varying agent sets. ‘

In Sections 3 and 4 further versions of consistency are introduced and it is shown
that both the nucleolus rule and the anti-nucleolus rule (which coincides with the pre-
nucleolus of the dual cost game) can be axiomatized by some version of consistency, co-
variance, and equal treatment of equals (see Theorems 3.4 and 4.2). As in the game the-

“oretical context the infinity assumption on the set of potential agents is needed as a
prerequisite (see Sobolev 1975). Moreover, two interesting results concerning cost
sharing problems with concave cost functions are presented. A strong version of consis-
tency together with equal treatment and covariance uniquely determines the nucleolus
even in case of a finite universe of players (see Theorem 3.3). In general the anti—nucle-
olus is, other than the nucleolus rule, not a core selector, even in case that the core is
nonempty. In Corollary 4.4 it is proved that the anti-nucleolus is a core selector in case
of concave cost functions. This fact also shows that the class of underlying cost games
does not cover, even up to strategical equivalence, the class of all concave games. This
is in contrast to the general case: every game is, up to strategical equivalence, an under



lying game of some cost sharing problem (see Lemma 1.6).

Finally, in Section 5 the cost functions which yield coinciding average cost pricing,
Shapley rule, and nucleolus rules when applied to a cost sharing problem with a fixed
aggregate demand are characterized by a functional equation (see Theorem 5.1). Con-
cerning this class of cost sharing problems any of the proposed cost sharing rules can be
characterized by "separable costs" (i.e. coincidence with average cost pricing for linear
cost functions), monotonicity, and Pareto optimality. For average cost pricing this cha-
racterization holds in general (see Moulin—Shenker (1993)). Moreover, Theorem 5.3
shows that linear and parabolic cost functions are the unique functions which globally
yield coinciding cost sharing rules. Section 6 presents diagrams which summarize the

main results.

1. Notaticn and preliminary results

Let U denote the nonvoid set of potential agents; it can be finite or infinite. A triple
(N,C,q) is called cost sharing problem (CSP), if N is a finite nonvoid set (the set of
agents of the CSP), C is a nondecreasing function on the nonnegative reals R,, such

that C(0) = 0 (the cost function of the CSP), and q = (q);y € K" is such that q; > 0

for i € N (the demand profile of the CSP). Let I'(U) denote the set of all cost sharing
problems with the foregoing properties. A cost sharing rule (CSR) on a subset I'of I'(U)
associates a vector o(N,C,q) € RN satisfying
2 (N.Ga) 2 Cla() (feasibility)
i

with each CSP (N,C,q) € I' As usual x(5) = I x. denotes the aggregate weight of § for
ieS

X € [RI.\I and S C N. Feasibility means that at least the total cost is covered by the

agents. We do not require ai(N,C,q) > 0 but in all our examples this property automati-

cally holds. Well-known and intuitively justified properties of a CSR o on T are as
follows: |
(i)  Pareto optimality (PO): T ¢.(N,C,q) = C(q(N)) forall (N,C,q) € T

ieN
(ii) Ranking (RAN): q<q implies 0.(N,C,q) ¢ aj(N,C,q) for all (N,C,q) €T
(iii)  Separable costs (SC): If C(y)=A-y for y>0 and (N,C,q)eT, then ¢(N,C,q)=)q
(iv) Equal treatment of Equals (ET): q. = g implies a(N,C,q) < aj(N,C,q) for all

(N,Ciq) el



(v)  Null property (NP): q, = 0 implies o,(N,C,q) = 0 for all (N,C,q) €T

(vi) Anomymity (AN): If (N,C,q),(N,C,7q) € T for some permutation 7 of N, then
crﬂ_i(N,C,rq) = ai(N,C,q) forallie N

(vii) Monotonicity (MON): If (N,C,q),(N,C,q)el'with C<C, then o(N,C,q)<o(N,C,q)
(viii) Additivity (ADD): If (N,C,q),(N,C,q),(N,C+C,q) € T, then

a(N,C,q) + ¢(N,C,q) = ¢(N,C+C,q)
(ix) Minmax additivity (MMADD): If (N,C,q),(N,C,q),(N,CaC,q),(N,CvC,q)e T

| I n
(where {{ denotes {,.ﬁ;;iﬁﬁ.,), then

a(N,C,q) + o(N,C,q) = o(N,CaC,q) + o(N,CvC,q)

- Example 1.1:
For every CSP (N,C,q) define

2,(N,C,q) = (q,/q(N))- C(q(N)) (where 0/0 = 1).
The mapping « is called average cost pricing (rule).

Note that average cost pricing distributes the total cost C(q(N)) among the agents
according to the Aumann-Shapley unit price (see Aumann-Shapley (1974)). Note
furthermore that average cost pricing is completely determined by the demand profile
and the total cost. There is an example of another CSR, namely serial cost sharing (see
Moulin—Shenker (1992)), which depends on both, the demand profile and the cost func-
tion evaluated at n arguments. Moulin—Shenker (1993, Examples 3 and 4 of Section 3)
suggested to look at cost sharing rules which mainly depend on the cost function (the
demand profile is only used implicitly). They proposed the Shapley value and the nucle-
olus of a certain underlying gé.me— as feasible cost sharing rules. To formulate this more
explicitly it is necessary to define the underlying (TU-) cost game (N,vc’q) of an arbi-
trary CSP (N,C,q). The coalitional fanction v*'4 is given by
vO9(8) = C(q(S)) for S C N.

In general a game is a pair (N,v) such that v: oN R and v(0) = 0 hold true. The
Shapley (cost sharing) rule ¥ assigns to every CSP the Shapley value of its underlying
game (for the definition of the Shapley value Shapley (1953) is referred to). There are
two cost sharing rules based on the prenucleolus of the underlying game or its dual.
Here is the precise

Definition 1.2:
1. Let (N,v) be a game (considered as cost game) and let X(v) = {erRle(N)=v(N)}



be the set of preimputations of v. The prenucleolus ¥(v) of (N,v) is the unique pre-
imputation which successively minimizes the largest excesses. Here x(S)-v(S) is the
excess of S at x (with respect to v) for x € RN, To put it more formally, let

Z = {xeX(v)| @((X(S)“’(S))SCN)IE &(y(S)-v(S)gcpy) for yeX(v)},
EN’ e C
where © applied to a vector (x(S)—v(S))g.py of excesses at x orders the components

of this vector nonincreasingly. The set Z is a singleton and its unique element ¥(v}) is
the prenucleolus of v (see Maschler—Peleg—Shapley (1979)). In the definition of the
pucleolus (see Schmeidler (1969)) X(v) is replaced by the subset of individually
rational preimputations. (A vector x € RN is individually rational if x, < v({i}) for

alli € N.)

The nucleolus rule on a subset I'of [{U) assigns to each CSP (N,C,q) € I"the prenuc-

leolus of its underlying game (N,vC’q). We denote this cost sharing rule by v.

The anti-nucleolus rule »* on a subset I'of [{U) assigns to each CSP (N,C,q) € 'the

negative of the prenucleolus of the negative of its underlying game (N,vC’q), ie.
¥(N,Cq) = —D(—vc’q).

Remark 1.3:

(i)

(i)

Note that the nucleolus in the sense of Schmeidler does not necessarily exist, i.e.
the set of imputations (individually rational preimputations) of a game can be
the empty set. This is also true for underlying games of cost sharing problems.
In Figure 1 two 2-agent cost sharing problems with demand profiles q and g and
the same "S-shaped" cost function C are sketched. Note that S—shaped cost
functions (i.e. decreasing marginal costs for "small" aggregate demand and, due
to, e.g., weak capacity bounds, increasing marginal costs for "large" aggregate
demand) are typical for many economical applications. For the demand profile q
feasibility of a CSR o requires at least one individual fee which is higher than
the individual cost whereas in case of § the total cost can be divided among the
players in such a way that both pay less than their individual costs. Therefore
the version of a nucleolus rule based on individually rational feasible payoffs does
‘not establish a cost sharing rule.

[Insert Figure 1 about here!]

Using the notion of "interpersonal comparisons of utility" the prenucleolus can
be justified for cost games (see Maschler (1992)). Though the definition of the



anti-nucleolus rule, i.e. successively maximizing minimal excesses, seems to be
counter intuitive, there are examples of cost sharing situations for which the
anti-nucleolus rule can be justified (see Potters—Sudhélter (1995)). Therefore we
also analyze the anti-nucleolus rule v* in this paper.

In order to characterize the game theoretical cost sharing rules (Shapley rule, nucleolus
rule, and anti-nucleolus rule), which are determined by the cost function evaluated at
the aggregate demands of the coalitions, one additional property referring to the under-
lying games is needed. Indeed, average cost pricing satisfies all properties (i)-(ix) (see
Moulin-Shenker (1993)) and certain reduction properties as shown in the following sec-
tions. A game theoretical solution rule is determined by the underlying game. A stron-
ger version of this property is presented in .

Definition 1.4:
A cost sharing rule ¢ on a set I'C I'(U) satisfies covariance (COV), if the following
condition holds:
If (N,C,q) € Tand @ > 0, f € RY are such that there is (N,,g) € Twith
a vC,q + f= VC,Q’
then o(N,C,d) = e o{N,C,q) + 4.

Covariance on a set of games is an intuitive property. Two games (N,v) and (N,w)
which coincide up to strategical equivalence (i.e., w = a- v+4 for some a>0 and 3 GIRN)
should be treated accordingly by a solution concept for games. In the context of cost
sharing problems COV seems less intuitive. Nevertheless, as long as the underlying
game serves as an adequate description of the cost sharing problem, covariance can be
interpreted as in the original game theoretical context.

If a CSR o on a set T'of cost sharing problems satisfies COV, then there is a unique
continuation 7 on the set $AI) of games which are strategically equivalent to the under-
lying game of some CSP in I To put it more formally, let (N,C,q) € T, f ¢ [RN, and a >
0. Then Fa v+ f) =ao(N,C,q) + 4.

The solution concept & on ) is called continuation of 0. A solution concept & on a
set %of cost games associates a vector &(v) € Y satisfying feasibility (_EN&i(v) > v(N))

i

with each game (N,v) € % Conversely, if #I) = % then 7 induces a CSR & on I'by
" o(N,C,q) = t‘f(vc’q). Clearly 7 is feasible, iff & is feasible. Well-known properties for a
solution concept & on ¥ are as follows (with (N,v},(N,w) € #):



(a)  Pareto optimality (PO): ENEri(v) = v(N)
i€

(b)  Equal treatment property (ET): v(SU{i}) = v(SU{j}) for S C N\{i,j} (i and j are
interchangeable) implies 7.(v) < 6j(v)

(c)  Null property (NP): v(SU{i})=v(8) for S C N (i is a nullplayer) implies 7,(v) = 0

(d)  Anonymity (AN): If (N,w) arises from (N,v) by a permutation of the players
then 7 "respects this permutation"

(e)  Additivity (ADD): If (N,v+w) € ¥, then a(v) + &(w) = a(v+w)

(fy MM additivity (MMADD): v.w,v.we §implies 5(v)+5(w)=5(v-w)+5(v-w).

(g)  Covariance (COV): If w=a- v+f for some >0, #eR", then o(av+f)=ao(v)+0

Clearly the following statements for a covariant CSR o on T' together with its continu-
ation ¢ hold true:
1. & satisfies COV;
7 satisfies PO, iff ¢ satisfies PO;
If & satisfies NP, then o satisfies NP;
If 7 satisfies AN, then o satisfies AN;
If 7 satisfies ADD, then o satisfies ADD;
If 7 satisfies MMADD, then ¢ satisfies MMADD;

IS

Ranking has an analogon for solution concepts, too. Indeed, many well-known solution
concepts, e.g. the Shapley value and the proposed versions of nucleoli, preserve the
desirability relation in the sense of Maschler—Peleg (1966). Preservation of desirability
on $AT')implies RAN on T'.

Note that the Shapley rule and both nucleclus rules satisfy COV, PO, RAN, SC,
ET, NP, and AN (see, e.g., Peleg (1989)). Moreover, the Shapley rule satisfies ADD
and MMADD (see Shapley (1953) and Dubey (1975)). For completeness reasons we
present an example which shows that neither ¥ nor v or v* satisfy MON.

Example 1.5:
Let C(y) = 5:{y, C(y) = min {C(y),y}, N ={1,2}, and q = (9,16). An easy compu-
tation shows that
¢(N,C,q) =v¥N,C,a) = ¥N,C,q) =(10,15),
whereas 2(N,C,q) = 2N,C,q) = #N,C,q) =v*N,C,q)=(9,16).
Hence the game theoretical cost sharing rules do not satisfy MON even in the case
of concave cost functions.



For every finite nonvoid subset N of U let I, denote the set of cost sharing problems
with agent set N. The following assertion shows the "power" of COV.

Lemma 1.6: Every game (N,v) is strategically equivalent to some underlying game
(N,v©9) of a CSP (N,C,q), ice. #Ty) = {(N,v)| vis a game}.

The proof of this lemma is constructive and several versions of it will be used frequent-
ly. ' -

Proof:

Let d(v) = max {v(S)-v(T)|S,T ¢ N} be the maximal difference of worths of coalitions.
. Assume for simplicity reasons N = {1,...,n}, take d > d(v), and define q,f ¢ RN by
=27, =2""dforieN.

Moreover, let C be defined by

C(y) = max {v(S) + A(8)| S C N and q(S) < y} fory 2 0.
Clearly C is a cost function (C(0) = 0 and C is nondecreasing). In order to verify that
vC’q = v + f holds true, it remains to prove

v(8)+A(S) < v(T)+AT) for S,T ¢ N with S # T and g(S) < q(T). (1)
By definition of q there is a unique i € N such that i € T\S and T\{1,...,i} = S\{1,...,i}.
The definition of 8 directly shows

- v(S)+A(S) ¢ max v(R) + AS U {1,....i-1} (2)
and v(T)+4(T) > Ké;} v(R) + AT N{i,..,n}. (3)

The observation -
min v(R) - max v(R) + #(Tn{i,...,n} - B(SU{1,...,i~1} =

RCN RCN
., 1=2
"d(v) + ﬁl _ﬂ({l,,l—l}) = _d(V) + d(2l—1_ ) 2J-1) _
s Zo
—d(v) +d2 0
completes the proof. red

A stronger version of this result shows that ET and ET are equivalent for a covariant
CSR and its continuation.

Lem;na. 1.7:

For every game (N,v) there is a vector g € IRN, a demand profile q € IRN

>0 and a cost

function C such that v + f§ is the underlying game of (N,C,q), interchangeable
players of v possess coinciding demands, and nullplayers possess zero demands.
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Proof:

Take d as in the last proof, assume that N = {1,...,n} and assume that the equivalence
classes of interchangeable players are integer intervals, i.e. if i is interchangeable with j
and j > i, then i and j are interchangeable with k for k € {i,...,j}. This can be achieved
by just renaming the players. For j € N define q; = 2~ and ﬂj — 27V d in case jis no

nullplayer, where i is the player of minimal index interchangeable with j. Moreover, put
q; = 0 for every nullplayer j € N. The proof can be completed analogously to that of

Lemma 1.6. q.e.d.
A direct conseguence of this result is

Corollary 1.8: Let o be a CSR on Iy satisfying COV and & its continuation on ﬁI‘N).

(i)  Then o satisfies ET, if and only if & satisfies ET.
(i)  Then o satisfies NP, if and only if 7 satisfies NP.

2. The Shapley rule

In this section we provide axiomatizations for the Shapley rule based on the classical
characterizations of the Shapley value due to Shapley (1953), Dubey (1975), and
Hart—Mas—Colell (1989). The analogon to Shapley’s result is the following

Theorem 2.1: The Shapley rule is the unique cost sharing rule on Iy satisfying ET,

NP, ADD, and COV.

Proof:
By Lemma 1.6 ¥ = ﬂI‘N) = {(N,v)| v is a game}. Shapley (1953) proved that the

Shapley value is the unique solution concept on ¥ satisfying ET, NP, PO, and ADD.
Therefore it suffices to prove uniqueness. Let ¢ be a CSR with the desired properties
and & its continuation. By Corollary 1.8 it suffices to show that 7 satisfies ADD and
PO. To verify the first property take (N,vl), (N,vz) € % and repeat the construction of

the proof of Lemma 2.6. Namely, take d > d(v,)vd(v,), define § and q as in the
mentioned proof and let C; be the constructed cost function for vi+ﬁ, ie.

Cy(y) = max {v;(S) + A(S)| S C N and q(S) < y} fori =1,2.
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Additivity of ¢ and TOV of & implies

5(N,v+w) = (N, v+w+26)-28 =
= U(N:CI+02:Q)_2ﬂ ='U(N:CIJQ)+U(N:C2:Q)_2ﬂ =
= &(N,v;+8)+3(N,v,+5)-28 = 5(N,v;) + 3(N,v,)
and hence ADD of 7.
It remains to show PO. By COV and ADD it is sufficient to show that this property

,if S¢CT

holds for all unanimity games. Recall that (N,ug), defined by ug(T) = { i’ cp5 v s se I8

2 unanimity game for every nonvoid subset S of N. We proceed by induction on |§| =
s. For s = 1 COV is used. Indeed, 2- ug = ug+p, where f, = 1 for {i} = S and B =0

otherwise. Assume PO is already shown for s < t for some t > 1. For s = t choose
different agents i,j € S and define
T = S\{i} and R = S\{j}.

Then up + ug = ug + v, where v(Q) = { 1,if T C Q

or RCQ cpro _
0, othervise . Additivity of & and

the inductive hypothesis applied to both Up and up complete the proof. (Recall that &
is feasible.) g.e.d.

An analogon to Dubey’s result is
Theorem 2.2: The Shapley rule is the unique cost sharing rule on IN satisfying ET,
NP, MMADD, and COV. |

Proof: :
The Shapley value satisfies MMADD (Dubey (1975)), thus the Shapley rule satisfies
MMADD. Similarly to the last proof it remains to show that & satisfies MMADD and
PO. The last part of the just mentioned proof can be copied literally as soon MMADD
is shown. Indeed Ug = UpAlp and v = Upvup, thus

ug+f = (up+f)a(up+h) and v+f = (uT+ﬁ)v(uR+ﬁ).
It remains to show MMADD. Copy a part of the last proof to define q, 5, C1 and C,

and observe that the equalities
o(N,v;vvy) + G(N,v avy) = G(N,v;vvy+B)+F(N,v ave+f)-2-f =

= a(N:(V1+ﬂ)V(v2+ﬁ))+6(N:(V1+ﬁ)"(V2+ﬂ))f'2' B _ =
= o(N,C;vCy,q) + o(N,C{2C)) ~2- f = o(N,Cy,q)+0(N,Cyq)-2-F =
= &(N,vy+8) + 3(N,vy+f) - 2- = 3(N,v,) + 7(N,v,),
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which are valid by MMADD and COV, complete the inductive step. The induction can
be initialized as in the last proof. q.e.d.

To prove that both characterizations are axiomatizations, we present examples which
show the logical independence of both sets of properties. A weighted Shapley values (see
Kalai-Samet (1988)) satisfies NP, COV, ADD, and MMADD but does not satisfy ET
in general for n > 2. Therefore the corresponding CSR possesses all desired properties
except ET. The CSR ¢ defined by

0.(N,C,q) = v({i}) + (v(N)}-Z v({j}))/n,
JEN

where v = VC,q, satisfies all axioms except NP for n > 2. For n > 3 the nucleolus rule
does not satisfy ADD or MMADD but it possesses all other properties. Finally, average
cost pricing can be used as an example which shows the independence of COV.

Remark 2.3:
Dubey (1975) used MMADD to characterize the Shapley value on monotone simple
games. A monotone simple game (N,v) is a game such that v(S) € {0,1}, v(N) = 1
(the game is simple) and v(S) < v(T) for 8 ¢ T ¢ N (the game is monotone). The
analogon does not hold in the cost sharing context. Indeed, on the set
I'={(N,C,q)|C is a cost function with C(y)e{0,1}}
of cost sharing problems possessing cost functions with domain 0,1 the Shapley rule
is not uniquely determined by ET, NP, MMADD, and COV, even together with

PO. To see this, define
_ 10, if i is a nullplayer of the underlying game
o(N,C,q) = { 1/k, othervise ’

where k denotes the number of non nullplayers of the underlying game. Clearly ¢
satisfies NP, ET, and PO. MMADD and COV are not strong enough to rule out the
CSR. ¢ on this small set of cost sharing problems. One reason can be seen in the fact
that the class of underlying games is too small. Indeed, every underlying game is not
only a monotone simple game but also a weighted majority game.

In the end of this section it is shown that NP and ADD (or MMADD) can be replaced
by a reduction property in the sense of Hart-Mas—Colell. Certainly I‘N has to be re-

placed by some richer class of cost sharing problems, namely by I'(U). The next defini-
tion recalls the notions of a "reduced game" and "consistency". Moreover, the analoga
for cost sharing problems are presented.
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Definition 2.4: Let o be a CSR on ITU) and & be a solution concept on AU) = ANV)).
(i) Let(N,yv)e AU) and ¢4 S C N. The g—reduced game (S,v, o) (on S with respect

to &) is defined by
v&,S(T) = v(T U N\S) - EiEN\S ai(T UN\S,v)for## TCN

and V&,S(o) =0.

(ii) & satisfies consistency (CON) in the sense of Hart—Mas—Colell, if the restriction
to S of the solution is a solution of the -reduced game, i.e.
5(S,v; g) = o(N,v)g for every game (N,v) of AT).

(ili) For a CSP (N,C,q) and 0 # S ¢ N define the o-reduced function C 0.5 Byg *R by
N and q
Cy 5(3) = Cly+a(S))-min{_ 2 o,(TUS5C,aryso) o) ,Rq& )q( R)ey))
fory > 0 and C_ g(0) = 0.

Here Sc = N\S is the complement of S. Note that the s—reduced function is not
necessarily a cost function (monotonicity of C is not guaranteed.).

(iv) The CSR o satisfies consistency (CON), if for (N,C,q) € T'(U) and $# S C N the
following condition holds: '
If Ca,S is a cost function and for every $## T C S

CU,S(Q(T)) = C(q(T)+q(SC)) —ifscai(TUSc:C:q’_[USc)

is valid, then U(S’Ca,S’qS) = a(N,C,q)S.

Definition 2.4 (i),(ii) is due to Hart—Mas—Colell (1989). They showed that the Shapley
value is uniquely determined on AU} by CON and some weak versions of ET, COV,
and PO. It is obvious that TON together with COV (on % U)) implies CON for the as-
sociated CSR on I'(U). If the reduced function Ca,S is a cost function, then the arising

aggregate costs for the coalitions can be interpreted as follows. Coalition T C S deter-
mines its new cost (supposing all members of S¢ agree on the cost sharing rule o) to be
the total cost for the aggregate demand of itself and S¢ diminished by the agreegate fee
which will be paid by Sc¢ in the new situation. It should be noted that coalition T ima-
gines a situation in which only the own agents and the agents of Sc are present. A diffe-
rent reduced situation will be discussed in the following two sections.

Theorem 2.5:  The Shapley rule is the unique cost shanng rule on I{U) satisfying
ET, COV, and CON.
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Proof:

It suffices to show the uniqueness part. Let ¢ be a CSR with the desired properties.
Then the continuation o on ¥ = HU) of ¢ satisfies COV and ET by Corollary 1.8.
Moreover, 7 is PO on 1-agent cost sharing problems by COV. The proof is finished as
soon it is verified that & satisfies CON and PO. In order to show CON take (N,v) € ¥
and ¢ # S ¢ N. First of all it is proved that there is an underlying game (N,w) of some
CSP (N,(,q) which is strategically equivalent to (N,v) such that the 5—reduced game
Lo is the underlying game of the o-reduced CSP (N,Ca,s,qs). Indeed, assume with-

out loss of generality that N = {1,..,n} and § = {n+1-s,..,n}. Moreover, take q =
(2’“1)ieN, 8, and C as defined in the proof of Lemma 1.6, i.e. (N,C,q) € I'(U) such that
u=v+f= vOrl Define Bi =0 fori € 5¢and E’i =2l dforie S, where d = d(u) + max

RCSe

¥ 0.(RUS,C,ap(1qc)- For y 2 0 define
iESC 1 RUS‘"

C(y) = max{w(T)| TCN and §(T)=max{3(R)|RCN, 4(R)<y}},
where w = u + J. Clearly C(y) = C(y) for y < q(S¢) and C is nondecreasing, thus a cost
function. The straightforward observation that

C(§(T)) = C(q(T)) + AT) for TC N

shows that vc’(~1 = w holds true. By construction and COV of ¢ the o—reduced function

Ca,S is a cost function and the underlying game of (S’Ca,s'ﬁs) coincides with V55

thus & satisfies CON by COV. Property PO is a direct consequence of CON applied to
singletons S. Indeed, note that COV implies PO for 1-person games q.e.d.

For completeness reasons examples are presented which show the logical independence
of ET, COV, and CON. There is a positively weighted Shapley value on $U) which
does not satisfy CTON in case there are at least two potential agents. (Note that the
notion of positively weighted Shapley values introduced for the set of games with fixed
player set (see Kalai-Samet (1988)) can easily be generalized to f{U) (see Potters—Sud-
hélter (1995)).) By definition weighted Shapley values satisfy COV. The proof that po-
sitively weighted Shapley values satisfy CON is straightforward and skipped. In view of
these considerations the associated CSR on T' (U) shows the independence of ET. In
view of the definition it can easily be seen that average cost pricing satisfies CON, thus
independence of COV is guaranteed for |U| > 2. Finally the nucleolus rule shows that
CON cannot be dropped as a prerequisite of Theorem 2.5 in case |U| > 3.
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3. The nucleol'us rule

There is a characterization of the prenucleolus on the family of all games with player
set contained in an infinite universe due to Sobolev (1975). He needs a consistency pro-

perty based on a certain reduced game introduced by Davis—Maschler (1965). The cor-

responding notion and its analogon in the cost sharing situation is content of

Definition 3.1: Let o be a CSR on I'C I'(U) and 7 be a solution concept on ¥ C %U).

(i)

(ii)

(i)

(iv)

(v)

For every game (N,v), every nonvoid coalition § € N, and every x € R™' the
reduced game (S,vg .} of v (at x with respect to 5) is defined by

v (1) = «[v(N) ) ,if T =@

J’BS 1f T=N forTCN.
min {v(TUR) - x(R)|R ¢ SC} othervise

7 is consistent (satisfies CONG), if ¥$ o(v) € ¥ and o(S,vg a(v)) = o(N,v)g for
ve gand0#SCN.

For every CSP (N, C,q) every nonvoid coalition S € N, and every x € RY the
reduced fanction CS 0 R is defined by
_ m1n {C(y+q(R)) —x(R)|RC Sc}, if 0<y < q(8)
Csx(¥) = s C(y+a(5¢)) - x(S¢) Vifyzq(s) - W

(Note that the reduced function, though it is nondecreasing, need not be a cost
function, since Cg  (0) might be negative.)

o is strongly consistent (satisfies SCONS), if (S,CS x,qs) €T and cr(S,CS s)
= Xg, where x = o(N,C,q), for (N,C,q) e I'.

o is consistent (satisfies CONS), if for (N,C,q} € I', $# S C N, and x = ¢(N,C,q)
the following condition is satisfied:
If CS,x(qi) >0 forices§, then (S’(CS,x)+’qS) €I' and xg ='a(S,(CS,x)+,qS).

(Here y n denotes the positive part of the real number y.)

An interpretation of CONS is similar to that of CON (see Section 2). The main diffe-
rence is that a coalition T takes an "optimistic" view of the world: every coalition R of

members of S¢ (who agreed upon the proposal given by o) can be taken as a coalition of
- partners. Therefore the total cost generated by the aggregate demand of the union T U
R can be "reduced" by the fee which will be paid by R. Moreover, it should be noted
that T imagines a situation with respect to the grand coalition in which all members of
S¢ have already paid their fees. The "pessimistic” view of the world will be discussed in

Section 4.
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Remark 3.2:
(i) A solution concept & on #{U) which satisfies CONS induces a CSR ¢ on T'(U)
which satisfies CONS but not nécessarily SCONS, since Cg x(0) = 0 is not

necessarily true for x = ¢(N,C,q). Indeed, the prenucleolus and thus the nucleo-
lus rule are consistent. Nevertheless, the nucleolus rule does not satisfy SCONS
as examples show. The objection that the definition of the reduced function (see
(1)) should be modified by, e.g., taking the positive part of this function, can be
countered as follows. In the interpretation presented above it is hard to motivate
that only certain coalitions take the optimistic view of the world and others
throw away money. Moreover, the idea that (at least) the nucleolus rule should
satisfy CONS excludes this modification as the following example shows:

Let N = {1,2,3}, q=(1,2,4), C(y) = yz. The nucleolus rule applied to this CSP
yields x = ¥(N,C,q) = (7,14,28).

With S = {1,2} the reduced function satisfies CS,x(l) = -3, CS,X(Z) = 4, and

Cg x(3) = 21, thus the positive part of C determines the game (S,v) defined by

v({1}) = v() = 0, v({2}) = 4, and v(5) = 21.
Clearly p(v) = (16,25)/2 # (7,14) = Xg-

(ii) It should be noted that it is not known whether there is any Pareto optimal CSR
on I' (U) satisfying SCONS, unless |U| < 2. SCONS is only used in the context
of cost sharing problems with concave cost functions (see Theorem 3.3).

(iii) Note that average cost pricing satisfies CONS on I'(U). A proof of this property
is straightforward and skipped.

For any set I'of cost sharing problems let I'* denote the subset of cost sharing problems
with concave cost functions within I'.

Theorem 3.3:  The nucleolus rule is the unique cost sharing rule on ' *(U) satisfying
ET, COV, and SCONS.

Proof:

Clearly each underlying game (N,v) of some CSP (N,C,q) with concave C is concave:
v{S) + v(T) > v(SUT) + v(SNT) for S,T C N.

Therefore the nucleolus 7{v) belongs to the core
Hv) = {xeRY |x(N)=v(N) and x(S)<v(S) for S ¢ N}.

This consideration shows that any reduced function is itself a cost function in case v is
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the CSR. Moreover, it is not necessary to distinguish whether y exceeds or does not ex-
ceed q(S) in equality (1). The first row of (1) can be taken as definition in this special
case. Therefore reducing does not destroy concavity. Up to now we have shown that
CONS and SCONS cannot be distinguished for the nucleclus rule on cost sharing prob-
lems with concave cost functions. By the choice of the set of cost sha.ring problems
every reduced CSP is a member of I' *(U), thus Sobolev’s (1975) result shows that the
nucleolus rule possesses the desired properties.

To show uniqueness let o be any CSR with the desired properties and 7 its continua-
tion. By COV ¢ is Pareto optimal on 1-agent cost sharing problems. CONS guarantees
PO in general. The proof is complete as soon it is verified that &(v) belongs to the pre-
kernel of v for every v € #T'*(U)). (Recall that the prekernel of a game (N,v) is the set

- {xeX(v)] sij(x) = sji(x) fori,je N,i#j},
where sij(x) = max {x(S)-v(S)|j # S 3 i} is the maximal surplus from i over j at x.) In-

deed, Maschler—Peleg—Shapley (1972) showed that the prekenel of a concave game is a
singleton consisting of the prenucleolus only. If (N,C,q) is any CSP with a concave cost
function and n > 2, take different agents i and j of N, take § = {i,j}, and consider the
reduced CSP (S’CS,x’qS)’ where x = o(N,C,q). The vector x is a member of the preker-

5,Cg
* for 1,j € N with

nel of vC,q, if and only if Xg is the standard solution for v = v
i#]. (Recall that 7 is called standard on ¥, if for every game (N,v) € Fwithn=2x =

(v(N)+v({i})—v({j}))/2 is true, where x = o(v) and N = {i,j}.} To show that our con-
tinuation 7 is standard, let (N,C,q) be a 2-agent CSP in I'*(U) (i.e. |U]| > 2 is assumed
implicitly; otherwise the proof is already finished). Without loss of generality let q, < g

Define 4, =q for k € N and

G(y) = { S) ¥ £ C(g,
@) =1 Cgi) + (y-a;) (C(a(N))-C(ay))/q; y> CE&;]’
where 0/0 = 1 (if . = 0) in this context. Since C is concave, C(qi)+C(qj) > C(q(N)),

thus C is coricave. Therefore (N,C,3) € I'*(U). Moreover, vC’q-i-ﬁ = VC,E[’ where § = 0

and ﬁj = C(q) - C(qj). By ET ai(N,C,ﬁ) coincides with aj(N,é,c‘i). COV and PO

complete the proof of standardness. : q:e.d.

Note that this characterization is in fact a characterization of the prekernel which can
be generalized to the set of concave cost games with player sets contained in U.
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Though the analogon of Lemma 1.6 does not hold (i.e. it is not true that every concave
cost game coincides, up to strategical equivalence, with the underlying game of some
CSP with a concave cost function (see Section 4)), COV cannot be dropped, because
average cost pricing satisfies ET and SCONS but does not coincide with the nucleolus
rule if U contains different agents. Sudholter (1993) presents examples which show that
ET is independent unless U is a singleton. The Shapley rule satisfies ET and COV but
SCONS fails for |U| > 3.

It should be remarked that it is not known whether CONS is strong enough to
replace SCONS in Theorem 3.3. Nevertheless, the present approach shows that within
this restricted family of cost sharing properties strong consistency (which seems to be
more intuitive than CONS) can easily be satisfied. The general case requires CONS.
SCONS is not satisfied even for average cost pricing.

Theorem 3.4: If U is infinite, then the nucleolus rule is the unique cost sharing rule
on I'(U) satisfying ET, COV, and CONS.

In the proof of this theorem Sobolev’s (1975) result is applied.

Proof:

It is sufficient to show uniqueness. Let o be a CSR with the desired properties and let &
be its continuation. Sobolev showed that & has to coincide with 7, if & satisfies COV,
AN, and CONS. Orshan (1993) showed that AN can be replaced by ET. In view of
Corollary 1.8 it suffices to show that & satisfies CONS. A further modification of the
proof of Lemma 1.6 (which is similar to that of Theorem 2.5) shows that 7 is consistent.
Indeed, if (N,v) € #U) and § is a nonvoid coalition in N, then there is a demand profile

q and a cost function C such that vOd = v+fand Cg, (x = o(N,C,q)) is a cost func-

tion. COV completes the proof. g.e.d.
There are examples which show the logical independence of the properties as well as the
necessity of the infinity assumption (see Sudholter (1993)).

4. The anti-—nucleolus rule

In this section we present an axiomatization of the anti-nucleolus by ET, COV, and

dual consistency. Moreover, it is shown that the anti-nucleolus rule is in the core, if the
cost function is concave.
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Definition 4.1: Let & be a CSR on I'C I'(U) and & be a solution concept on $C HU).
(i)  For every game (N,v), every nonvoid coalition S € N, and every x € RN the dual
reduced game (S,*vg ) of v (at x with respect to S) is defined by
3

yif T =
*VS,x(T) = V(N) - 'if T=N for TCN.

max {v( 1151{) -x(R}{R ¢ SC}, otherwise

(ii) & is dual consistent (satisfies DCONS), if *vs, ofv) € ¥ and G(S’*VS,U(V)) =
a(N,v)S forve Yand##SCN.

(iii) For every CSP (N,C,q), every nonvoid coalition S ¢ N, and every x ¢ RY the
dual reduced function Cg _: Ry, 2+ R s defined by
¥ -

,ify=10
* = - x(d¢ if y
%) [nﬁ(?%’(wq(ﬁ?)lxm)ln cse)ifh <y ¢y

where ¥ = max {q(T)|T ¢ S}. (Note that the dual reduced function need not be
a cost functlon since C§ (y) might be larger than C§ _(e+q(S)).)

(iv) o is dual consistent (satlsﬁes DCONS), if for (N,C,q) e ', 8# SC N, and x =
o(N,C,q) the following condition is satisfied:

If C§ is nondecreasing, then (8, C§ olg) € T' and xg = o(5,C¥ x’qS)‘

Note that nondecreasing in (iv) only means C (y) < C(q(N)) - x(5¢). The main

difference between CONS and DCONS is that the "optimistic" view is replaced by the
"pessimistic" view of coalition T C S. Every coalition R of members of S¢ (who agreed
upon the proposal given by o) has to be considered as possible coalition of partners of
T. Therefore the total cost generated by the aggregate demand of the union T U R can
be "reduced" by the fee which will be paid by R in the "worst" case.

Note that DCONS for underlying games implies DCONS for the cost sharing prob-
lems. The proof of the next theorem is similar to that of Theorem 3.4. Majnly games
have to be replaced by their "duals". Recall that if (N,v) is a game, then (N,v*), de-
fined by v*(S) = V(N) - v(S¢) for § C N is its dual.

Theorem 4.2:  If U is infinite, then the anti-nucleolus rule is the unique cost sharing
rule on I'(U) satisfying ET, COV, and DCONS.

Proof:

By duality (the anti-prenucleolus coincides with the prenucleclus of the dual game) it is

sufficient to show uniqueness. Therefore we only need to show that 7 satisfies DCONS.

The proof of DCONS is very similar to the proof of CONS in Theorem 3.4. Therefore

we skip the details and apply Sobolev’s and Orshan’s results. g.ed.
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In order to show the independence of the properties again Sudholter (1993) is referred
to.
To provide the second result of this section the definition of the least core of a cost
game (N,c) is recalled. The least core of (N,v) is the set
HLEv)={xeX(v)|x(S)—v(S)<max {y(T)-v(T)| G\#TQN}, %SQN for yeX(v)}

of preimputations which minimize the maximal nontrivial excess. As a matter of fact
the nucleolus #(v) is a member of the least core.

Lemma 4.3: If C is a concave cost function and (N,C,q) is a CSP, then the least

core of the dual of its underlying game is contained in its core, i.e.
L4 v*) C 4v), wherev = vOl

Proof:

Let x be any preimputation of v which does not belong to the core of v. Then there is a
coalition S in N with positive excess, i.e. v(S) — x(S) < 0. Define &= Z[x} to be the
set of maximal excess coalitions (i.e. &= {8 € N|v(S)-x(S)¢v(T)-x(T) for T C N}).
The set & possesses the "near-ring property" in the sense of Maschler—Peleg-Shapley
(1972), thus § = U S € & Conversely, let 4={S C N[v(S)—ﬁc(S)gv(T)—x(T) for TCN}

Se g
denote the set of minimal excess coalitions. For i € S¢ we easily obtain
x, < v(SU{i}) - v(5). (1)
Claim: For S € Aeither S¢ € Sor S ¢ Scis true.

If q(S) < q(8), then assume SU § # N and take i € (SUS)c. The fact
x, < v(SU{i}) - v(5) < v(SU{i}) - v(S),

~ which is true by concavity of C and (1), implies
(v(8u{i}) - x(SU{i})) - (v(§)-x(5)) > 0,
which establishes a contradiction to the fact S € 4 Therefore 5¢ € S in this case.
If q(S) > q(5), then take such S that |S| is minimal. fSNS # §, takei € SNS
and observe that
| v(S) - v(S\{i}) ¢ v(8) - v(8\{i}) (by concavity of C)
is valid, hence
(v(8)=x(8)) - (v(S\{i})-x(S\{i})) <
(v(S)-x(8)) - (v(S\{i})=(S\{i})) <0,
thus equality holds (remember that S € 4 S € ). Minimality of S and the first
part of this proof show that q(S\{i}) < q(5) and Sc C S. If S5 = @, then S C Se.
Now the proof can be finished using Kohlberg’s (1971) characterization of the nucleolus



-92]1 -

by balanced collections of coalitions which can easily be weakened for the least core
(see, e.g., Sudhdlter (1996)). Indeed, if y is a preimputation of v, then y belongs to the
least core of v*, if and only if Zy) is weakly balanced. Weakly balanced means that
the barycenter of the grand coalition is a in the convex hull of the barycenters of the
maximal excess coalitions, i.e. there are coefficients 75 > 0 such that

% e le =1y
scg s S N
By our claim x cannot be a member of the least core of v*. q.e.d.

This last lemma shows that the set Y{T'*(U)) of games strategically equivalent to the
underlying game of some CSP with concave cost function is a "small" subset of the set -
of all concave games with player set contained in U. (Note that concavity is closed
under strategical equivalence, i.e. the game is concave, iff every game, which is strategi-
cally equivalent to the initial game, is concave.) This can be seen with the help of
examples. There is a concave game such that the least core of its dual does not even
intersect the core of the game (see Sudhélter (1996), Example 3.2.3).

Corollary 4.4:  The anti-nucleolus of a CSP (N,C,q) with concave C is in the core of
its underlying cost game v 9,

5. Coincidence of cost sharing rules

This section serves to classify the set of cost functions such that the mentioned cost
sharing rules, namely the Shapley rule and both nucleolus rules, coincide for every
demand profile. We shall say that a cost function C satisfies the coincidence property
(CP) at « for some @ 2 0, if '

a(N$C:Q) = ‘RN,C,Q) (1)
holds true for every agent set N with two agents and every demand profile q € IRI;I0 such

that the aggregate demand coincides with o, i.e. ¢(N) = a

Theorem 5.1:
(i) A cost function satisfies CP at a, if and only if
o (C(y) - Cle-y)) = (2 ~ @) C(a) for 0 < y S @ @
(ii) If C satisfies CP at e and (N,C,q) is a CSP with aggregate demand a, then
¥(N,C,q) = v*(N,C,q) = AN,C.q) = «(N,C,q).
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The typical shape of a cost function satisfying CP is sketched in Figure 2. Note that in
assertion (ii) of this theorem n = 2 is not assumed. The nucleolus rule, the anti-nucleo-
lus rule, average cost pricing, and the Shapley rule coincide for any cost sharing prob-
lem with a cost function satisfying CP at the aggregate demand of the agents.

Proof of Theorem 5.1:

Let C be any cost function. For @ = 0 both assertions are trivially satisfied, thus a > 0
is assumed from now on. Take any y with 0 < y < & and define N = {1,2}, q = (y,e-y).
Standardness of the Shapley value shows that

%,(N,C,q) = (C(q,)+C(a(N))-C(q,))/2 = (C(y)+C(e)-Cla-y))/2.
Average cost pricing yields
4(N,C,q) = (q,/a(N))- C(a) = y/a - C(a)-
This shows that $and < coincide on (N,C,q), if and only if
(Cy)+C(a)-Clay))/2 = y/a - C(a),
which is equivalent to (2). For y € {a,0} equality (2) is trivially satisfied.
~In order to prove (ii) let (N,C,q) be any CSP such that q(N) = a and C satisfies CP
at a. Let x € RN abbreviate 2(N,C,q), ie x, = (q./a)- C(a) for i € N. The explicit

formula for the Shapley value (see Shapley 1953) yields .
oo = 3 LRIk EE)-cs\in)

_ gy (=D (n—S)' (C(Q(S))-C(Q(S\{1})+C(Q(S‘U{1}))—C(Q(Sc)))
1€eSCN n

Sb y taking "complements")
_ gy (o0:(es) 2uSha)rqsugi)a

(2) ieSCN

_ !S—l!l !n—S!' g_ C( )

1ESCN

n
= (g/a0)Cle) T 5= !;1 Lt (n—l) (by "counting subsets")
s=1

= X.
1

For the nucleolus rules Kohlberg’s approach is used. At x the excess x(S)-v(S) coincides
with that of Sc, where v = v (by (2)). Therefore the balancedness critera show that

both nucleolus rules coincide with average cost pricing. q.e.d.

[Insert Figure 2 about here]
Corollary 5.2: A cost function satisfying CP at a is continuous, if it is resticted

to {y|0<y<a}.
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Proof:

This assertion can be shown with the help of (2) and monotonicity of a cost function C.

If C satisfies CP at « then the slope of C is bounded from below by 0 by definition.

Equality (2) shows that the slope is bounded from above by 2. C(a) whence C is restric-

ted to the interval [0,a], i.e (C(y)-C(2))/(y—=2) < 2:C(a) for 0 € z < y < a. Indeed,
(C(y)-C(z)) | (Cla-z)C(a-y)) _ (C(y)-Cla-y))o{C(z)-C(a—2))

= C=Ca0) y=
= 2:C(a) (by (2))
and both summands are nonnegative. g.e.d.

For a > 0 the proposed cost sharing rules (Shapley rule, both nucleolus rules, and ave-
rage cost pricing) can be characterized on the set I'of cost sharing problems with cost
functions satisfying CP at a, where a is the aggregate demand. Indeed, Moulin—Shenker
(1993) showed that average cost pricing is the unique CSR satisfying Pareto optimality,
separable costs, and monotonicity on sets of cost sharing problems (N,C,q), which con-
tain (N,C%q) and (N,E94C,q), where €9 is the "constant returns” cost function given
by C(y)- q(N) = y- C(q(N)). Since I possesses this property by (2), in view of Theorem
5.1 the same result holds true for ¥, v, and +* on I Moreover, if |U| > 2, the logical
independence of PO, SC, and MON can be verified by considering the following cost
sharing rules. The CSR, which assigns al(N,C,q)-f-(C(qi)—C?(qi)) +

CSP (N,C,q) of I'satisfies SC and MON but is not Pareto optimal. The "equal split"
solutions shows the independence of SC. Finally, the CSR which assigns

Clq)+(1/n)- (C(q(N))-Z C(q))
: jeN

to agent i for every CSP (N,C,q) of I'satisfies PO and SC but is not monotonic.

to agent i for every

A cost function C possesses the global coincidence property (GCP), if C satisfies CP at
every « € [R>0. The set of cost functions satisfying GCP can be characterized. I am

indebted to A. Sobolev who found the elementary proof of the following

Theorem 5.3: A cost function C satisfies GCP, if and only if C is a parabola or if it is
linear, i.e. there are nonnegative real numbers A,B such that
Cy)=Ay +B-yfory>0. (3)
Proof: | '
Every function C: Ry, -+ R given by (3) is a cost function. The proof that C satisfies (29

for every ¢ and 0 { y < d is straightforward and skipped. For the converse let C be a
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cost function satisfying GCP. By (2) we have

y- (C(z+x)-C(z—x)) = x- C(2z) (4)
for 0 < z € x, which can be seen by applying (2) to a = 2z and y = z+4x. Define

A=A =1/2n,z=kA,x=mA4, y, = C(p-A)

for n,p,k,m € N with m < k. By (4) we come up with

k (Viepm = Vo) = @ Youe \ (5)
The following recursive formulae

Yol = K (y47,7y,) + K(25,+y,3,) (6)
and Yoy =D (ry,y) + (k1) y, 4, (7)

are obviously valid for k = 1,2. By induction on k it can be shown that (6),(7) are gene-
rally true. Indeed, for k > 3 first of all the application of (5) with m = 1 shows (6). Se-
" condly (5) applied to m = k-1 shows (7). The necessary computations are straightfor-
ward and skipped.

With 7 = 2y,+y,-¥, and p = Yo Y, Y, we obtain

C(1) = C(2n-A) = Voo = n. p+mnm,

C(2) = C(4n-4) =y, = 42 5 + 2n- 1, (both by (6))
thus n?p = (C(2) - 2- C(1))/2
and ny = (4-C(1) - C(2))/2.
The observation

C(k/n) = C(2k/2n) = C(2k-A) = k* p + k- 7 (by (6))

= (k/n)*n%p + (k/n) n-p -
= ((C(2)-2-C(1))/2)- (k/n)*+((4 C(1)-C(2))/2)- (k/n
for k,n € N shows that C(y) = Ay2 + By for any rational number y > 0, where
A =(C(2)-2-C(1))/2 and B = (4- C(1) - C(2))/2.
Since C is a cost function (nondecreasing and nonnegative), A and B are nonnegative.
Corollary 5.2, i.e. continuity of C, shows that C possésses the desired properties. q.e.d.

6. Summarizing diagrams

Table 1 shows the properties of the cost sharing rules discussed in this paper. A "-"
means that the corresponding CSR does not satisfy this property at least on the set of
all cost sharing problems with agent set contained in some universe U of more than two
members. The symbols "+" and "e" mean that the corresponding property is satisfied
or belongs to the axiomatization respectively.
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e Y v U e Y v vk
PO + + + + 0N T - - =
RAN! + + + + ADD + o+ = -
SC{+ + + + MMADD| + + — -—
ET | + + + + CON + o+ - —
NP | + + + 4+ CONS | + - + =
AN+ + + + SCONS| - - - ~—
DCONS| + - — +
"common properties" Cov - + o+ ¥

Table 1: "Properties"

With a finite subset N of U such that n > 3 and a > 0 the following 3 tables summarize
the presented axiomatizations on Iy, I'(U), I*(U), and on the set I'of cost sharing prob-

lems (N,C,q) with cost functions C satisfying the coincidence property at a, where a =
q(N) is the aggregate demand of the agents. The abbreviation "M-S" indicates that this
axiomatization is due to Moulin—Shenker (1993). The numbers refer to the name of the
Theorem or to the section where this result is proved. Table 2 treats cost sharing rules
on cost sharing problems Ty, with a fixed agent set.

8

on 'yl"e 1 2.9
"~ ET

NP

ADD

HMADD

Cov

SC

PO

MON

=
&

| ++et+toeoe
| ++eo0t+ae

eaad | ++++

Table 2: "On I‘N“

Though Theorems 2.1 and 2.2 also hold for T'(U), Table 3 neither mentions this fact nor
repeats the characterization of average cost pricing. These axiomatizations are strongly
based on "varying agent sets", i.e. on certain consistency principles (see Sections 2—4).

v
R — v* ¥

on I' (1) 3.3 3.4 4.2 2.5
ET ® ) & ®
CON - - - @
CONS + ) - -
SCONS ® - - -
DCONS - - ] -
Cov & @ ] ®

N
on ™(U) U infinite
Table 3: "On T'(U)"
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Table 4 presents the common axiomatizations on the set '

Y v v 2

| —
on I | Section 5 M-S
ET e ®© @ o
CON ® e & ©
CONS ¢ O © o

Table 4: "Coincidence"
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