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Abstract

Models describing the selection between pareto-optimal outcomes in 2 person bargaining
with different status quo points are the Nash-criterion (J.F. Nash 1950 and 1953), the
Kalai-Smorodinky criterion (E. Kalai, M. Smorodinskiy 1975 and E. Kalai 1977), equal
absolute payoff above the status quo point and equal absolute payoff below the Bliss point.
A new model based on the theory of prominence (W. Albers, G. Albers 1983, W. Albers
1997) which describes the perception of numbers (especially payoffs) and related to the
Kalai-Smorodinky criterion is presented. Experiments using the strategy method were
performed to test the predictions of the different models. Results of these experiments
~are that the model based on prominence theory is a better predictor for the data than
the other models and its predictions are not rejected by the experimental data.



1 Introduction

A classical bargaining problem is the 2-person bargaining about payoffs (a,b) € S (the
payoff of player 1 is denoted by a and b denotes the one of player 2, S C R.is a non-empty
closed convex set). It is modeled by Nash (J.F. Nash 1950 and 1953) and an axiomatic
solution is given. Other possible solutions of this problem are equal payoffs for both
persons above a status quo point or equal (absolute or relative (E. Kalai, M. Smorodinsky
1975, E. Kalai 1977)) payoffs below the Bliss point. In addition to these models a new
model (model I) is given in this paper. This model uses the Kalai-Smorodinsky approach
(E. Kalai, M. Smorodinsky 1975; E. Kalai 1977), but models the perception of numerical
outcomes according to the theory of prominence (W. Albers, G. Albers 1983, W. Albers
1997).

To test the predictions of the models experiments using the strategy method were per-
formed. This will be described in the third part of the paper. In these experiments
communication was possible. '

The selection problem examined in this paper can be described by means of figure 1. The
convex set S is characterized by the following conditions for the payoff (a,b):

(amin;bmin) S (a>b) S (amam; bma:z;)

and
a b
Qmaz + bmaz S 1

with constants
Amag, bmaw; Amin bmin € R and Qmaz > 0; bmam > 0, Omagz > Amin, bmam > bmi'n,

The payoffs on the pareto-line (with (a,b) > (0,0)) can be characterized by a parameter
p (0<p<1). The payoffs on the pareto-line are (a,b)=(p*amax,(1-P)*bmax)-

Figure 1: The considered 2-person bargaining situation
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2 Models for the selection between pareto-optimal
outcomes

2.1 Maximal Nash-product

J.F. Nash (J.F. Nash 1950 and 1953) predicts that the payoff vector (ay,by) is selected
for which (a — @min) * (b — byin) is maximal.  For the examined problem the solu-
tion can be obtained by determining analytically the parameter p for which the area
(P * Gmas — @min) * ((1 = P) * brmaz — bmin) is maximal (compare figure 2).

Figure 2: Maximal Nash-product
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It is py = (1 + Zmin — f::) % 1. The corresponding payoffs are:

Amaz

Nash: (ay,by) = ((1 + &min — Imin) y Smaz (] — Smin 4 bmin) 4 bumaz)

Gmaz bmaz 2 Gmaz bmaz 2

1The correct solution is p’=min(1,(max(0,p)), where p denotes the p given in the formula. For reason
of a better reading only the value of p is given for all models.
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2.2 [Equal payoffs above the status quo

Equal payoffs above the status quo point (ag,bg) are determined by the intersection of
the pareto-line with the line through (@min, bmin) with gradient 1 (compare figure 3).

Figure 3: Equal payoffs above the status quo point
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2.3 Equal payoffs below the Bliss point

Equal payoffs below the Bliss point (&max;bmax) are determined as shown in figure 4.

Figure 4: Equal payoffs below the Bliss point: upper part: absolute (ag,bg); lower part:
relative (a,p,b,5) ,
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Equal absolite payoffs below the Bliss point (ap,bg) are determined by the intersection -
of the pareto-line with the line through (amaz, bmaz) With gradient 1 (compare figure 4).

This gives pp = (-—2ze=—). The corresponding payoffs for equal absolute payoffs below

Gmaz+bmaz
the Bliss point are:
(a5, 08) = (G23%5) * Gmae, (G285) * bmas)-

Eqﬁal relative payoffs below the Bliss point (a,p, b,p) are predicted by the Kalai-Smorodinsky
model (E. Kalai, M. Smorodinsky 1975, E. Kalai 1977)). The payoffs are determined by
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the intersection of the pareto-line with the line through (i bmam) and (@min, bmin) (com-
pare figure 4). For this point it holds: mez=0r8 — bmes=ben

GrB—Gmin  DrB—bmin
" This results in p = (bmas —bmin)*mes

(bmaz’bmin)*amaz'*‘(amaa:‘a'mi'n.)*b'ma:z: :
The corresponding payoffs for the Kalai-Smorodinsky model are:

b —bmin)*Gmaz (a —Qmin )b
a b ( maz min a *Q, max Min maz * 3
( rB;“rB ) (bma.m bmin )*a'maz+(amam amzn)*bmax AL (bmaa: = bmin)*amaz+ (amaa: = amin_)*bma:: bma:z: )

2.4 A Model using the theory of prominence
2.4.1 The theory of prominence
The theory of prominence (W. Albers, G. Albers 1983, W. Albers 1997) describes the

structure and perception of numbers in the decimal system. In this part the perception
function Pa which is a result of the theory of prominence is described. It is needed to
describe the perception of payoffs in model I. - A short introduction into the theory of :
prominence is given in this part. A foundation of the theory of prominence is given in

(W. Albers 1997).

Prominent numbers are:

P={z%10"neZze{1,2,5}} ={..,01,0.2,05,1,2,5,10,20,50,100,...}.

The Pa-function (A € P) which is the perceptlon—functlon is defined on the prominent
numbers:
(1) Pa: P - R.
(2) Pa(0)=0
(3) Pa(A)=1
(4) Pa(q)= ( )+1 for 2 prominent numbers p<q with
< p, q > A and p and q such that no
. prominent number r exists with p<r<a.

(5) Pa(-fxl)=Pa(lx]) for |xlc P.

Interpretation: Differences between prominent numbers are perceived as constant steps (1

step). Pa(0) is defined as P4 (0)=0. Assuming that A is the smallest perceived prominent
number one gets Pa(A)=1. The values of negative numbers x are the negative values of
the corresponding positive numbers |x| . For |x|>A it holds |§;B1g?0((w—%))ﬂ -1 < 7%.

" For positive stimuli this is similar to the Weber-Fechner law of psychophysics (G.T. Fech-

ner 1968) that describes for example the perception of optical and acoustical signals.

Stimuli below a certain intensity are not perceived. Above this value the perceived in-

tensity of a signal i is a logarithmic function of the intensity of the original signal s:

i = const.y * log(s) + const.o.

The Pa-function is also defined for other sets of numbers called the spontaneous (S) and

the exact numbers (E) which are refinements of the prominent numbers by introducing half
and quarter steps, i.e. one additional spontaneous number between any two neighboured
prominent numbers and one additional exact number between any two neighboured spon-

taneous numbers (for details see the sets M(1,A), M(2,A) in W. Albers 1997, part I). The

P a-function is given in table 1 for the prominent, the spontaneous and the exact numbers
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in the range that is relevant for the experiment (the Pa-values of negative numbers are
the negative Pa-values of the corresponding positive numbers). It may be noted that the
smallest perceived unit A is determined on the full step level and thereby can only be a
prominent number.

Table 1: The Pa-values for A=10 and A=20 for the exact
numbers (quarter steps) between 0 and 100.
A =10
full steps 0 10 ‘ 20 50 - 100
half steps - 5 15 30 70
quarter steps 2/3 s 12/13 17/18 25 40 60 80
P a-value 0 025 05 075 1 125 15 .175 2 225 25 275 3 325 35 875
& =20
full steps 0 20 50 100
half steps 10 © 30 70’
quarter steps . 5 15 25 40 60 80

PA-Value 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

In the experimental data the smallest unit has to be determined. This is performed by
means of a rule of the theory of prominence. Before formulating the rule some definitions
are given below (compare W. Albers 1997). :

‘A presentation of a number is its presentation as a sum of prominent numbers, where
each prominent number occurs at most once, and all coefficients are either +1, -1, or
0. The exactness of a presentation is the smallest prominent number with coefficient
unequal zero. The exactness of a number is the crudest exactness over all presentations
of the number. The relative exactness of a number x is the exactness divided by |x| . A
number has level of [relative] exactness r, if its [relative] exactness is cruder or equal to r.
A set of data has [level of] relative exactness 1, if at least 75% of the data have this [level
of] relative exactness®.-'A scale S(r,a) is the set of 0 and all numbers with (1) relative
exactness >r and (2) exactness >a.

Rule for the scale S(r,a) and the smallest unit A of a set of data:

A set of data is on the scale S(r,a) if the set of data has [level of] relative exactness of r
and at least 90% of the data have an exactness of a®. The smallest unit of a set of data
is:

N=g for the scales S(100,a) (”scales with prominent numbers”),

A=[2*a] for the scales S(26,a) ("scales with spontaneous numbers”),

A=[4*a] for the scales 5(100,a) (”scales with exact numbers”)

2y has to be maximal
3a has to be maximal.



2.4.2 Model I

All payoffs are transformed by the Pa-function:

Pa:a,— Pa(a.) and Pa:b. — Pa(b.). !
The selection criterion for the payoff (axs, bys) is obtained by a comparison of concessions.
This is shown schematically in figure 5.

Figure 5: Schematic presentation of the comparisons in model I
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In this model the difference ¢1 = Pa(@maz) — Pa(anr) is the concession of player 1 and
92 = PA(bmasz) — Pa(byr) is the concession of player 2 relative to the Bliss point. These
differences indicate how much both players have lowered their demands. The other con-
cessions are given by 71 = Pa(by) — Pa(bmin) which is a concession of player 1 giving
player 2 a certain payoff above the conflict payoff of player 2 and ry = Pa(ap) — Pa(@min)
which is a concession of player 2 giving player 1 a certain payoff above the conflict payoft
of player 1. The selection criterion is that the sum of concession of both players have to
be equal:

The pareto- optlmal payoft (an,by) is selected, for Wthh q1 + r; = gz + rs.

Replacing q and r results in:

The pareto-optimal payoff (asr,bu) is selected, for which
(Pa(amas) — Pa(an)) + (Palbar) — Pa(bmin)) =
(PA(bmaw) - PA(bM)) i (PA(aM) = PA(amin)) or
The pareto-optimal payoff (aar,byr) is selected, for which

(Pa(amas) — Pa(am)) — (Palam) — Palamin)) =
(Pa(bmaz) — Pa(bu)) — (Pa(bar) — Pa(bmin))-

A different interpretation is obtained by measuring the concessions on each dimension
separately, i.e. 1 —ry = gy — r;. Here q; — 1y can be interpreted as the ” value of con-
cessions of player 1”7, where q; gives the concessions below the Bliss point, while ry gives
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the concessions not made and is therefore evaluated with a negative sign. The analogous
result is obtained for player 2.

2.4.3 Relation between model I and the Kalai-Smorodinsky model

For a comparison of the two models the criteria of model I and the Kalai-Smorodinsky
model (K-S) are written below one another. ‘

K-S : (@maz — arB) /| ( ap — amiﬁ) =
K-SZ (bmaz = er) / ( er - bm’i’n)
Model I: (Pa(@maz) — Pa(ar)) — (Palan) — Pa(amin)) =
Model I: (Pa(bmaz) — Pa(bar)) — (Palbar) — Pa(bmin))

The differences between these two models are that in model I the payofls are transformed
by the Pa-function and that after the transformation quotients in the Kalai-Smorodinsky
criterion correspond to differences in model I. This is compatible with the fact that after
a transformation by the Pa-function (which is for values higher than A proportional to a
”logarithmic function”) the quotients are transformed into differences.

Another difference is that the Pa-function operates on the payoffs and not on differences
of payoffs. For example the difference (a,5 — @min) is transformed into Pa(ar) — Pa(@min)
and not into Pa(@rp— @min). An explanation for this is that the strategic equivalence does
not hold for the perceived payoffs, it must be replaced by another form of equivalence for
perceived payoffs (B. Vogt 1997).

3 The EXperiment

In the experiment the bargaining game discussed above was played for several values of
Umaz, Gmin, Dmaz and by,. Figure 6 shows the values of these parameters.

In each game the players bargained about the outcome of the game by means of a para-
meter p (0 < p < 100). The payoffs corresponding to p were (p/100) * @pq, for player 1
and ((100 — p)/100) by for player 2. By doing this every point on the pareto-line with
payoffs higher or equal to 0 for both players can be the outcome of the game.

The players gave their strategies in the role of player 1 as a proposal p} and in the role
of player 2 as a proposal p,. Given the proposals p} and p the payoff was the mean of
the proposals, if pj < pj, and it was the status quo payoff, if pj > p5.




Figure 6: Values of the parameters in the different types of games

game | 8max | 8min bmax bmjn
1 100 | -100 | 10 0
2 100 | -40 | 10 0
3 100 | -20 | 10 0
4 100 | -10 | 10 0
5 | 100 | O 10 0
6 100 | O 10 | -10
7 100 | O 10 | -20
8 100 0 10 | -40
8 100 | -100 | 20 0

10 | 100 | -40 | 20 0

11 100 | -20 | 20 0

12 100 | -10 | 20 0

13 | 100 O 20 0

14 100 0 20 | -10
15 100 | -0 20 | -20
16 100 0 20 | -40
17 100 | -100 | 40 0

18 | 100 | -40 | 40 0

19 100 | -20 | 40 0

20 100 | -10 | 40 0

21 | 100 | 0 | 40 | 0

22 1100 | O 40 | -10
23 | 100 | O 40 | -20
24 100 0. 40 | -40
25 100 | -100 | 100 0

26 100 | -40 | 100 0

27 100 | -20 | 100 0

28 100 | -10 | 100 0

29 | 100 | O 100 | O

30 100 0 100 | -10
31 [ 100 ] 0 [ 100 | -20
32 100 0 100 | -40

3.1 The payoffs

The worth of 1 point was 2 DM (~$1.4). For every game the payoff of a player was
the difference to the mean value of the other players in his group having the same role.
(player 1 or 2, only games in which the player did not participate were considered for
the calculation of the mean value). Losses up to 100 DM (~$70) had to be payed by the
subjects. For the losses above 100 DM the subjects could choose whether to pay or to
work at 15 DM (~ § 10) per hour.



3.2 The subjects

The subjects were 32 students of economics and business administration after their ” Vordiplom”.

3.3 Communication

Free communication via terminals was possible.

3.4 The experimental procedure

The experiment was divided into two parts (Part A and B).

In Part A the subjects were subdivided into 4 groups of 8 subjects. Within every group.
the players were matched in pairs, they were rematched in every round. Every pair played -
one of the 32 games (shown in figure 6). Every game was played in the following stages:

1. Free communication via terminals.
2. Simultaneous announcement (and exchange) of the planned strategies.

3. Simultaneous selection (and exchange) of the strategies.

In part B all games were played by means of the strategy method. The subjects had to
select their strategies for all 32 games and for both roles (player 1 or 2) without knowing
the other player or having communicated with another player. Three games per group
were paid. The players and games were chosen by chance.

4 Predictions

For the predictions of the model based on the theory of prominence the smallest unit A
has to be known. It can be determined from the p-values given by the subjects by means
of the theory of prominence by the rule described in section 2.4.1. After determining the
smallest unit A the predictions of model I are determined. The predictions for the models
described in part 2 are given in figure 7 .
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Figure 7: Predicted values of p (in %) by the different solution concepts.

game | Nash | Equal payoff | Equal payoff below Bliss | Model I
: above the SQ | (absolute) (relative) |

1 0 0 » 90.91 33.33 5

2 30 0 90.91 41.67 7

3 40 0 90.91 45.45 10
4 45 0 90.91 47.62 17
5 50 9.09 90.91 50 25
6 100 18.18 90.91 66.67 .40
7 100 2T 90.91 . 75 50
8 100 45.45 90.91 8333 - 60
9 0 0 83.33 33.33 7

10 30 0 ' 83.33 41.67 10
11 40 0 83.33 45.45 12
12 45 -+ 8.33 83.33 4762 . 17
13 50 16.67 83.33 50 30
14 75 25 83.33 60 40
15 100 33:33 83.33 66.67 50
16 100 50 83.33 75 70
17 0 0 71.43 33.33 8

18 30 0 - 71.43 41.67 17
19 40 14.29 71.43 45.45 25
20 45 21.43 71.43 47.62 30
21 50 28.57 71.43 50 40.
22 | 625 | 35.71 71.43 -~ 5556 | 50
23 75 42.86 71.43 60 60
24 | 100 57.14 71.43 66.67 75
25 0 0 - 50 . 33.33 12
26 30 30 50 41.67 17
27 40 40 ; 50 45.45 30
28 45 45 50 47.62 40
29 50 50 50 50 50
30 55 55 50 52.38 60
31 60 60 | 50 54.55 70
32 70 70 - 50 58.33 80

5 Results and discussion

5.1 Test of the predictions of the models

The predictions of the models given in figure 7 are tested by means of a binomial-test.
The test was performed for two assumptions. In one approach it is assumed that there
are only 4 groups of 8 subjects that are independent (assumption A) and in the other
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approach it is assumed that the p-values of all subjects are independent (assumption B).
The medians of the 4 groups given in figure 8 are the data for the test assuming only the
independence of the 4 groups. :

Fi igure 8: Medians of the values p*=(pj+p3)/2 responded for all
groups and games.

game | group 1 | group 2 | group 3 | group 4
1 5.25 ) 0 0.5
2 13.75 13.75 1.5 3.75
3 20 21.25 3.75 6
4 25 27.5 7.5 12.75
5 40 . 425 9.5 21.25
6 52.5 56.25 25 47.75
7 58.75 65 46.25 T2.75
8 60 81.25 84.5 89.25
9 7.5 7.5 0.75 1.75
10 15 15 2.75 7
11 22.5 25 7 11.75
12 30 32.5 11.75 16.75
13 43.75 42.5 19.75 33.25
14 53.75 52.5 31.75 55
15 63.75 63.75 50 T1.25
16 70 78.75 89 89.75
17 11.25 11.25 2.6 2.5
18 20 20 5 11.25
19 26.25 27.5 12.5 18.75
20 31.25 36.25 23 25.5
21 41.25 45 30 39.25
22 52.5 51.25 43.75 52.5
23 63.75 58.75 70 66.25
24 | 775 71.25 | 91.75 88
25 16.25 22.25 3.75 5 -
26 18.75 23.75 18 15
27 26.25 32.5 34.5 22.5
28 37.5 42.5 42.5 39
29 50 50 50 50
30 60 60 60 61.25
31 67.5 70 67.25 70
32 76.25 78.75 83.25 86.25

The results of the test are given in figure 9. In the figure it is indicated by the symbol
”—7 if the hypothesis “the prediction of the model is true” is rejected by the data of a
game. A ”+4” indicates that the hypothesis is not rejected by the data.
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Figure 9: Results of the test (assumption of 4 independent
groups). '

game | Nash | Equal payoff | Equal payoff below Bliss | Model 1
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The predictions of the Nash-criterion are rejected in 30 of 32 cases, the predictions of the
models ”"equal absolute payoff below Bliss” and ”equal absolute payoff above the SQ” are
rejected in 29 of 32 cases and show the worst agreement with the data. The predictions
of the Kalai-Smorodinsky model (”equal relative payoff below Bliss”) are rejected in 27
of 32 cases and show bad agreement with the data.

Model I shows clearly the best agreement with the data. The predictions are rejected in
0 of 32 cases. ‘
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The results of the test assuming that all responded p-values are independent are given in
figurelO. ’ ’
Figure 10: Results of the test (assumption B).
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The result of the test is for almost all games the same as for the first assumption.

These results indicate that the models that are not based on the theory of prominence do
not give good predictors for the data while the model based on the theory of prominence
predicts the data surprisingly well.
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6  Conclusions

In this paper the selection between pareto-optimal outcomes in 2-person bargaining was
analysed. Besides existing concepts as the Nash-criterion (J.F. Nash 1950 and 1953),
- equal payoff above the status quo point and equal (absolute and relative (E. Kalai, M.
Smorodinsky 1975, E. Kalai 1977)) payoff below the Bliss point a new model (model I)
based on the theory of prominence (W. Albers 1997) is introduced. It is obtained by the
idea of an equal sum of concessions of both players and is related to the Kalai-Smorodinsky
model. ‘
The results of the experiment conducted by means of the strategy method with 32 sub-
Jects do not show good agreement with the predictions of the Nash-criterion, equal payoff
above the status quo point and equal (absolute and relative) payoff below the Bliss point.
The best predictor is given by model 1.
The idea of an equal sum of concessions assuming that the perception of numbers is de-
scribed by the theory of prominence yields the best result. The main difference between
model] I and the Kalai-Smorodinsky model is that the linear perception of numbers has
to be replaced in model I because of the perception of payoffs according to the theory of
prominence.
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