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Abstract

A general NTU game is interpreted as a collection of pure bargai-
ning games that can be played by individual coalitions. The threat
points in these pure bargaining games reflect the players’ opportunities
outside a given coalition. We develop a solution concept for general
NTU games that is consistent in the sense that the players’ outside
opportunities are determined by the solution to a suitably defined re-
duced game. For any general NTU game the solution predicts which
* coalitions are formed and how the payoffs are distributed among the

players.



1 Introduction

There are many economic situations in which coalition formation and bar-
gaining over the gains from cooperation play a central role. A prominent
example is a coalition production economy where each coalition possesses a
production technology and the agents have to decide which firms to form
and how to distribute the profits among the owners. Another example is the
provision of public goods in a local public good economy.

Such problems can be formulated as general Non Transferable Utility
{NTU) games. Rather than predicting coalition formation the literature has
mainly concentrated on finding solutions for general NTU games that assign
to each game a utility distribution among the players which is feasible for the
grand coalition. The Shapley NTU Value (Shapley [12]) and the Harsanyi
solution {Harsanyi [3]) both consider as well what players can achieve when
they form smaller coalitions. The idea is that a player who can get a high
utility in coalitions different from the grand one will usually have a lot of
bargaining power and can therefore demand a “large piece of the cake” when
he joins the grand coalition. However, the threat to deviate to a subcoalition
is only credible if there is some positive probability that this subcoalition
really formis in case there is dis&greement in the grand coalition. Neither value
is based on such considerations. Also, since the final utility distribution has
to be feasible for the grand coalition there are several counterintuitive results
for a large class of games. This is true in particular for non-superadditive
games, where only the formation of smaller coalitions seems to be rational
for the players.! Thus, a solution concept should take into account not only
the problem of distributing the gains among players but also the issue of

coalition formation which is of course directly correlated to the former.

1See the Aumann-Roth—-Shafer discussion in [1], {10], [11].



Defining solution concepts with respect to coalition structures ([2]) may
be one way to solve the problem if some additional notion of stability on
the set of partitions is introduced (see for example Shenoy [14]). However,
it is difficult to justify the existence of a solution concept with respect to a
coalition structure. Rational players will not commit themselves to form a
coalition prior to bargaining about the payoff in this coalition. This is true
in particular as, once a coalition structure is fixed, the players cannot use

‘other coalitions as a (credible) threat any more when bargaining about their
payofls.

In this paper we therefore take a different approach. In each coalition the
players face a pure bargaining game with a well defined bargaining region
and a disagreement point that reflects the players’ opportunities outside that
coalition.? For each coalition we take as exogenously given a solution concept
for pure bargaining games that is based on what is considered as being “fair”
by the members of that coalition. Players then can determine the payoffs in
the various coalitions and decide which coalitions to form. The main issue will
be to determine the disagreement points for each coalition. The C-solution we
are going to define will be consistent in the sense that the disagreement point
in each coalition S is — apart from feasibility constraints — given by the
players’ expected payoffs in the game that is reduced by coalition .S, where
these payofs are those predicted by the C-solution for the reduced game. We
will apply the dynamic solution for an abstract game to determine the stable
coalition structures given players’ payoffs in each coalition. Since we only
have a finite number of coalitions, the dynamic solution and therefore the

C-solution exist for all NTU games. This is a remarkable result.

?In contrast to general NTU games all bargaining regions in pure bargaining games
are degenerate except those for the grand coalition and those for single player coalitions.

General NTU games are sometimes also called coalifional bargatning games.



The paper is organized as follows. In Section 2 we review solution con-
cepts for abstract games. The C-solution is defined in Section 3 where we also
discuss differences to other well known solution concepts. Section 4 contains

some examples. We conclude in Section 3.

2 Solution Concepts for Abstract Games

Let X be an arbitrary set and dom C X x X a binary relation on X called
domination. Then (X,dom) is called an abstract game. An element z € X
is said to be accessible from y € X, denoted y — z, if there exist z = -

T,%1,...,%m = y such that
z = zp dom z; dom z; dom ... z,_1 dom z, = y.

If we also assume that £ — z ¥z € X then the binary accessibility relation
is reflexive and transitive. Note that on the contrary dom is neither assumed
to be reflexive nor to be transitive. The relation accessible is the transitive
and reflexive closure of dom. For z,y € X we write z « y to indicate that

z —yand y — 2.

Dom(z) = {y € X}z dom y} is called dominion of z € X.
Dom(A) = | Dom(z) is called dominion of A C X.

z€A

The set C = X \ Dom(X) is the Core of the abstract game (X, dom).
Since the Core is empty for a large class of games we look for a weaker

solution concept.

Definition 2.1 S C X is an elementary dynamic solution of an abstract
game (X, dom} if

l.zeSyeX\S=>zty.



2., y€ES=>rey.

P is the dynamic solution (d-solution) of an abstract game (X, dom) if

P = J{S|S is an elementary dynamic solution of (X,dom)}. |

Observe that the d-solution of an abstract game always exists and is unique,
_ though it may be empty. The concept of the d-solution was developed by
Shenoy ([13], [14]) and is closely related to the notion of an R-admissible
set in the context of social choice correspondences (see [6]). It can easily be

shown that the Core is a subset of the d-solution.

Proposition 2.2 For all abstract games C C P.

If X is finite the d-solution can be characterized as follows.

Lemma 2.3 If X is finite, then P is the d-solution of an abstract game
(X,dom) if and only if P satisfies

1.- (Internal Stability)
zyeP=zc—oy < y— x|

2. (External Stability)

(e) e P, ye X\ P=>z Ay
(b) y € X\ P= 3z € P such thaty — =.

Proof: We first show that the set P is uniquely determined by the condi-

tions 1.,2.(a) and 2.(h). Assume that there exist P,Q C X that fulfill the

conditions 1.,2.(a),2.(8) and let z € P\ Q. By condition 2.(b) since z ¢ ¢
there exists y € Q such that * — y. This implies ¥ € P by condition 2.(a).
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Therefore, y — z because of condition 1. which contradicts = ¢ . This
implies P C (). Analogously @ C P,ie. P = Q.

It remains to be shown that if P is the d-solution for (X, dom) then P
fulfills the conditions 1.,2.(a) and 2.(3).

1. Let z,y € P. Then either there exists an elementary dynamic solution

S such that xz,y € S in which case ¢ & y. Or z € S,y € S, where

2.

S, 5" are two disjoint elementary dynamic solutions. Then z /4 y and

y £z

(a)

Let z € Pand y € X \ P. Then there exists an elementary
dynamic solution S such that z € § and y ¢ S which implies
x4y

Let A= {y € X\ Ply 4 z ¥z € P}. We will show that A = 0.
Assume A # 0. A s finite since X is finite. Define a binary
relation > on X as.follows. For z,y € X let z » y if y — 2 and
T £ y. > is irreflexive and transitive. Define B = {y € Alz #
yVze A} = {y € A|y is > -maximal in A}. B # 0 since > is
acyclic and A is finite. Let y € Band S = {z € Bly « z}. We
will show that S is an elementary dynamic solution for (X, dom)
which is a contradiction and proves that A = §. Let z,z € §.
Thenz >y > zand z >y — z,i.e. ¢ < 2. Let z € 5. We

have to show that for all z € X \ § it is true that z 4 z.

i. Let z € P. Then = / z sincex € 5 C A.

ii. Let z € A\ S. Then z ¥ =z, i.e. either z /4 z or ¢ «
z. The latter implies = € B: Assume there exists w €A
such that w > z. Then w > r which is a contradiction to
z € B. However,z € 5,z € Band v & z imply z € S.
Contradiction. Therefore, x 4 z.

6



iii. Let z € X \{PUA). By the definition of A there exists w € P
such that z — w. This implies z /4 z because otherwise

z — w which contradicts z € A.

O

In contrast to the Core the d-solution is always nonempty if X is finite.

Theorem 2.4 If X s finite then the d-solution is nonempty.

Proof: The claim directly follows from Lemma 2.3. Since the d-solution
always exists it cannot be empty because of condition 2.(d) in Lemma 2.3.
g

The definition of the d-solution for an abstract game is similar to the
definition of the von Neumann-Morgenstern abstract stable set ([15]) for
the relation —.* Both solution concepts require some form of internal and
external stability. For the d-solution and finite X this can be seen from
Lemma 2.3. However, the definition of internal stability for the d-solution
(1. in Lemma 2.3) is weaker than the one used for defining the von Neumann-
Morgenstern abstract stable set. In contrast to the latter two elements of the
d-solution may be accessible from each other. On the other hand the definiti-
on of external stability is weaker for the von Neumann-Morgenstern abstract
stable set since no element of the d-solution is allowed to be accessible from
an element outside (2.(a) in Lemma 2.3). These differences account for the
fact that for finite X the von Neumann-Morgenstern abstract stable set may
not exist and is not unique in general whereas the d-solution is unique and

nonempty according to Theorem 2.4.

3K C X is a von Neumann-Morgensiern absiract stable seifor (X, —)ifl. 2,y K =
rdyand 2. y € X\ K = Jzr € K such that y — z.



It is straightforward to see that the d-solution is the von Neumann-
Morgenstern abstract stable set for the game (X, >), where > is the irre-
flexive and transitive binary relation on X defined in the proof of Lemma
2.3.% '

There is a clear dynamic interpretation of the stability notion inherent
in the definition of the d-solution. If we assume that there exists a positive
probability for moving from z to y if # — y and if P is the d-solution of
" the abstract game (X, dom) then the elements z € P are persistent whereas
the elements z ¢ P are transient in the theory of Markov chains. Thus,
- for finite X the probability of staying forever outside the d-solution is zero
which implies that any process that starts with an arbitrary element z € X
will enter the d-solution after a finite number of steps with probability one.
Therefore, the d-solution is stable in a very natural sense. In contrast the
von Neumann—Morgenstern abstract stable set does not have this desirable
property. The process defined above can leave and re-enter the stable set
with positive probability at any time. The differences between both solution

Concepts are best illustrated with the following example.

- Example 2.5 Let X = {z,y, z} and dom such that z dom y, y dom z, z dom
T,ie T oy < z «> z. The d-solution for (X,dom) is given by P =X
whereas any of the sets {z}, {y}, {2} is 2 von Neumann-Morgenstern abstract
stable set for (X,—). (The von Neumann-Morgenstern abstract stable set

for (X, dom) does not exist.)

In this example it seems to be counterintuitive to single out one element
z € X as a stable set {2} since all elements of X exhibit the same stability
properties. In contrast to the von Neumann-Morgenstern abstract stable set,

‘the d-solution reflects this symmetry of the game.

4This fact was already pointed out in [6].



3 A Solution Concept based on Endogenous

Coalition Formation

We fix the set of players N = {1,...,n}, wheren € IN. Aset SC N, S #0,
is called a coalition. Let P(N) denote the set of coalitions. For z,y € RNz >
y means z; > y; Vi € N, £ >y means z > y and = # y, and z > y means
z>yuVieN. RY ={z € RY|z > 0}, RY ={z¢ IRN|z > 0}. For
zeRN, S € P(N), zs denotes the projection of z to the subspace IRY that
is spanned by the vectors (€')ies where e € IRY denotes the ith unit vector.

By |A| we denote the cardinality of a set A,

Definition 3.1 Let S € P(N). Then (A,t) is a (pure) bargaining game
for coalition S if

1. te ACR]S
2. A is convezr and closed in the relative topology of IRQ’
3. {z € A|lz >t} is bounded.
4. A is comprehensive, i.c. [z € A,y € IR, y <z] = y € A.
The set A is called the bargaining region. If the players in S cannot agree

on a payoff vector z € A the outcome of the game will be t. Therefore, ¢ is

called disagreement point or threat point. For S € P(N) let
HS = {(A,1t)|(A,t) is a pure bargaining game for coalition S}.

A non transferable utility game is defined as follows.

5To simplify the presentation we define bargaining regions for all coalitions as subsets
of RY.



Definition 8.2 V : P(N) — IR" is called a non transferable utility
(NTU) game if ,

1. V(SYc Ry (S € P(N)).

2. V(5) # ¢, V(5) is conver and closed in the relative topology of IRY
(S € P(N)). |

3. V(S) is comprehensive, i.c.

[ EV(S), ye RY, y<a]= ye V() (SEPNV)

4. V({i}) is bounded from above (i € N).

5. {z € V(S)|z > zs} # 0 and bounded from above (5 € P(N), 512 2),
where z; = sup{t|te' € V({i})} (¢ € N).

Let A be the class of NTU games. Of course, all pure bargaining games
and all TU games belong to N. In the following we will develop a solution
concept for A/. The main idea is to interpret an NTU game as a “menu” of
pure bargaining games for individual coalitions. Each player can only be a
menber of one coalition at the same time. In contrast to a large part of the
literature we take the view that players form coalitions that are in general
different from the grand one and that they bargain over the utility distributi-
on in the resulting pure bargaining games. Especially for non-superadditive
NTU games, this approach seems to be more natural than assuming that
the players will agree on a utility distribution which is feasible for the grand
coalition.® |

5V € N is called superadditive if V(5) + V(T) c V(SUT) for all S,T € P(N) such
that SNT = 0.
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The players are thus facing two decision problems: (i) which coalitions
to form; and (ii) which payoff vector to choose from the bargaining region
for the members of any coalition that has formed. Of course, both problems
are interrelated since no player will commit himself to joining a coalition
prior to knowing what payoff he can expect in this coalition. The choice of a
payoff vector in a given coalition d_epends on the one hand on the notion of
fairness that the members of this coalition have agreed upon and on the other
hand on the opportunities the pla,yers have in other coalitions since the latter
determines their bargaining power. For each coalition § € P(N), |5| > 2, we
take as exogenously given a bargaining function o5 : HS — IRY that assigns
a solution to each pure bargaining game for coalition S, i.e. a payoff vector
that is considered “fair” by the members of 5. We impose a minimum set of

conditions upon ¢5. For all (A,t) € HS
1. (Feasibility) ¢5(A,t) € A.
2. (Individual Rationality) »%(A4,¢) > t.
3. {Pareto Optimality) z e IRY 2> p5(At) = z ¢ A.

Pareto Optimality of the bargaining functions ¢° is not needed in the fol-
lowing. Without this requirement, however, the rationality of our solution
concept would be obscure. Examples of bargaining functions are the Nash
solution ([9]), the Kalai-Smorodinsky solution ([7]) etc. Given an NTU game
V and bargaining functions ©° (S € P(N), |S] > 2) the main issue will be
to determine the threat point for the pure bargaining game with bargaining
region V(.9) that can be played by coalition S.

Let 1I be the set of all coalition structures on N, i.e.

H={{Sl,...,5m}l5',-EP(N)Vz', S:n S, =0 for i # j, US,»:N}.

=1

11



For V € A and P € Il let F/(P) be the set of payoff vectors that are feasible

given coalition structure P, i.e.
Fy(P)={z € R |z5 € V(S)V S € P).

An element (Q,z) € Upen({P} x Fv(P)), is called a payoff configuration. -
The C-solution on A we are going to define maps any NTU game V to a set of
payoff configurations thus predicting which coalitions will form and how the
payoffs will be distributed within these coalitions. On Upren({ P} x Fv(P))

we define the following dominance relation.

Definition 3.3 Let (P, z), (P, y) € Upen({P} x Fv(P)). Then (P1,z) do-
minates (P, y), denoted by (Py,z) dom (Py,y), iff there exists R € Py, such
that x; > y; Vi € R.

Thus, {P,,z) dominates (P;,y) if and only if some coalition R in coalition
structure P, strictly prefers z to y. We require R € P; so that R can enforce
the payoff zp wjthéut the cooperation of any player ¢ ¢ R who might be
worse off with z. A natural condition for a coalition to be formed is that it
can guarantee individually rational payoffs for its members such that at least
one player can be made strictly better off than if he remained alone. We call
these coalitions decisive. Let V € A and recall that z; = sup{t{te' € V({i})}
fori € N.

Definition 3.4 A codlition 5 € P(N),|S| > 2, is called decisive in game
V € N if there exists y € V(S) such thaty > zs.

Rational players will either form decisive coalitions or they will stay on their
own. If for each V € A and each decisive coalition S we can determine the

threat point for the (pure) bargaining game played by coalition S then the

12



definition of a solution concept for V is straightforward. In this case, given
the bargaining functions for (pure) bargaining games, the players can deter-
mine their payoffs in each of the decisive coalitions. The dynamic solution
then picks the stable coalition structures among those that are generated by
the decisive coalitions.

The main problem will therefore be to determine the threat points. If a
threat point la,cké credibility, i.e. if it does not properly reflect the players’
“outside opportunities it probably will not be accepted by the members of a
coalition. In the context of pure bargaining games it is often assumed that
the threat point is given by the Nash equilibrium outcome of the underlying
non-cooperative game. For an NTU game credibility requires the threat
point to reflect the players’ opportunities outside a given coalition, i.e. player
i’s threat point in the decisive coalition S should be given by his expected
payoff if negotiations in S break down and ¢ settles for his alternatives in
the remaining decisive coalitions. The C-solution is consistent in the sense
that the players’ outside opportunities in coalition S are determined by the
C-solution for the NTU game that results if the set of decisive coalitions
is reduced by S. Formally, for V € AN and § € P(N) the reduced game
V=5 :P(N) — IR" is defined as follows:

v(T) T4S
{yemjr”yfgf.r},T:S-

In general, however, there is no guarantee that the payoffs for the mem-

bers of § that are computed for V=5 are feasible. In order to deal with
outside opportunities that are not feasible for any V € N and any coalition
S, |81 > 2, we take as exogenously given a function ty : {z € RY|z >
zs} — V(8) with the following properties: For = € IRY, = > zs,

L. t(z) 2 zs-

13



2. t{(z) =z if z € V(S).

The function ¢ assigns to each individually rational outside option vector
a payoff that is feasible and individually rational for coalition S. For z €
IRY, z > zg, t3(z) will be the threat point in the pure bargaining game
played by coalition S. 5 can be interpreted as an agreement within coalition
S about which threats of the players will be regarded as credible given the
players’ outside opportunities. Since at this stage we want to be as general
as possible we refer to section 4 for an example of the functions ¢.

Consistency requires a recursive definition of the C-solution.

Definition 8.5 ForV € N let £V denote the set of decisive coalitions. The
C-solution for V is a set of payoff configurations which is inductively defined

over |EV| as follows:

1. 1Y =0:
ForV € N,EY =0, the C-solution is given by

({13, {2} {n}} (2,05 20)) -

2 & =m,m>1: -

Let the C-solution be defined, nonempty and individually rational for
VeNwth|¥|<m=1,m>1" LetV €N with|EY| =m. For§ ¢
£V let {(Pr,2Y), (P, 7%),.. ., (Pusy, )} € Upen ({P} x Fy-s(P))
be the C-solution for V=5 and yf = %S) Zﬁ? 9:3 be the average payoff
player j € S can achieve in V5. Set yJ-S =0 forj ¢ S. TheC-
solution for V is given by the dynamic solution to the abstract. game
(X,dom) where X = {(P,z) e Ix RY| S e P = [Sc & and zs =
FSV(S),8y))] or [S = (i} and 2 = .]}.

TAC Upen ({P} x Fv(P)) is called individually rationalif z > z V(P,z) € A.

14



Remark 3.6 It is straightforward to show that the C-solution is well defined.
By the induction hypothesis y¥ > z for the outside option vector y° defined
in 2. of Definition 3.5. Therefore, (V(S),t5(y®)) € H® and the set X C
Upen ({P} x Fv(P)) is well defined. Since X is finite, the dynamic solution
for (X, dom) is nonempty by Theorem 2.4. Since ¢* is individually rational,

X and therefore the C-solution are individually rational.

One can criticize the fact that we take the average of the payoffs in the
C-solution as a threat point in the reduced games. However, we have not mo-
delled any bargaining process that leads to the dynamic solution for { X, dom)
once the payoffs in all decisive coalitions have been determined and therefore
there is mo point in discriminating between the elements of the C-solution.
The latter all exhibit the same stability préperty which justifies the assign-
ment of equal weights. ' '

On the other hand — as mentioned in Section 2 — there'is a Markov
process whose persistent states are the elements of the dynamic solution of
the abstract game. Given a set X of payoff configurations we can think of the
following bargaining process that leads to the dynamic solution of the game .
(X,dom). Nature chooses — with equal probabilities — the payoff configu-
ration with which we start the process. Assuming that there are positive
probabilities for moving from z to y if z — y (2,y € X) the Markov process
that is defined by these probabilities has the property that it will enter the
dynamic solution after a finite number of steps with probability one. Given
the probabilities with which the bargaining process is started we can com-
pute the long run probabilities for the persistent states of the Markov process
* which are the clements of the dynamic solution.® It would be natural to use

these probabilities for the determination of the players’ expected payofls out-

®This is possible since the set of persistent states in our case consists of irreducible,

aperiodic, closed sets.
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side a given coalition. Since the definition of the C-solution, however, is free
from any dynamic considerations like the one illustrated above taking equal
weights seems to be appropriate.

The C-solution has several interesting features. It provides a model of en-
dogenous coalition formation in which the players bargain about their payoffs
in each coalition taking into account their outside opportunities and then, gi-
ven these payoffs, decide which coalition to form. The threats players use are
credible since they are given by (or, to ensure fe&sibilitj, directly correlated
with) players’ expected payoffs if the current negotiations break down.

Before presenting some examples we briefly discuss the differences bet-
ween the C-solution and other well known solution concepts for general NTU
games. Neither the Shapley NTU Value ([12]) nor the Harsanyi solution ({3])
capture the aspect of coalition formation as an important part of a solution
for an NTU game. The Shapley NTU Value, an extension of the Shapley
TU Value to NTU games, assigns to each game a utility distribution that is
feasible for the grand coalition and that takes into account what players can
achieve in all possible coalitions since this obviously influences their bargai-
ning power within the grand coalition. The fact that the utility distribution
has to be feasible for the grand coalition easily leads to counterintuitive
results, esﬁecia.lly for games that lack some form of superadditivity i.e., ga-
mes without “increasing returns to cooperation”. The same is true for the
Harsanyi solution, although it assigns a feasible utility distribution to each
coalition. However, since coalition formation is not modelled explicitely, the
Harsanyi solution also suggests that the grand coalition will form in the end.
Thus, both values answer the question of how to distribute utilities among
players given that the grand coalition has formed.

In [14] Shenoy assumes that there is a rule for the allocation of payoffs

within each coalition structure (e.g. the Core) and uses the dynamic solution
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concept to determine the stable coalition structures. However, the meaning
of a solution concept with respect to a coalition structure can be questioned,
in particular if the payoffs in one coalition depend on which other coalitions
form. Once such a structure is fixed there is no way in which players could use
other coalitions as a (credible) threat when bargaining about their payoffs.
Thus, a rational player will never commit himself to forming a coalition
without having information about the payoffs he can expect there.

In contrast we do not allow payoffs to depend on coalition structures and
we compute the payoffs in each coalition prior to knowing which coalitions
will form. In a second step the stable coalition structures are determined.
From an abstract point of view this approach fits into Shenoy’s framework
since the payoffé within coalitions naturally lead to a payoff solution concept
with respect to a coalition structure. However, because of the consistency
property of the C-solution, unlike in [14] it is in fact not possible to define this
solution concept without simultaneously introducing a notion of stability.

Yet another approach to the solution of a general NTU game with a
special focus on coalition formation is the one by Bennett and Zame ([4])
where they consider the concept of bargaining aspirations. An aspiration is
defined as an n-vector of “prices” or reservation payoffs that players demand
for their participation in any coalition. This vector is maximal in the sense
that no coalition can improve upon it, and it is achievable in the sense that for
each player there exists a coalition which can afford the prices of its members.
A bargaining aspiration z has the additional property that no player ¢ is
vulnerable at  meaning that there exists no player j such that the coalitions
S > ¢ which can afford x form a strict subset of the coalitions T' 5 7 which
can afford z. It turns out (see [3]) that aspirations are consistent conjectures
about the players’ payoffs in each coalition in the following sense. Given that

each coalition has a conjecture about the agreements in other coalitions the
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threat point in coalition S is given by the maximum amount each member can
achieve outside (apart from feasibility constraints). The payoffs in coalition
S are then computed according to a bargaining function Y for §. These
payoffs in turn serve as a conjecture for coalitions different from S and so on,
A consistent conjecture then is a fixed point of the mapping described above
and it can be proved that any consistent conjecture defines an aspiration.
What i1s -critical about this so called multilateral bargaining approach is
that the members of each coalition take as a threat the marimum amount
they can achieve outside regardless of the fact that the coalition which gua-
rantees 4his payoff might not form. A general problem with bargaining aspi-
rations is that they only predict the outcome of a game if there exists a
partitioﬁ of the set of players into coalitions who can afford the prices of
their members. Otherwise it 1s not clear what the remaining players will do
once a coalition that is predicted by a bargaining aspiration has formed. In
case there exists a partition of the form described above the payoff configu-
ration defined by the bargaining aspiration is called a bargaining aspiration
outcome. While Bennett and Zame prove that the aspiration bargaining set
1s nonempty for every st-rongly comprehensive NTU game, they-do not ana-
lyse the existence of a bairga.ining aspiration outcome in general. In fact the
maximality requirement is so’strong (and similar to that for the Core) that

in general one expects the set of bargaining aspiration outcomes to be empty.

4 Examples

As we have seen the existence of the C-solution does not depend on the nature
of the bargaining functions ¢° or on the functions #3. In the examples we
present in the following we use the Nash solution as a bargaining function

for all coalitions and define ¢, : {z € IRy |z > x5} — V(S) as follows. For

18



r € RY, = > zs, i

. e T itz € V(S)
(tv(l'))i._ = { max {z;, max{t| (t,:c_;) € V(S)}} , otherwise

for z € S and (t‘s,(m))t = ( for 7 ¢ S where by definition max(¢) = —o0.?
Obviously, t5(z) € V(§) for all z € IRY, = > zg, since V(S) is compre-
hensive. This definition reflects the following idea. If the players’ outside
* opportunities give rise to a payoff vector which is not feasible for S then the
largest amount player ¢ can use as a threat is given by the maximum payoff
so that the outside opportunities are feasible for all j € 5, j #:. Any larger
amount would make it impossible for the other players to achieve their out-
side payoffs so that they would object to i’s claim. If there is no such payoft,
or if the payoff would require player ¢ to settle for less than what he could
achieve on his own, it seems reasonable to take z; as #’s threat.

In the following ¢° denotes the Nash solution on H¥ and t° = ¢{, denotes
the function defined above.!® We start with a simple example of a 3-person

TU game.
Example 4.1 Let N = {1,2,3} and V : P(N) — IR" be given by

V({1,2}) = {z € IR{] 53| 21 + z2 < 50},
V({1,3}) = {z € R gyl &1 + z5 < 50},
V(S) = {z € RY|zs < 0} else.

The set of decisive coalitions is given by £V = {{1,2},{1,3}}. We first

consider the reduced game V~{1?} where coalition {1,3} is the only decisive

SFor z € RV, € N and t € IR we write z_; = (Z1,...,%i—1,%i41,...,Zn} and

(t:x—i) = ('1711 cey Tyt Big, .,."Jﬂ).
10,5 . g5 — IRY is called Nash solution if for (A,t) € H® ¢°(A,1) = argmax
{HiER('A,,) |z € A,z >t} where Riaq)={i€ 5|3z € A,z > ¢t, such that &; > t;}.
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coalition. Tt is straightforward to see that the C-solution for V {12} is given
by ({{1,3},{2}},(25,0,25)). Thus, the average payoff for players 1 and 2
outside coalition {1,2} is given by yim} = 25 and yél’z} = 0, respectively.

Obviously, 112}((25,0,0)) = (25,0,0) so that we get

L (V({l,2}),15{1'2}((25,0,0))) = (37.5,12.5,0).

Similarly we compute
i3} (V({l,3}),t{1'3}((25,0,0))) = (37.5,0,12.5,).

There are two possible payoff configurations that do not dominate each other.

Therefore, the C-solution for V 1s given by

({41, 2}, {31}, (37.5,12,5,0)) , ({{1,3}, {2}}. (37:5.0, 12.5))} -

By contrast intuition suggésts that player 1 should be able to get the whole
surplus i.e., one could expect a final payoff distribution of (30,0, 0), which is
also the payoff distribution predicted by the bargaining aspiration outcomes.
However, empirical results show that for the majority of cases the outcome
of the game is very close to what is predicted by the C-solution (see [8]).

Since the game is not superadditive the Shapley NTU Value and the
Harsanyi solution (both coincide with the Shapley TU Value in this case)
completely  fail to,predict a reasonable utility distribution. The Shapley
Value is given by (50/3, —25/3,-25/3).

The second example illustrates that the C-solution. predicts the grand

coalition to form if the game 1s sufficiently superadditive.
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Example 4.2 Let N = {1,2,3},¢ € IRy, and V : P(N) — IR" be defined
by . - '

V({i}) = {z € R{}| z: <0} (i € N),
V({laj}) = {‘7" € IRI{\E,J‘}‘ T+ T; < 10} (3’.7 € N)a
3 .
V(N)={z € R"| > zi < e}
i=1

The set of decisive coalitions is given by &Y = {{1,2},{1,3},{2,3}, N}.
Since in any reduced game V=5 all players i € S are symmetric the average '
payoffs of the members of S in the C-solution for V=% are the same by
symmetry of the Nash solution. Thus, the members of any coalition .S c &Y
have the same threat points and again by symmetry of the Nash solution
and the functions ¢° receive the same payofls. Therefore, we can compute
the payoffs in the decisive coalitions as follows (* indicates equal payoffs for

the respective players):

P2 (V({1,2)),10%((,%,0))) = (5,5,0),
P10 (V({1,3)),69)((,0,%))) = (5,0,5),
e (V({2,31),629((0,%,%)) = (0,5,5),

oV (VN), N ((#,%,%))) = (¢/3,¢/3,¢/3),

Now it is easy to see that the C-solution is givén as follows:
¢ <15 : All permutations''of ({{1,2},{3}},(5,5,0)},
c=15 : All permutations- of ({{1,2}.{3}}.(5,5,0)) and
({N},(5,5,5))
e>15 = ({N},(¢/3,¢/3,¢/3)) .

For ¢ > 15 the game V' is sufficiently superadditive to induce the formation

1174 should be clear what is meant by the permutation of a payoft configuration.

21



of the grand coalition and the payoff predicted by the C-solution coincides
with the Shapley NTU Value and the Harsanyi Value, which are given by
(¢/3,¢/3,¢/3) for all . For ¢ < 15 the set of bargaining aspiration outcomes
is identical to the C-solution. However, for ¢ > 15 there is a whole continuum
of bargaining aspiration outcomes, all predicting the grand coalition to form:
({N}, (21,22, — 71 — x3)), where 0 < 21,25 < c—10 and 10 < z; + 22 < c.
Thus, except for the payoff (¢/3,¢/3,¢/3) the bargaining aspiration outcomes

- predict asymmetric payoffs for the (symmetric!) players.

The third example is similar to one given in Bennett and Zame [4].

Example 4.3 Let N = {1,2,3} and let a vector of “productivities” be given
by w = (10,20,30). V : P(N) — IRV is defined by

V(s) = {w € RY| > z: < 0}, S e P(N),|S| £ 2,
i€
V({i,j}) = {:L‘ € mi\zf',j}"xi +z; < w + wj}v (31.7 €N, :/é])
The set of decisive coalitions is given by &V = {{1,2},{1,3},{2,3}}. Con-
sider the reduced game, in which {1,2} s the only decisive coalition. The
C-solution for this subgame is given by ({{1,2}, {3}},(15,15,0)). Similarly,
the C-solution for the subgame in which {1,3} is the only decisive coali-
tion is given by ({1,3},{2}},(20,0,20)). Cousider now the reduced game
V=123 with decisive coalitions {1,2},{1,3}. From the computation above
it follows that in this game the average payoffs for players 1 and 2 outside
coalition {1,2} are given by yl{l'z} == 20 and yél’z} =0, respectively. We have
t1125((20,0,0)) = (20,0,0) and get ‘
e (V({1,2)),#19((20,0,0))) = (25,5,0).

Similarly,

P9 (V({1, 3}),¢1}((15,0,0))) = (27.5,0,12.5).
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Thus, the C-solution for V—{23} is given by ({{1,3},{2}},(27.5,0,12.5)).
Similarly we compute the C—solut_ioﬁ for V-{12} a5 ({{1},{2,3}}, (0,15, 35))
and for V13 as ({{1},{2,3}},(0,32.5,17.5)).

Now we can compute the payoffs in the decisive coalitions of V. The ave-
" rage payoffs for players 2 and 3 outside coalition {2,3} are given by yéz’s}:
and yi>®? = 12.5, respectively. We have {231((0,0,12.5)) = (0,0,12.5) and
get . . . .

o2 (V({2,3}),t%2((0,0, 12.5))) = (0,18.75,31.25).

Similarly we compute
o2 (V({1,2)),13:2((0,15,0))) = (7.5,22.5,0).

o0 (V({1,3}),614%((0,0,17.5))) = (11.25,0,28.75).

The payoff configurations generated by £V and by the payoffs computed
above are all accessible from each other so that the C-solution for V is given

by

({{1,3},{2}},(11.25,0,28.75)) ,
({{2,3},{11},(0,18.75,31.25)) } .

These payoff configurations are quite different from the bargaining aspiration
outcomes which also predict that one of the 2-player coalitions will form but
with utility distributions given by the corresponding components of w. In
contrast the payoffs in the C-solution reflect what players can achieve in
alternative coalitions. For example, when bargaining with player 1 player 2
is relatively strong since he has the possibility to form a coalition with player
" 3 whereas player 1 will remain alone if bargaining in {1,2} breaks down.

Thus, player 2 achieves more than his own productivity in the coalition with
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player 1. When bargaining with player 3, However, player 2 is relatively weak
since he will stay on his own and player 3 will form a coalition with player 1
if bargaining in coalition {2, 3} breaks down.

Since the game is not superadditive, the Shapley NTU Value and the
Harsanyi solution again fail to predict a reasonable utility distribution: the

Shapley Value is given by (—5,0,5).

The fourth example is due to Roth {10]. Having presented the compu-
tation of the C-solution in detail in the previous examples we just give the
results in the following.

Example 4.4 Let N = {1,2,3} and 0 < p<1/2. V:P(N)— RN is
given by

V({i}) = {z € R{|z: <0} (i € N),

V({1,2}) = {z € R »l (21, 22) < (1/2,1/2)},
V({1,3}) = {z € Rzl (z1,23) < (p,1 - 1)},
V({2,3}) = {z € R{ 5} (z2,33) < (p,1 — p)}, *
V(N) = {z € IR¥|z <y for some y in the convex hull of {(1/2,1/2,0),
(paoy 1 - p)s (Oapv 1 _p)} }'

The set of decisive coalitions is given by £V = {{1,2}, {1 3},{2,3}, N}. The
C-solution for V is given by

{(1{1,2}, 3}, (1/2,1/2,0)) , ({N}, (1/2,1/2,0))} .

As Roth argues, the coalition structure {{1,2}, {3}} together with the payoff
vector (1/2,1/2,0) is the unique outcome of the game that is consistent with
the hypothesis that the players are rational utility maximizers. The payoff
configurations predicted by the C-solution are identical to the set of bargai-

ning aspiration outcomes of V (see [4]). By contrast the utility distributions
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predicted by the Shapley NTU Value are given by (1/3,1/3,1/3) if p > 0
and additionally (1/2,1/2,0) if p = 0. The Harsanyi solutions are given by -
(t/2 — p/3,1/2 — p/3,2p/3) and (1/2,1/2,0) if p < 1/4 and additionally
(p.0,1 — p),(0,p,1 —p) if p > 1/4. If p goes to zero the Harsanyi solution
converges to the utility distribution predicted by the C-solution.

The last example deals with symmetric Apex games.

Example 4.5 We investigate symmetric Apex games of the fbllowing form.
There is one distinguished player called the Apex and n — 1 symmetric Base
players. The only decisive coalitions are two-person coalitions that contain
the Apex and the coalition of all Base players. Thus, an n-person Apex
game, n > 4, is a TU game v™ : P(N) — IR defined by

Un(s):{ L,if [S|=2and 1€ Sorif §={2,...,n}

0, else

Of course, v™ can be represented as an NTU game. The symmetry of the Base
players together with the symmetry of the Nash solution implies the equality
of their threat points when bargaining in the Base coalition {2,...,n}. By
symmetry of the Nash solution each Base player therefore receives a payoff
of anl in the Base coalition. Thus, again by symmetry there are only three
possibilities for the coalition structures predicted by the C-solution: Fither
the Base coalition forms and the Apex player remains alone and/or any of the
Apex coalitions {1,7},7 € {2,...,n}, forms and the remaining Base players
stay on their own. |

Table 1 shows the payoffs for the Apex and the Base players in an
Apex coalition, the payoffs Ifor Base players in the Base coalition and the
coalition structures predicted by the C-solution based on these payoﬂ’s. for

n =4,...,12. We observe a regular switching between the formation of
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Payoff in Apex Coalition Paizoff in Coalition
. Apex Base Base Coalition Structure
4 % % % Base Coalition
5 g—i % i Apex Coalitions
6 e Z : Apex Coalitions
7 % iazis % Apex Coalitions
8 %% ;—3% | % Base Coalition
9 100 2—10'-% % Base Coalition
10 = o 2 Apex Coalitions
11 15% 263 = Apex Coalitions
12 ot s L Apex Coalitions

Table 1: The C-solution for Apex Games

Apex and Base coalitions. This can be explained as follows. On the one
hand ina"easing the number of Base players reduces the payoffs in the Base
coalition and thus makes the Apex coalition more attractive for the Base
players. On the other hand the relative bargaining power of the Apex player
increases with a growing number of Base players, so that (for n = 8) the Base
players prefer to cooperate. Now, if n is large v" is a good approximation

! is reduced by one Apex coalition.!®> Thus,

for the game that results if vt
the formation of the Base coalition in v™ lowers the bargaining power of the

Apex in v™*! so that finally the Base players prefer the Apex coalition again.

12As an example, taking the C-solution for v° as given we would predict a payoff of 9/16
for a Base player in an Apex coalition of v!°. Since 9/16 > 1/9 the Base players prefer
the Apex coalition over the Base coalition and we expect the C-solution to predict the
formation of the Apex coalitions in ©!°. Table 1 shows that this conjecture is correct and
moreover, that 3/16 is a good approximation for the payoff of the Base player in an Apex

coalition of v!?.
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This causes the Apex to become more powerful and so on. Therefore, we
conjecture that the coalition structures predicted -by the C-solution follow

the pattern exhibited in Table 1 for n — oo.

5 Conclusion

The questions of coalition formation and payoff distribution among the players
are central to the theory of general NTU games. Nevertheless there are only
few approaches that simultaneously address both points. Often it is assu-
med that players will form the grand coalition and distribute the payoffs they
can achieve there taking into account their possibilities in subcoalitions. It
is obvious that this approach to a solution for general NTU games 1s not
appropriate in general, especially for games that are not superadditive.

We have provided a model of coalition formation based on which payoffs
the players achieve in the individual coalitions. When bargaining about the
payoffs in a coalition the players are facing a pure bargaining game. The
threat point in this game is given by the players’ expectedkpayoffs if bar-
gaining in the given coalition breaks down. The C-solution is consistent in
the sense that these payoffs are determined.by the solution to an appro-
.priately reduced game. We proved that the C-solution is always nonempty
which is not the case for any other solution concept for general NTU games.
Moreover, because of the recursive definition, computation is relatively easy.

It has been argued that there exists a bargaining process leading to the
stable payoff configurations which make up the C-solution. Thus; there is
also a dynamic interpretation of our solution concept.

As most of the examples indicate the payoff configurations predicted by
the C-solution are close to what intuition suggests to be the outcome of an

NTU game, at least if we take the Nash solution as a bargaining function
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for all coalitions.”® Unfortunately, experiments mostly deal with small TU
games, where the number of players often does not exceed 4, so that we
cannot make a general statement about the goodness of the C-solution with
respect to “real” outcomes of NTU games. Nevertheless we believe that
our solution concept captures many important aspects that determine which
coalitions are formed and how the payoffs are distributed if a general NTU

game is played by rational players.
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