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Introduction

Airport problems and airport games were introduced by Littlechild and Owen (1973).
The problem they pose is how the cost of a landing strip should be distributed among
users who need runways of different lengths. Further discussion of the model can be
found e.g. in Littlechild and Thompson (1977) and Dubey (1982). These authors
studled solution concepts like the Shapley value and the nucleolus for this kind of
cost sharing problems.

In this paper we consider solution rules that can consistently be derived from a gene-
rating function and try to give some additional insight in the structure of the various
solution rules with this characteristic. Classical solution rules like the Shapley value
and the nucleolus are solution concepts of this type as well as more recently intro-
duced solution concepts as the weighted Shapley value (Kalai and Samet (1988))
and the modified nucleolus (Sudhalter (1995a,b)). -

In Section 1 we recall the deﬁnitio.n of an airport problem, introduce the idea of
.wea,k consistency and of a generating function. A generating function gives, for
each airport problem, the payment to be asked from the “first” player i.e., the/a
player with the lowest needs. We show that, under mild conditions a solution rule
consistently derived from a generating function g is a “core selector”.

Section 2 presents solution rules like the Shapley value, the nucleolus, the modified
nucleolus and the prenucleolus of the dual game as weakly consistent solutions deri-
ved from a generating function. In fact the modified nucleolus and the prenucleolus
of the dual cost game coincide on the class of airport games. The T-value, on the
class of airport games closely related to the proportional rule, is presented as a
solution rule not consistently derivable from a generating function.

In Section 3 we investigate monotonicity properties of these solution concepts. The
monotonicity properties we will discuss are strong monotonicity, (Young ( 1985)),
coalitional monotonicity, population monotonicity (Sprumontl(1990)) and fair ran-
king. Fair ranking is a commou property of the Shapley value, the nucleolus and the

‘modified nucleolus and the same is true for population monotonicity. The weigh-



ted Shapley values are known to be strongly monotonic (Young (1985)), both the
nucleolus-like solution concepts turn out to be coalitional monotonic but not stron-
gly monotonic.

In the last section we axiomatize the Shapley value, the nucleolus and the modified
nucleolus on the class of airport games by commdn axioms like Pareto optimali-
ty (PO), the equal treatment property (ETP) and covariance (COV) and specific

axioms like strong monotonicity, v—consistency and p—consistency, respectively,

1. Definition of an airport problem and airport game.

Let us assume that in a society a list of public projects is under discussion and that
the projects can be ordered p; < pp < ... < Pq where p; < p; means that project
P; is a real extension of project p;. The members of the community have given
their opinion about the different plans and n; members voted for project p;. The
coalition of people voting for project p; is denoted by N;. We assume that n; > 1
for i = 1,...,¢. The realization of project p; generates cost equal to 4(z) and we
assume that "y(i) < y(4) if p; 4 p; and that ¥(¢) > 0 for every project p;. The
community authorities decided to realize the largest project p, and to charge the
community members with the cost 7(¢) to be made. They like to take the voting
behavior of the community members in consideration. The pfoblem is to find ‘nice’
allocation rules for problems of this kind. We call such problems airport cost sharing
probiems, as in the literature a model like this is known where the projects p; are

landing strips of different lergths. We can summarize the situation by
(v(1), N 7(2), Mo 5 7(g), Ng) with m; = N3] > 1and 0 < (i) < (5 if i< g

‘To be able to deal with non-symmetric solutions and to have an environment in
which ‘reduced a.irpﬁrt problems’ make sense, we choose for a slightly more general
frame work. Let @ C N be a universe of players. The ordermg structure inherited
by & from N w111 only be used as a "universal tie-breaking rule’ (see next paragraph).
An azrpo::t problem consists of a finite nonvoid player set N C tand 2 map y: N —
R. The map 4 will be used to introduce an ordering < on N. We say: player {
precedes player j (i < 7} if ¥(i) < v(5). In order to extend the ordering < to a
linear ordering we have to break ties between players ¢ and j with ~ (i) =v(7). We



do this by using the ordering inherited from N and define 7 < 7 if v (i) < 4(4) or
¥(i) =7 (J) and i < j. Given this ordering we can speak about the first player, the
second player up to the n-th player of N. Notice that the ordering depends mainly
on the values of v and in the second place on the ordering of NV inherited from N.
To avoid a too clumsy notation we mostly will denote the first, second up to n-th

player of N by [1], 2] up to [n], if this will not cause confusion.

In the subsequent part of the paper we are mainly interested in airport problems
with  only nonnegative values but for the moment we also allow negative values.
The class of airport problems will be denoted by .4q or .4 for short. The subclass

of nonnegative airport problems is denoted by A, .

A solution rule o on a set B of airport problems in A assigns a payment vector
a(N,v) € R" to each airport problem (N,v)in B. So we will be talking about
single valued solutions (SIVA) all the time with exception of the last remark of
Section 4.

A solution rule ¢ is called Pareto optimal (PO) if Zien 0(N,v)i = maxien ().
Defining Fareto optimality in this way implies that we understand the cost (%) as
a ‘part’ of the cost v (7) if ¥(i) < v(5) (.cf. the story we started with).

The next property of solution rules is the main topic of this paper. _
Suppose we have a solution rule o. Then o(N,7)q is the payment of the first
player of N, when the solution rule o is applied. If only this payment has been
done, the remaining players are faced with a cost function Ful=all-=z,ifj#1
and z = o(N 7))+ In case the player set contains at least two persons we define
the reduced airport problem (with respect to z} as the airport problem (N,¥) with
N:= N\[1) and 7[j] = v[7] = 2 for [5] # [i]. If this new airport problem belongs
to B we apply the solution rule ¢ to (N »7) and find a new payment vector for
the players in N, namely o(N 7). The solution rule ¢ is called weakly consistent
(WCONS) if (N,v) € B implies (N,7) € B and o(N,¥)x and o(N,7) are the same
for each airport problem (N,+). Weak consistency implies that the solution rule o
is completely determined by the payment o(N, 7)) done by the first player in each
broblem. |

Conversely, given a function g: 4 — R we can define a weakly consistent solution rule



o9 on A by recursion: o9(N,¥)pji= g(N,v) and, if [N| > 1, cr-"(N,*y)N\[I]:z
a%(N,¥)

wherein N = N\[1] and 7[j] = v[j] - g(N.,7). Notice that the first player [1] in &
is the second player [2] in the original problem.

In this way every function g defines a weakly consistent solution ¢¥ on A and given
a weakly consistent solution ¢ we can define g (N,v):=ea(N, 7Y)p) and find o = 9.
A weakly consistent solution o generated by the function g is Pareto optimal if
g(N,v)=~[1]if IN'[7= 1 (‘the last player pays the remaining costs’).

We call a solution rule o reasonable (on both sides) (cf. Milnor (1952) and Sudhaltef
(1995a)) if 0 < 0(N,v); X v(5) for all airport problems with v 2> 0.

A weakly consistent rule o9 on A is reasonable iff 0 < g(N,y) < v[1] for every
nonnegative problem (N,+). Notice, that the reduced airport problem with respect
to é reasonable solution rule is nonnegative if the original game is nonnegative.
Discussion: The condition a(N,;y)j < ¥(j} is also ‘reasonable’ in the non-
technical meaning of the word. No player pays more than the total cost of the plan he
voted for. The other condition o(N,7); > 0 is less ‘reasonable’ than it seems to be.
The following rather convincing solution rule does not satisfy the second condition:
(N, 7)jt = v(j)— A where A is chosen such that the rule is Pareto optimal. So every
player j pays the total costs of his pla.n.-y( 7) but get some ‘discount’ A to make the

: i ) . .
Lign T 1 4e easy to check that this solution rule

solution efficient. In fact A:=
is weakly consistent, Pareto optimal and satisfies the ﬁrsp reasonability condition.
We use this solution rule as a counter example at the end of the paper.

If we discuss the modified nucleolus in the next section we will meet a variant of

this solution rule..

Weakly consistent (WCONS), Pareto optimal (PO), and reasonable (REAS) soluti-
ons of airport problems will be the topic of this paper. To say it differently, we will -
investigate the solution rules generated by a function ¢: 4 — R satisfying

g(Nyy)=7[1] f|N|=1 and 0<g(N,y)<v1), ify>0.

If (N,v) is a airport problem, we define the associated airport game as the coope-
rative cost game (N, c) with coalition values ¢(§): = maX;es v (). Notice that the

values of ¥ can be rediscovered from the game (N .€), since v [i] = ¢ [i]. Therefore



the airport problem and the associated cost game are frequently identified.

If the game is nonnegative, then it is clearly a concave game and has therefore, 2
nonempty core. The first theorem sfates that solution rules satisfying WCONS, PO,
and REAS are core selectors.

Theorem 1. If:r is a solution rule defined on A, and satisfies weak consisten-
cy (WCONS), Pareto optimality (PO) and reasonability (REAS), then o (N,v) ¢
Core (N, ¢) for every airport problem (N,v) € Ay and associated cost game (N, ¢).
Proof: The proof is by induction to |N|, the number of players. If there is one
player, the theorem follows from PO. Suppose that the theorem has been proved for
problems with less than k players and suppose that (N,v) is a nonnegative airport
problem with & players. Let z: = o (N, 7)- By weak consistency {WCONS) we have
c(N,79)=¢ (N, ~)x and this is a core allocation of the game (N, &) associated with
the reduced airport problem (N, 7%) by the induction hypothesis. If § ¢ ¥ = N\[1},

€(5) = maxies 7 (¢) = maxics v (5) —z[l]=¢(8)-z[1].

-Because z > 0, REAS, and z (§) < £(5) we have z{5) < c(S). If §is a coalition
containing player [1], we have z (§\[1]) < T(S\[1]) = e(8\[1]) — = [1] and therefore,

also in this case z (9) < ¢(5) . 4

The following proposition will only be used in Section 4..

Proposition 2. Let 0 be a weakly consistent (WCONS) solution rule on Al
generated by the generating function g. For an airport problem (N,~) and a number
twith 0 <t < (1], let (N,7:) be the airport problem with cost function v,[1]: =
vli]~t, () € N). Then o?(N, 1) < 09(N,v), if the generating function satisfies
the inequalities g(N,v)~t < 9(N,m) < g(N,7) for every nonnegative airport
problem (N,'y) and 0 <t < ~[1].

Proof: The proof is by induction. We only .prove the induction step. We start
with (N7 = 9(Nyv) L 9(N.,7)=ea(N,7)y

by one side of the inequality and the reduced airport problems have cost functions
Y]] — g(N, %) and 7[i] — g (N,7) for i > 2. By the other part of the inequality
Y =g(N,y) > (v[i]-1) - g(N,y) for [i] # [1] and we are in the same situation as
before: weak consistency and the induction hypothesis give o (N, 7,)x < o (N, %)%

<



2. Weak consistency of solution concepts for airport games

In this section we start with the airport game associated with nonnegative airport
problems and investigate which single valued solution concepts for TU-games are
weakly consistent. The solution concepts we will consider are the nucleolus, the
prenucleolus of the dual game (also called the antinucleolus of the game), the dual
weighted Shapley value, the modified nucleolus and the r-value. All these solution
rules will turn out to be weakly consistent except the 7-value. For each of the weakly

consistent rules we will give the generating function.

The dual weighted Shapley value

We start with the dual weighted Shapley value. Let us briefly repeat the definition _
(see Kalai and Samet (1988) for more details). Like the classical Shapley value,
the dual weighted Shapley value is a linear function of the game. So it is enough to
define the solution for the elements of a basis of the vector space GV of all TU-games
with player set N. For this basis the set of representation games {(N, ug)}scw, the
set of duals of the unanimity games (N, ug), (S C N) is chosen. Remember that
the dual game (N, e*) of a cost game (N,c) is the cost game defined by c*(5): =
c(N) - c¢(N\5). So tﬁe dual game assigns to a coalition S the -mary:'nal cost of
coalition S, if § joins the coalition N\S. If § C N, the game (N, u3) is the simple
game with u3(T) = 1if and only if SNT # 0. To define the (positively) weighted
Shapley value we need a positive weight function on the universe Q i.e. w: Q) — Ryt
We define the positively dual w-weig_hted Shapley value ¢, to be the inear solution
rule given by duw(N,ug)ii= EF% i€ 8 and ¢,(N,ug)i:=0if: ¢ §.

Hence the symmetric Shapley value (see Shapley (1953)) is obtained as a weighted

Shapley value if all weights coincide. The first theorem of this section states the

weak consistency of the weighted Shapley value.

Theorem 3. The w-weighted Shapley velue ¢, is weakly consistent (on non-
. .. 1
negative airport games) and its generating function is  g(N,7v):= -1—;% 7 [1].

Proof: First we compute the generating function, under the assumption that

¢w is weakly consistent. If (¥, ) is a nonnegative airport problem, the game (N, ¢)

is e=y[1[(N,upy)+ D (Y[i+1)-7[]) (N, Y(lig 1], [n])))-
1<i<n
By the definition of the weighted Shapley value,



(N, o)y = 7[1] Gu(N, ujy)p) = ’7[11 w(l ])

Hence, if the weighted Shapley value has a generatmg function, it is the function

mentioned in the theorem. Let (N »7) be a nonnegative airport problem and r: =

u(N, )y = v[1] —% The game (N,&) associated with the reduced problem

(N,7)is

(N,&)=(7[2] - 2) (N, Ua),...tn)) T 2gicn (V[i+ 1] =y [1]) (N, Ulig1),...[n]))-
It is clear from the definition of the weighted Shapley value that

b (N, u%) = ¢y (N, u3)g ifSC N CN.

So we are left to prove that,

(v[2] - =) ¢w(ﬁs = 7y [1] du{N, un)y + (’7 [2] -~ [1]) ¢u(N, “ {[2] [n]))N~

.....

i.e. we have to prove that, for i>2,

(v12) - 2) “) and 7 [1] (E,V])m[z] ¥11)
wli )l

This means - y[1] —=- o (V) =(v[1] - w ()’

By substituting the expression for  we see that this equality is correct. q

w[i
w(N)

[

are the same.

The nucleolus
The next result is about the weak consistency of the nucleolus of airport games, For
the deﬁnition of the nucleolus of an airport game we need the ezcess map
E: I(Nye):={z € RN |2 (N) = c(N), z; < c(i)(i € N)} - R2VMNG) with
E(z)s:=c(85)~2z(5) and the coordinate ordering map  §: R2"MN8} _, g2-2

that orders the coordinates of a vector in a weakly increasing order.
The nucleolus Nu(N,¢)is the (set of ) imputation(s) z with 6 0 E(z) xjex 80 E (y)
for all cost allocations y € I (N, ¢) (Schmeidler (1969)).
The nucleolus of a cooperative (cost) game consists of one point and if the game has
a nonempty core it coincides with the prenucleolus defined by

Nu* (N ec)=z"if 8o E(x) »1ex 8 0 E (y) for all pre-imputations .
By a well known theorem (Sobolev (1975)) the prenucleclus satisfies the reduced
game property i.e. if x = Ny*(N,c) and (S, €) is the reduced game of (N, c) defined
by @(S)=c(N)-z(N\S) c(@)y=0

é(T) = mingemys [ (TUQ)—2(Q)]iIf T CSand T # 5,0,
then Nu™(S$,¢) = Nu"(N,c)s for all coalitions 5 #0.

In Littlechild and Thompson (1977) the nucleolus of airport games has been deter-



mined. From the results of this paper one can deduce (see also Sénmez (1993)) that

21
= — N|>1.

Nu(N,c)y 1'1‘1<1i12,+lmca,se] > 1 ‘
Hence, if the nucleolus is weakly consistent, it is generated by the function

‘ )

g(Ne)=min -
Theorem 4. The nucleolus is weakly consistent on the class of nonnegative
airport games and the generating function is g(N,e):= min :_i_Hl for [N| > 1

i<n

and g(N,e):=v[1]if |[N| = 1.

Proof: The weak consistency follows from the fact that the cost game associated
with a reduced airport problem is the reduced game of the game associated with the
original airport problem. Let (/V,v) be a nonnegative airport problem with |N| > 1
and z € Ry with z < v[1]. The cost game associated with the reduced airport
problem (N,%) with N = N\[1] and 7 [j}: = y[j] - for j > 1 assigns to a coalition
S C N, (5 # N,0) the coalition value max;es (y[j]=2) = c(S)~2 = c(SU[1]) -=.
In the reduced game of (N, ¢) the same coalition § has the coalition value

min {¢(5),c(SU[1]) - z).

So we must prove that ¢ (SU[1}])—z < ¢(5§). This holds true because ¢ (SU[1]) = ¢(5)
if §#0and z > 0. "Applying this result with z = N u(N,c)y) we find the weak

consistency of the nucleolus of airport games. <
Remark: If Nu (N,c)[ll = i‘:-i]l’ then Nu(N, )= Nu (N,c)m for1 <7<,

The 7-value and the proportional rule.

For the r-value we obtain a negative result: the 7-value is not weakly consistent for

airport games. First we repeat the definition of the 7-value (Tijs (1981)). If (N, ¢) is

a cost game, we define the marginal vector M(N, c)by M(N,c)i:=c(N)—- e(N\7),

(1 € N). If the game (N, c) has a nonempty core, 2ien M(N,e); < ¢(N).

“The remaining costs are measured by the vector m(N,c) with coordinates
m(N,c),—: = ming.es [c (§)- Ties.jzi M(N, c)_,-] .

For cost games with a nonempty core 2oien m(N,¢c); > ¢(N). The r-value of a

cost game is the unique efficient point on the line segment between M(N,c) and

m(N,c). For concave cost games we have m(N,c¢); = ¢(i) for all players i € N. The

next example shows fhat the r-value is not weakly consistent.

Example: N ={1,2,...,4} and y(1) = 7(2) = 1 and 7(3) = 71{4) = 2. Notice



that the marginal vector M(N,¢) = 0 and the r-value assigns to the players a

payment proportional to their cost: 7(N,c) = (é, %, %, %)

If the 7-value would be weakly consistent, the generating function would be
g(N7): = Ay(1) with A= 21

7(N)
( at least for airport problems with v[n] = v[n — 1] to be sure that all marginals

are zero).
But the weakly consistent rule ¢ generated by this function is not symmetric.
Accordingly, let us compute o9(N,¢c)z- The reduced airport problem has three

players, one with costs £ and two with costs 2.
2 5
o £-3 5 1
The value of g (N,7) is 31_23 =
3

Notice that, for airport problems with ¥ [n] = v [n = 1], the 7-value is equal to the

B 3

proportional rule. Therefore, also the proportional rule is not weakly consistent

The modified nucleolus and the prenucleolus of the dual game

For the modified nucleolus we proceed differently. We give a formula for a solution
rule and prove that it is a weakly consistent rule. The next step will be that we
prove that this solution rule gives the modified nucleolus and the prenucleolus of
the dual cost game.

If (¥, 7)is a nonnegative airport problem, we can do the following: every player pays
the total cost of the plan he is supporting and later on he obtains a discount A in or-
der to make the solution efficient. If the discount makes a player’s payment negative,
he pays nothing. So more formally, o™ (N, v);: = (Y(8} = A}y = max (0,4(i) - A) and
A is chosen in such a way that ¢™ is Pareto optimal (PQO). The number X is uniquely
determined_by this condition. To see this, consider the function q:[0,7[n]] = R defi-
ned by ¢ (t) = ey (7(3)~1)4. Thisisa strictly decreasing function on the segment
[0,7[n]]. For ¢ = 0 we have q(2) > v[n] and for 1 = 7 [r] we have ¢(1) = 0 < v[n).
Then there is exactly one number X with g (A} = v(n].

Theorem 5. The solﬁtion rule o™ on nonnegative airport problems is weakly
consistent. .

Proof: Let {N,v)} be a nonnegative a.irpc;rt ‘problem, let z = o™(N, Y =
(7{1] = A)+ be the payment by the first player {1] and consider the reduced problem
(N,3). Let A be the solution of the equation Lisa(Ylil—2—t)y = v[n] - 2.

10



If we substitute ¢:= X — z in the function §:t — 2i»2(7[7] = t)+, we obtain
Zive (Y= Ns =v[n] - (7[1]) = M)y = v[n] - z. The first equality follows from
the definition of A. Sot = A — z is the unique solution of §(t) = ¥[n), i.e.. A. Then
the weak consistency of @™ follows. . q
The next step is to prove that the weakly consistent rule o™ assigns to each nonne-
gative airport problem the modified nucleolus of the associated airport game. First
- We repeat the definition of the modified nucleolus (Sudhélter (1995a,b)).
When the nucleolus is an attempt to make the excesses of cost games as large as
possible, the modified nucleolus tries to make the differences between the excesses
as small as possible.
To define the modified nucleolus we need the bi-ezcess map _
PE: I"(N,¢e) = R?" x R?" with coordinates
PE(2)sri=(c(§)~2(5)—(c(T)~2(T))  (SCN,TCN),
The second ingredient to define the modified nucleolus is the coordinate ordering
map © that orders the coordinates of a vector from R?" xR2" in a weakly decreasing
order.
The modified nucle.olus of a cost game “Nu(N,c) is the set of pre-imputation =z
with the property that ©oPE () <jex O0PE () for all pre-imputations y. The
modified nucleolus is an example of a general nucleolus studied in Maschler, Potters
and Tijs (1992).
The modified nucleolus consists of one point and shares several properties with the
(pre)nucleolus (cf. Sudhdlter (1993)). But it has also two beautiful properties in
common with the Sha,pley value. The first property is self-duality i.e. the mo-
dified nucleolus of the dual cost game is equal to the modified nucleolus of the
original game. The reason is that #E (z{c)sT = PE (z]e)mr,n\s and therefo-
re, @ 0o PE(z|¢") = @ o PE (z|c) for all pre-imputations z. This property shares
the modified nucleolus with the Shapley value. Another related property that the
modified nucleolus shares with the Shapley value is the independence of the inter
pretation of the game as profit game or cost gamé. This time the reason is fhat
PE(-z|-e)s =PE(z|c)r,s and therefore, @ 0 PE(—z| - ¢) = @ o PE (z]c) for
every pre-imputation z.

The next theorem states that the modified nucleolus of a nonnegative airport game

11



is the solution c™ we introduced before. This means that the modified nucleolus is
weakly consistent. As a side result we will see that the modified micleolus coincides
Qith the prenucleolus of the dual cost game (also called the antinucleolus of the
original game).
Theorem 6. For ;tonnegative airport problems we have *Nu(N,¢) = 0™ (N, v).
Proof: Let (N,v) be a nonnegative airport problem and z = ¢™(N,v). We
prove that #Nu(N,c) = z. Let A be the number defined by g{A) = v [n].
As o™ is a single valued, weakly consistent, Pareto optimal and reasonable solution,
z € Core(N,c) by Theorem 1. Let K be the coalition of players with z; = 0 and
G the coalition of players with ; > 0. There is a ranking number ¢ such that
K ={[1],...,[t]} and G = {[t + 1],...,[n]}. Notice that [n] € G if v # 0.
For the excesses E(x |c) we prove the following inequalities:
(a) E(z|e)s=0ifGCS, (b) E(z|e)s<Aforall SC N
(c) El(zle)s=Arifl§NnG|=1.
For a coalition .§ we denote the ‘last’ player of § by «(S).
(a) G C S, then e(§)=~[n] = c(N)and 2(5)=z(N). This gives (a).
(b) and (c) U § C K, we have ¢(S) = 7((§)) < A and r(5)=0. Let S bea
coalition with SN G # 9. For j € §N G with j # «(5), we have v{7) > A because
j€G. So 2 iesncvus) (A=7(7)) < 0 and a strict inequality holds if the sum is
nonempty i.e. |§ G| > 1. For the excess E(z | ¢)s we get
E(z|c)s = ¢(5) = Tyes (1(5) = My = 7((5)) = Tsesna (1(7) = A) =
[SNGlA- Yiesrevs) T €A and there is inequality if |[S N G| > 1.
For the pre-imputation z we have maxsy PE(z|¢)sT = A
To prove that z is the modified nucleolus we will show that a pre-imputation y with
maximal bi-excess A must be z. In fact we will prove that if a pre-imputation has
all excesses < A it will be z.
Suppose, y is a pre-imputation with E(y|e)s < A for all coalitions §. We assume,
for the moment, that A > 0.
First we take j € G and find 7(j) - ¥; < A and therefore, y, > v(5) - X = T;.
We take the sum over j € G and find y(G) 2 2(G)=2(N)=y(N) and therefore,
y(K) <0 fy(K) < 0, we take, secondly, the coalition K U j with j € G. Then
Y(7)—y;—y(K) < A and therefore, z; < y;+y(I). Again we take the sum over j €
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G and find 2 (V) = 2 (G) € §(G)+1GI ¥ (K) = y (N)+(|G|-1) y (K. Therefore, if
|Gl > 2, this cannot be true and we have y (K) = 0 and ¥j = z; for j € G. Suppose
the coalition G contains less than two players. Then z[n] = ¥ [r] = y[n] — A and
A = 0. We assumed, however, that A > 0. _ .

Finally, if some coordinate y; < 0 (i € k) we take § := (¢,7) with j € G and find
the excess y(j) — y; ~ 3 < A and so y; > z;. Contradiction' |

If A =0, we have 3"%, 7{i] = y[n] and 7[i] = 0 for i < n. Then the game (N, ¢) is

an additive game and the theorem is easy to check. 4

Corollary: The modified nucleolus of a nonnegative airport game is also the
nucleolus of the dual of the airport game.

Proof: In the preceding proof we showed that the point « is the unique pre-
imputation with all excesses < A. So the point':;: is also the prenucleolus of (N , )
‘il we understand it as a profit game’ (i.e. with the wrong interpretation). But
the antinucleclus of a cost game is also the prenucleolus of the dual cost game, as

E(z|c)s=-E(z|¢)ysand 8o E(z|c”) = 9(-—E(z|c)) shows. a

Remark: Theorem 6 gives also an e‘asy way to compute the modified nucleolus of an
airport game. One starts by computing A;: = Z—K-:—ﬂﬂ If A; < v[1], the modified
nucleolus is (7 [i] — A1 )jjen- If not, the players with 7{2] £ A1 get a payment zero

under the modified nucleolus and we proceed with the remaining players to compute
i k<icn 7 (1]
po= =ksikn TV
n+4+1—4%
happen that A; > v [k]. In that case more players get a payment zero and we proceed

if k is the lowest index with v [k] > A;. Because Ax > Ap it may

‘ ; ]
by computing the next relevant ;. To be more precise, let A= En_kitql—an[] for
all k and determine j =min{k € {1,---,n — 1}|As < 4 [k]}. Then the modified
nucleolus assigns payments zero to players [i] satisfying 7 [i] < A; and y[i] - A, to

 all other players [Z].

3. Monotonicity properties

For solution rules o for airport problems there are three natural monotonicity con-
ditions (cf., e.g., Sprumont (1990), Thomson (1993), Young (1985)):
(a)  Fair ranking: it requires that o(N,v) < a(N,v); if 7(3) < v(5).

(b) Monotonicity in costs: if the costs of player i is increased and the costs of
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the other players remain the same, then player 7 is not going to pay less i.e. if
7(i) > 7(i) and () = v(j) for j # i, then a(N,'); > o(N, 7):.

(c)  Population monotonicity: if some players are deleted from the player set, the
remaining players do not have advantage of this change: o(N,v)s < 0(S5,7s), if §
is the set of remaining players and +g is the restriction of v to §.

For cooperative games we have also three kinds of monotonicity for single valued
solution rules o:

(d) Coalitional monotonicity: if (N,c) and {N,c¢') are cost games and i € N, if
c(5)=c(5)ifi ¢ S and e(§) < /(§)if i € S, then a(N,c); < a(N,c');.

(e} Strong monotonicity: if (N,c) and (N, ) are cost games and i € N, if for all
coalitions § C N the marginals satisfy the inequalities ¢ (SUi)—c(S) < ¢/ (SU i) -
¢’(5), then o(N,¢); < (N, ¢');.

(f) Population monotonicity: if (N,e¢) is a cost game, then (N, c)s < 0(S, cs).

Discussion: Fair ranking can be translated into the game theoretical context. In-
deed, if a payoff vector satisfies fair ranking for an airport problem, then it preserves
desirability in the associated cost game in the sense of ‘Maschler and Peleg (1966)-
or Sudhdlter (1995(a)) and vice versa.

It is clear that the population monotonicity property (c) is the same as population
monotonicity (f), when restricted to airport games.

For airport games coalitional monotonicity (d) is the same as monotonicity in costs
(b). This can be understood as follows. If the games (N,c) and (N,¢') are cost
games associated with airport problems (N,v) and (N,~’) and i € N satisfies the
conditions of coalitional monotonicity, the 1-coalitions (4), 7 # 1 have the same
value and therefore, y(j) = v/(j) if j # i. Furthermore, ¥'(4) > v(¢). The converse
statement is also true. If only the cost of player i is increased, only coalitions
containing player ¢ get a weakly larger coalition value. The conclusions in (b) and
(d) are the same.

Strong monotonicity is a stronger condition than coalitional monotonicity,

The fair ranking property (a) implies the equal treatment property (ETP) saying
that if y(7) = (7}, then o(N.~); = ¢(N,v);. This implies that asymmetric solutions
like the weighted Shapley values with unequal weights do not satisfy fair ranking.
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In the first theorem of this section we investigate the fair ranking property.
Theorém 7. The symmetric .S'hapl_ey value, the nucleolus and the modified
nucleolus have the fair ranking property.

Proof: | It is well-known that the Shapley value preserves desirability for each
cooperative game, —Maschler and Peleg (1966) and Sudhdlter (1995) respectively
showed the same property for the prenucleclus, hence for the antinucleolus, and for
the modified nucleolus respectively. Therefore all of these solution rules satisfy the

fair ranking property. 4

In the next theorem we study strong monotonicity and coalitional monotonicity
{monotonicity in costs). ‘
Theorem 8. For nonnegative airport problems the weighted Shapley values ha-
ve the strong monotonicity property, the nucleolus and the modified nucleolus are
coalitionally ﬁwnotonic.
Proof: Weighted Shapley values are strongly monotonic on the class of all games
(see Young (1985)). In fact, the coordinate of player z:_in the weighted Shapley value
is a weighted sum of player s marginals i.e. there are positive weights W (5,1| w)
(only dependent on §, i and w) such that

bu (Nye)i = Lseny W (S, ifw){c(SUi)— c(S)).
This implies strong monotonicity of weighted Shapley values.
To prove the coalitional monotonicity of the nucleolus and the modified nucleolus
let (¥,v) and (N,¥) be two airport problems with N = {1,2,...,n}, 7[j] = ¥ [7]
for [j] # {i] and 7 [i] > 7 [i].
We start with the coa]jtional monotonicity of the nucleolus. Let z and % be the
nucleolus of (N, ¢) and (N, &), respectively.‘We assume that the required inequality
holds for airport problems with a plaver set that is a proper subset of N ;E,n]d contains
T

i. For the nucleolus the generating fanction is N, = min
g ng g(N,7):= Juin =T

it}

First we suppose that g (N, ) = j 1
that g (N,%) = g(N,v). Suppose that Ykl £ 3[E) < y[k+1]. Then &> i—1 and
o, oy, 7l
9(N.7) = t<i OT kT]gt(n t4+1 A:I<nt15nk t Nt k+ 1
Each of the fractions is at least g(N,v) and one is equal. Namely, for ¢ < i or

for some player [j] with j < i. We will prove
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i]_[l

k+1<t< n wehave (and one equality) by the definition of 7, for

j+1 .

. 7[t] 7[t] 7] 7[2) (k] 2]
> > d finall > > g

i <t <k wehave : ‘t+1‘j+1an n yk+1_k+1 ji+1

By weak consistency (WCONS) we have that the reduced airport games havg the
restrictions of z and z to N\[1] as nucleolus. Because g(N,7y) = g(N,7), the
reduced airport problems also satisfy the condition for.coa,litional monotonicity and
therefore, by induction Z; > z,.
Ifj 2 ¢ wefind z; = 2; <7 < &;. The first equality follows from the remark
following Theorem 4 and the last inequality comes from fair ranking.
Let y and § be the modified nucleolus of (N, ¢) and (N,¢©), respectively. We will
prove that A > X if
A is the solution of the equation 2ien (7] — 1)y = maxjen v[j] = 7][n]
and A solves the equation Len (Y] - t)y = maxfjlen ¥ [j] = v[n] v 7 [4].
If we substitute ¢t = X in the second equation, we find

20 (Y[ = N4 + (Tl = Ny = v [l + (1)~ M)y ~ (7] - M)y
Iy {n] > 7[i], we find Tjien (7[7]= M 2 7 [n] because 5 [i] > 7 [i]. If 7[n] < 7 [,
we have 37 e n (Y[7] - Mg = F[4] but this time because of (i) > y[n] > A and
vln} > y(i). Then X > A and ¥ < y; for 7 # i. By Pareto optimality and
E(N) 2 ¢(N) we find ; > 3 - q
Population monotonicity is another monotonicity property that the Shapley value
(and even the weighted Shapley va.lu.es) shares with the nucleolus and the modified
nucleolus (cf. Sprumont (1990), Rosenthal (1990), Sénmez (1993)).
Theorem 9. For nonnegative airport games the weighted Shapley value, the
nucleolus and the modified nucleolus are population monotonic.
Proof: Let (N,v) be a nonnegative airport problem and let (7] be the i-th player
in N. We consider the airport problem (N \[d],v_ i) after deletion of player [4).
We start with the weighted Shapley value. The airport games belonging to the
airport problems are: (N, e):= i (v [k - ik = 1) (N, k), . fn]) and

.....

If [] # [{] is a player, his payment under the weighted Shapley value is the sum of
w (4]

w ({7, mID and

J terms, namely (v {&] - - 1])
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Gl =k =) S R

Each of these terms is in the first case smaller or equal to the same term in the

for k < 7.

second case, because w ({[k],...,[n]}) = w ({[£],....[»]}\[Z]). This gives population
monotonicity of the weighted Shapley value.

The population monotonicity of the nucleolus of airport games is the main result of
Sénmez (1993). |

For the modified nucleolus the proof goes like this: Suppose that #Nu (N, )] =

(7 [5]-2)+- ThenZ('r[J ]-A)4 = 7[n] and Z ([7)=2)+ = virl-(vl]-N)4 <

J=1 J=1,#1
7 [n].

First we assume that [i] # [n] or [i] = [n] and y[n] = 7[n — 1]. If player [7] is
deleted, the value of A is too large or just fine. This means that *Nu (N\[d],7_1y) >
“Nu(N,7)ni
If [i]:- 1[n] and v [n] > v [n — 1], the equation above reads like:

_Z(’Yljl = Al =7r] = {(v[r] - A)s =
and w=e have to i)rove that A < y[n—1]. If not, then (y[r]-A); < v[n]-~[n—1] and
therefore, the coalition {[1],...[n — 1]} pays more than +{n — 1]. Then “Nu(N,c)

is not a core allocation but we know by Theorem 1 that “Nu is a core selector. «

In the following example we show that the nucleolus and the modified nucleolus do
not satisfy strong monotonicity.

Example: | N = {1,2,3},7[1] = a and ¥[2] = 73] = b We take three values
for a and b. As we can see, the values of a increase and therefore, the marginals.of

player [1]. The payments of player [1], however, do not (always) increase

a |b ¢y | Ny # Nupy
24 136 |8 12 4
27 127 19 9 9
36 (72 112 |18 0

4. Axiomatizations

Up to now we only considered reduced airport problems, if the first player {1] is

removed. In this section we define reduced airport problems in case the payment of
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any player [4] is known and this player is removed. We can do this in two essentially
different ways. If the payment of player [{] is known to be z, we may consider
the v-reduced airport problem with player set N:= N\[{] and cost function ¥l =
min (y [f],v[{] — z) if j < 7 and F[j}:= y[j] — 2 if j > 4. The payment is used to
pay the ‘last part’ of v[{] and players with small y-values keep the same value.

We may also consider the u-reduced airport problem by taking N:= N\[i] and
YUl=(ylil-2)+ ifj <iand ¥[jl:=v[j] — = if j > 4. This time the payment of
player [i] is used to pay the “first part’ of v [i] and all players get a lower vy-value. If
[i] = [1], both definitions give the old definition of reduced airport problem.

For the moment we only consider p-reduced airport problems for [i] # [r]
or [i] = [n] and 7y [n] = y[n - 1] (see the remark later on).

A solution rule ¢ on a subset B of A is called v-consistent (v-CONS) or u-consistent
(1-CONS} if the p-reduced or p-reduced airport problem belongs to B and the
solution o assigns the restriction to N of the solution of the original airport problem
to the »-reduced or y-reduced airport problem, respectively.

Proposition 10, For nonnegative airport problems the nucleolus has the v-
consistenéy property (v-CONS ] and the modified nucleolus the p-consistency pro-
perty (u-CONS,).

Proof: (cf. Granot and Maschler (1994) and Granot, Maschler, Owen and Zhu
(1995))

We prove that the v;reduced airport problem is associated with the reduced game
in the sense of Davis—Maschler of the game associated with the original airport pro-
blem. Then v-consistency of the nucleolus follows from the reduced game property
for the (pre)nucleolus.

If (N,v)is an airport game and the payment of the i-th player is z (0 <z < 72
The TU-game generated by the v-reduced airport problem has the coalition values

for proper coalitions in N\ [4] (¢ () is the last player of S)

min (v [i] - 2,7 («(5))) if «5) < [3]
E(85):=7(c(5)) =_{

1({8) -2 - H(S) 2]
The D-M reduced game gives to a coalition § C N\[{] the coalition value
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min (7 («(8)),7[{] - 2) if «(§) < [4]
E(Sy=min(c(S5),c(SU)-z)= {

7(dS)) -« if +(5) 2 [i]
These games are the same (also for § = N\ [4]).

For the modified nucleolus we proceed as follows. Suppose that “ u(N,e) = ((v[j]-
A+ )ien and *NulN\[i],¢) = ((7{] - )_\)+)jEN\[£]- It suffices to prove that (v [j] -
N+ = (73]~ ) for [1] # [i]-
We assume that [¢] # [n] or [¢] = [n] but 4 [n] = v [n ~ 1].
By definition A and A are solutions of the equations

Yim (Yl =t =7in) and  T7, (Gl - Dy = 7n).
The first equation can be written as D=1, (Y]~ e =7 (0] = (7[i] - t)4.
If we take a:= (y[i] — A);, the LHS of the second equation contains terms (v[7] -
z — 1)y and if we take { = z + 7 both LHS’s are equal. So we must prove that
v [r]=(7[é]=A)+ = (y[n]—2)+. Thisis true because of y[n] 2 (i) > z = ([i]-A);.

q

Remark: The only case we did not define p-reduced games is if (7] = [n] and
7[r) > y[n - 1). It is not difficult to check that the. y-reduced airport problem
game should be defined by 7 [j] = (v[j] - £); with Z:= 7 — (v[n]=7[n- 1])' and
z > y[r] —¥[n = 1]. So, the payment of the deleted player is first used to pay his
marginal (y[n] — ¥ [n — 1]) and the remaining part 7 is used to decrease the costs
of the other players. In v-reduced games it is not necessary to make this exception
because then we always start with the marginal. The inequality z > v [n] —v[n—1]

is always true in core allocations.

In this section we give axiomatizations for the Shapley value, the nucleolus and the
modified nucleolus on the class of airport games. The axioms that these solution
concepts will have in common are: Pareto optimality (PO), equal treatment (ETP),
and covariance (COV) (an axiom to be defined). For airport games with at most two
players these properties characterize a unique solution rule. For airport problems
with one player Pareto optimality fixes the solution opy = 7[1). For symmetric
2-player airport probléms (ie. 7{1] = 7[2]) equal treatment and Pareto optimality

fixes the solution ayy) = o5y = 1 1] = L [2]. We are left with the airport problems
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with +[1] < v{2].

For a solution rule ¢ on a subset B of airport problems we define covariance (COV)
by:

(i) If (N,7) € B, @ > 0, and (N, av) € B, then o(N, ay) = ac(N, 7).

(ii) If (N, v) € B, 6-2 ~[n — 1] — y[n], where 4[0} = 0 in case n = 1, and (N,%) € B,
where 7 = 7[i] + ey, then o(NV, ) = o(N, 7) + bef,). Here ¢} denotes the i-th unit
vector (0,...,0,1,0,...,0).

For more general cost games covariance says how a solution changes if an additi';re
game is added. Moreover, COV guarantees that the solution rule is positively homo-
geneous. To stay inside the class of airport games only additive games (0,0,...,0, 4)
can be added with @ > ¥[n — 1] — y[n], as in airport games only the last player [n]
can have a non vanishing marginal.

If we add the covariance‘property, there is a unique solution for 2-player airport

problemg: apy = 37[1] and o = v([2 - 37 (1)

Remark: A solution rule on a subset B of A satisfying COV and WCONS
1s automatically Pareto optimal. Indeed, for one-person airport problems COV
gﬁa,ra.ntees PO. Note that the global assumption of SIVA is crucial for this property.
Let (N, ) be any airport problem in B with at least two .players. Clearly the solution
applied to this airport problem is Pareto optimal if the solution restricted to N \ (1]
is Pareto optimal for-the corresponding reduced airport problem. Therefore an

inductive argument and weak consistency finish the proof.

In the following theorem we give axioms for the nucleolus and the modified nucleolus
on the class of (nonnegative) airport games. The following proposition is an exten-
‘sion of Proposition 2 and a necessary tool for the proof of Theorem 12. It describes

monotonicity properties of the nucleolus and the modified nucleolus.

Proposition 11. Let (N, v) be a nonnegative airport problem.

{a) If t is a number with 0 < t < v[n] and 7, is the cost function defined by
Teld): =y A (v[n] ~ 1), then Nu(N, ) < Nu(N,7).

(b) If 1 is a number with 0 < t < v[n] and v, is a cost function defined by
il = (v [i] = s, then “Nw (N, %) < “Nu(N,7).

(c) If t is.a number with 0 < t < v[1] and 7, is a cost function defined by
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vlir=7[i] - ¢, then Nu(N,7) < Nu(N,7).

Proof: (a)} For airport problems with one player the statement follows trivially
from (PO). We assume the claim holds for airport problems with less than k players
and suppose that (V,v) has k£ > 2 players. Let Nu(N,y)=z and Nu(N, Yt) = ;.
Using the generating function for the nucleolus, we find

2l 5 g 28N G0

1l = mi
:t:[] I;'rgrllli—i’l :<n i+1

There is equality if and only if u%—— 2 z[1). If z[1] = z4[1], weak consistency _
of the nucleolus (WCONS) gives 25 = Nu(N,7) with §[i] = y{i] = z{1] and
(#:)y = Nu (N, %) with

Fe[i] =%l ~ 2 (1] = (Y] - 2 G A (v1n) - 2 (1)) — 0) = 5 [i] A (5[] — 1),
The reduced airport problems satisfy the conditions of Proposition 11 (a) too and
the induction hypothesis gives the desired result for coordinates of players [i] with
i>2.
If 2[1] > 21], we have t > y[n] — nz[1]. If we increase  from ¢ = 0 to  —
Y[n] - n Nu(N, 7)py» the nucleolus of (N, ;) decreases weakly (by the first parf of
the proof} and for larger values of t we get equal split i.e. z4(i] = z4[j] = lli]-_—t
for all ¢, 7. This finishes the proof of part (a). .
(b) We have a number X such that Yrjen (1]8]) - )\j+ = 7[n] and we look for a
number A; WithY rgen (Y[}~ 1)4 = X)s = v[n)—1. H we subtr’éct the two equalities
we find Foiaen (V] = Ay ~ (7[d = (£ + M\))4] = ¢. Then

(7[f] = X5 > ¥ [i] = (£ + A;))+ for some player [i] € N and therefore, A < ¢ + A,.
Then (v [j] = A)s 2 (71i] = (4 Ae))y for all players [j] € N.
This finishes the proof of (b).
(c) The proof follows from Proposition 2, if we show that

gN.7) -t < g(N,m) < g(N,7).

where g is the generating function of the nucleolus. This amounts to

min Lﬁl—t<m1n 7.[i]—'t<m' [z]

i<n 141 T i<n 141 "—:<n ‘t-f—l
This is clearly true. | a
Theorem 12. The nucleolus is the unique solution rule on the class of nonne-

gative azrport problems sat'sfying the equal treatment property (ETP), covariance
{(COV. ) and v-consistency (1-CONS). T he madzﬁea’ nucleolus is the unique solu-
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tion rule on the class of nonnegative airport problems satisfying ETP, COV, and
u-CONS. '

Proof: The proof of both statements has the same structure. Let us abbreviate
the notation for a moment by ¢: = o(N,v)and vi= Nu(N,v) (or = “Nu(N,¥)).
Let (N,v) be an airport problem with a minimal number of players with o # v,
If o [i] = v{i], the v-(or p-)reduced game is also a game with ¢ # v. So we may
assume that all coordinates of ¢ and v are different.

If o[1] < v[1], we prove, by using Proposition 11, that on\i1] > ¥ayj)- Then in
particular, o[n] > v[n]. From this fact we prove, again by using. Proposition 11,
that oa\[] < Un\[n)- Then o{n—1] > v[n—-1]and a[n— 1] < vn—1].

We start with the nucleolus. Suppose that  is a solution rule for airport prc;blems
satisfying COV, ETP and »—CONS, hence WCONS and thus PO by the last remark.
If ¢ # Nu, there is a number & and an airport problem (N,v) with k players
such that ¢ (N,v7) # Nu(N,7) and for all airport problems with léss players the
.rules ¢ and Nu give the same outcome. We know that & 2 3. Let z be o(N,%)
and let y be Nu(N,v). We may assume that z[i} # y[i] for every player [4].
Suppose that z[1] > y[1]. If we consider the reduced airport problems with respect
to z (1} and y[1] (notation: (N,%,) and (N,3,)), we get ¥:[f] = y[i) - 2[1] =
v[i] = y[1] -1 with ¢t = 2[1) - y{1]. We may apply Proposition 11 (¢) and find
Nu(%z) < Nu(7y). By weak consistency (WCONS) for Nu and the induction
hypothesis we find r5 < 0 (7y). Weak consistency for o gives z & < ¥yn. Therefore,
z[n] < y[r]. As we assumed no equality, we have z [n] < y[n]. If we look at the
two v-reductions of the problem to N \[n] with respect to z [n) and y[n] (notation
(N,7z) and (N,%,;)), we get the cost functions Yzlt]: = 7[ A (v[n] — z[n)) and
Slil = YA (vl =y [n)) = 4 Ay [n]—2 [r]—7) with & = g [n]—z [n]. Application
of Proposition 11, (a) gives Nu(4,) > Nu (§y)- By the induction hypothesis and
v-consistency, we obtain zg = Nu(N,y)g 2 6(3y) = Y- Infact, z5 > yg. For
player [n — 1] we find z[n — 1] > y[n —1] and = [n — 1} < y[r» — 1]. Contradiction!
For the modified nucleolus the proof is similar. Using the g-consistency and Pro-
position 2, we find, as before, o(N,7) > “Nu(N,v)) implies (N, Y- <
“Nu(N,¥)n-1) as well as (N, ¥)m) € “Nu(N,7)n) and the latter inequality im-
plies o (N, ¥)pp-1) > “Nu(N,7)n-1)- This means (N Y- = “Nu(N,7)n-1)
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The induction hypothesis and p—consistency gives o (N,9) = *Nu(N, 7). q

Theorem 13. The symmetric Shapley value is the unique solﬁtion rule on the
class of nonnegative airport pmblems. satisfying Pareto optimality, the equal treat-
ment property, and strong monotonicity. | _
Proof: For an airport problem (N,+) we introduce h(N,v):= #{[]|7]i] <
¥ [n]}. The proof is by induction to A (N,f). If A (N,v) = 0, we have a completely
symmetric situation and oy = 7—1[:-1—] for all players [/} € N by PO and ETP. The
same is true for the Shapley value. If the theorem holds for A (N,y) < kand (N,7v)is
an airport problem with & (N,7) = k, we have y[1] < 7{2] < .-+ < v [k] < v [k+1] =
-- = 7[n]. If we define 7 by ¥ [z']': =v[ijAy [k], we have by the induction hypothesis
o{N,7) = ¢(¥). Notice that the marginals of the players [{) with 7 < k do not change
if we go from 7 to 7 and therefore, o (N, )y = ¢ (N, 7) = 6 (N, 7) = ¢ (N, v
for i < k by strong monotonicity of & and ¢. The equal treatment property gives
o(N, ) =0o(N, 7Y )ia) and ¢ (N, Y = (N, Y )m) for § > k and Pareto optimality
give o (N, ¥ )y = ¢ (N, 7)) <

- To finish this paper we will summarize the results in the following table showing

the interdependencies and independencies of properties discussed in this paper. We
use the abbreviations used in this paper and, moreover, (FR) for fair ranking, ( CM)
for coalitional monotonicity, (SM) for strong monotonicity and (PM) for population
monotonicity. We assume that |Q] > 3. The solution rule p is the-not REAS-rule
introduced in Section 1. Notice the interdependencies for solution rules on At

FR=ETP, SM=CM, v~CONS=>WCONS and p-CONS=WCONS.

O [ETP JCOV [SM -CONS [u-CONS [FR [CM [PM [REAS WCONS
¢ N+ |+ |+ [+] = - gt |+ |+ + +
Nu [+ + |+ 1= + - [+t |+ [+ ]+ +
“Nu g+ |+ [+ -] - + |+ i+ [+ ]+ +
T n e s - B+ -
P |+ = |+ |+ ]| (=) (=) |- |+ [+ | + +
p nalll i s O e i S0 G +

For the Shapley value ¢ we proved the positive results. This solution rule cannot
be v~ or yi—consistent by Theorem 12 and ¢ # Nu,*Nu (see the table at the end

of Section 3). For the nucleolus and the modified nucleolus we proved the positive
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results and we gave an example showing that these solution rules are not strongly
monotonic. The other negative results follow from Theorem 12 and the fact that
Nu # #Nu. For the 7-value 7 we proved that it does not satisfy WCONS and
therefore, the other consistency properties either. It cannot be strongly monotonic
by Theorem 13. The positive results for the weighted Shapley value @, (we assume
that the weight are not all equal) are proved in the paper, and also =FR and ~ETP.
The solution rule p was designed to violate REAS. It cannot satisfy SM by Theorem
13 nor »-CONS or p-CQNS by Theorem 12, if it satisfies COV. It satisfies COV, as
the ‘discount’ A is not dependent on 7 [n] (see the formula in Section 1). The brackets
in the table are the properties that are not discussed in the paper. Probably the
weighted Shapley values are neither v- nor p-co.nsistent and T and p are coalitionally

monotonic but not population monotonic.

The Theorems 12 and 13 axiomatize the Shapley value and both nucleoli solutions
each by three properties, respectively. To show this we need solution rules that

satisfy all characterizing properties except one. Again, |2 > 3 is assumed.

PO ETP COV SM l-CONS Ju-CONS [WCONS
I+ ]+ T+ [+] = - o
Nu [+ 1+ |+ |- + - +
“Nul+ |+ |+ |- - + +
o |+ 1+ |- -] - + +
o2 -+ |+ |+ - - -
os [+ |+ [~ |-]| + - +
oo |+ |- - |+] + + +
o5 + | - + |- + - +

los |+ ] - [+ -] - + +
The solution rule o, is defined by o, (N, Y)iq = 0if v [{] < v [n] and o (V7)) = :Y%

if y[i] = y{n] and p:=| {i|v[i] = 7 [n]}].

The solution rule o, is defined by a2({N,9)y = 0 for [§} # [n] and N,V =
v[n] = 7[n — 1] where 4[0] = 0.

The solution rule o3 is defined via its generating function g(N,v) =mingen(y[k]/k).
By Theorem 1 this solution rule applied to every nonnegative airport problem yields
an element of the core of the corresponding cost game. An inductive argument on

the number of players shows that this element is lexicographically maximal within
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those core elements satisfying the fair ranking property.

rI;he solution rule oy is defined by o4(N, ¥)y = 0 for [§] # [r] and oy(N, Vi) = 7[n).
The solution rule g5 depends on an exceptional potential player % in the universal
Player set  and is defined by distinguishing the following cases. If ¢ N, then
o5(N,v)= Nu(N,v). If x € N and (N,7) € Ay, define o5(N,v); = Nu(N\ {x},¥)
for i # % and define o5(N T to be the unique real number such that o5 satisfies -
PO. Here 5 denotes tﬁe restriction of ¥ to N \ {x}. Note that in the second case
the exceptional player only pays something if he is the last player. Then he pays
¥[n] = ¥[n — 1]. Moreover, it should be remarked that the v~ or p—reduced airport
problem with respect to the exceptional player coincides with the restriction of the
airport problem to all other players.

The solution rule g¢ is defined analogously to o5 by interchanging the roles of Nu
and *Nu. .

It is stfa.ightforward to verify the properties of the solution rules on A4 summarized
in the table. Therefore Nu,o,,04 show the logical independence of PO, ETP, and
SM, whereas ¢, 03, 05 or ¢, 0y, 0 show that ETP, COV, and v»-CONS or ETP, COv,
and u-CONS, respectively, are logically independent.

Remarks: In this paper single valuedness has been used as a global assumption
for solution rules. This assumption can be avoided with the help of some modificati-
ons. A set valued solution rule on a set B of games or éjrport problems assigns a set
of payment vectors (instead of a singleton) to each member of B. All consistency
properties mentioned so far can be redefined for set valued solution rules. Indeed,
a set valued solution ¢ satisfies consistency, if the reduced pfoblems with respect
to each member of the solution belong to the domain of & and the resticted vectors
belong to the solutions of the reduced problems or games. For the definition of a
stronger version (not used in this context) of consistency for set valued solution rules
see Yanovskaya (1994). Pareto optimality, reasonableness, the equal treatment pro-
perty, fair ranking, and covariance, can be generalizeci to set valued solution rules
by demanding the foregoing properties for every element of the solution of a given
problem.

For set valued solutions Theorems 1 and 12 remain valid, if single valuedness is added
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as an assumption. In Theorem 12 SIVA can be replaced by nonemptiness and PQO.
In this version of the result only Pareto optimality for one-person problems is really-
needed and both characterizations are, again, axiomatizations. This can be seen
by considering the empty solution which shows that the nonemtiness assumption is
logically independent.. The solution which assigns the set of real nuinbers to every
one-person airport problem and the nucleolus or modified nucleolus respectively to
every other airport problem shows that PO is needed.

It should be noted that the characterization of the nucleolus rule is in fact an
axiomatization of the kernel, defined by Davis and Maschler {1965} (cf. Maschler,
Peleg, and Shapley (1979)). The kernel is a singleton, hence coincides with the
nucleolus, in this case since the corresponding cost games under consideration are
concave (see Maschler, Peleg, and Shapley (1972)). This is the reason why the
infinity a.ssumptlon on the universe Q of players, which is a necessary condltlon in
Sobolev’s (1975) axiomatization of the prenucleolus (cf. Sudhélter (1993)), can be
avoided. An alternative proof of this part of Theorem 12 can be given by showing
that the solution has to be contained in the kernel (cf. Peleg (1986)). It should
be noted that the same properties, only »-CONS has to be replaced by consistency
w.r.t. D-M reduced games) yield an axiomatization of the nucleolus for the set of
concave cost games with player set contained in .

The assertions of Theorems 3, 8, 13 concerning the (positively weighted) Shapley
value remain valid on the set 4 of all airport problems, since nonnegativity does
not apply in the corresponding proofs.

There is a generalization of the concept of positively weighted Shapley values. For
an index subset I of the natural numbers and an ordered partition & = (S;);el
of Q the (w,S)-wez'ghted Shapley value ¢, s is the linear solution rule defined by
bus(N,ul):= wﬂ((—% if i € § and ¢y (N, ug)ii= 0 if i ¢ S, where § = §n
Smor{jels,ns#8}. |
Analogously to the proof of Theorem 3 it can be seen that this solution is weakly
~ comnsistent and generated by ¢(N,y):= —% [1]if [1] € § and g(N,v):=0
otherwise, Moreover all other results of the p(;re)ceding sections according to posi-

tively weighted Shapley values remain valid for weighted Shapley values.
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