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Abstract

We attempt to unify the theory of bargaining problems with and with-
out claims. The claims of the players define a natural status quo for the
underlying bargaining problem which can therefore be solved using a so-
lution for bargaining problems (without claims). Following this procedure
we define an extension of the Raiffa-Kalai-Smorodinsky solution to bar-
gaining problems with claims. It is shown that this solution is uniquely

. characterized by a set of axioms including a monotonicity axiom. '

1 Introduction

Recently the theory of bargaining problems originating in Nash’s seminal paper (9]
has been enriched by the introduction of a claims point which is not an element of
the feasible set (see Chun and Thomson {3}, Bossert [2]). Various interpretations
of the claims point have been provided by the literature, the most prominent
one referring to bankruptcy problems as studied in O’Neill [10], Aumann and
Maschler [1], Curiel, Maschler and Tijs [4] and Dagan and Volij [5]. If a firm
goes bankrupt the estate typically is not large enough to meet the creditors’
claims. Thus, the estate has to be divided in a way that takes into account the
creditors’ claims without being able to satisfy them all. Since it is assumed that
the creditors’ utility is a linear function of money a bankruptcy problem belongs
to the class of problems with t-ra.nsfera.ble utility. By using game theoretical
methods the authors cited above try to rationalize and generalize the ancient

rules for dealing with such problems that can be found in the Babylonian Talmud.



Another problem that can be modelled as a bargaining problem with claims
1s a labor-management conflict about the division of the profits of a firm. In this
case the disagreement point is given by the “worst case scenario” of a strike or a

lockout and the claims of the two parties are given by their expectations about

how the conflict should be solved. These expectations might have been formed
on the ground of the parties’ payoffs in similar past situations, where changes
in the feasible set make them incompatible in the current situation. Or the
expectations might be based on the resolution of the conflict in related industries,
where diflerences in the feasible set cause the payoffs to be incompatible in the
present conflict. Note that we do not address the question of credibility of the
claims point. Rather, the claims point is ta,ken as exogenously given as are the
disagreement point and the feasible set.

Bargaining problerris with claims can also be used to model coalition formation
and payofl distribution in a general NTU game (see Gerber [6]). In each coalition
the players’ payoffs should depend on what they can achieve outside this. coalition.
If these “outside opportunities” are not feasible for the given coalition we are in

" a situation that can be modelled by a bargaining problem with claims.
~ There is a close connection between bargaining problems with claims and
location games or, more general, games with a bliss point. A location conflict
arises if e.g. a planning agency has to decide about the location of an attractive
(or undesirable) object and the utility functions of the agents do not have a
common satiation point. Thus, the satiation points of the agents define a bliss
point which is not feasible and therefore is similar in spirit to a claims point.
However, the additional structural element of a disagreement point is missing in
a location conflict and this s the main difference to a situation we model by a
bargaining problem ﬁith claims. Nevertheless, the general problem of finding a
“fall-back” position within the feasible set is the same. For a treatment of this
problem in the context of games with a bliss point we refer to Rosenmiiller [14]
who proposes an extension of the Nash solution to this class of games. \

The literature so far has treated the theory of bargaining problems with and

“without claims as essentially different providing separate solutions to both prob-
lems. This does not seem to be satisfactory since the ‘only difference is the

existence of a claims point in one of the problems. Thus, two interesting ques-



tions can be raised, both of which we try to answer in this paper. 1. Is there a
canonical way in which we can derive a bargaining problem without claims from
a bargaining problem with claims, so that we can find a solution to the latter
by applying some well known solution concept for the former and 2. is there a
canonical way in which one can embed the class of ba,rgain-ing problems without
claims into the class of bargaining problems with claims, so that one can look
for an extension of bafga.ining solutions to the class of bargaining problems with-
claims? _ |

The answer to the first question is provided by deriving from the claims point
an adjusted threatpoint for the underlying bargaining problem taking into ac-
count the original threatpoint of the bargaining problem with claims. This new
threatpoint givés each player the maximum utility the other players unanimously
concede to him and it thus can be interpreted as a minimally equitable agreement.
Having derived a bargaining problem without claims from the given problem with
claims a natural next step is to apply some well known solution concept to the
former. In this paper we concentrate on the Raiffa-Kalai-Smorodinsky (RKS)
solution and show that on the class of ‘bargaining problems with claims the ex-
tended RKS solution is uniquely characterized by a set of axioms including a
monotonicity axiom. '

The answer to the second question provides a justification for the term “ex-
tended” that we use for the solution we have derived above. We show that the
RKS solution for a bargaining problem without claims is identical to the ex-
tended RKS solution for the equivalent bargaining problem with claims where
eqmvalence refers to the embedding procedure we define.

It turns out that the extended RKS solution assigns payoffs to the players
that in genéral are not bounded by the claims point. Since this is an undesirable
property in some situations that we model by a bargaining problem with claims
— though by far not in all — we also propose a modification of the extended
RKS solution which satisfies boundedness by claims. This solution is given by
the RKS solution applied to the bargaining problem that arises if we restrict the
feasible set to those utility allocations that are boundéd by the claims point and
adjust the threatpoint as before. Under a slight modification of two axioms we

also obtain a characterization of the claims—bounded extended RKS solution.



The idea to derive a bargaining problem without claims from a bargaining
problem with claims and then to apply a well known solution concept to the
former is not completely new. In fact Dagan and Volij 5] proceeded in this way
in the special case of a bankruptcy problem. They show that the RKS solution
applied to the deduced bargaining problem, where the feasible set restricted to
the payoffs that are bounded by the claims and the threatpoint is defined as
our paper, induces the adjusted proportional rule. The adjusted proportional rule,
which is an extension of the contested garment principle that can be found in the
Talmud, has béén introduced and axiomatically characterized by Curiel, Maschler
and Tijs [4]. Thus, the claims-bounded extended RKS solution is an extension of
the contested ga,rrhent principle to general (not necessarily bankruptcy) problems
with claims.

The paper is organized as follows. Section 2 provides the basic definitions and
points out the connection between bargaining problems with and without claims..
In section 3 we presen-t the characterization of the extended RKS solution. Section
4 deals with the boundedness of a solution by the claims point. The claims—
bounded extended RKS solution is defined and characterized. We discuss the
relation between this solution and division rules for bankruptcy games. Finally,

section 5 closes the paper with some concluding remarks.

2 Bargaining Problems with and without Claims

In the following R*, n € N, will denote the n-dimensional euclidean space and
theset N = {1,...,n}, n > 2, will denote the player set. The notation for vector
inequalitiesis >, >, >. Forz € R", a € R, and i € N the vector (a, z_;) € R"is
defined to be the vector (z1,...,Zi—1,&, Tit1s---,%n)- The comprehensive convex
hull of the vectors a',...,aF € R" is given by

k k
CoCon{al,-.-,a“}={zeR“ z <Y hid, At-zo,i=1,...,k,2/\,-=1}.

=1 =1

For S CR" let

WPO(S)={ze S|lyeR y>z=>y¢ S5}



be the set of weakly Pareto optimal points in S and let
PO(S)={zeS|lye R y>z=>y¢ S}

. be the set of Pareto optimal poiﬁts in S.

. Definition 2.1 An n—person bargaining problem is a tuﬁ[e (S,d), where

1. S T R™ is conver, closed and comprehensive.!

2.de S andJz €S withzx > d.

3. {x € S| x > d} is bounded.

Given a bargaining problem (5, d) the set S is the set of feasible utility alloca-
tions for N and d is the threatpoint or status quo which marks the outcome of the
game if the players cannot agree on a feasible point. The conditions in Definition
2.1 are standard. Let I" be the class of all n-person bargaining problems. For

a bargaining problem (5, d) € " let
IR(S,d) = {z € S|z >d}
be the set of in&ividually rational points in S. The éla.ss $" C 3" is given by
£ = {(S,d) € | WPO(S) N IR(S,d) C PO(S)}-
For (S,d) € I" the. utopia point u(S,d) is defined by
" u(S,d) = max{z:| z € IR(S,d)}, i=1,...,n.

A solution on a class of bargaining problems D™ C ¥" is a mapping f : D* — R”
such that f(S,d) € § for all ($,d) € D". Fora given bargaining problem (.5, d)
the Raiffa-Kalai-Smorodinsky solution selects the weakly Pareto optimal point
on the line connecting the disagreement pbint with the utopia point u(S,d). For
the case of n = 2 the Raiffa-Kalai-Smorodinsky solutidn was proposed by Raiffa

[12] and was later axiomatically characterized by Kalai and Smorodinsky [8].

1A set S C R" is comprehensive if z € S and y < = implies that y € 5.
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Definition 2.2 k: £" — R" is the Raiffa—Kalai-Smorodinsky (RKS) so-
lution if for (S,d) € I

k(S,d) = (1 = A)d + Au(S,d),

where A = max{) € R] (1 = \)d + \u(S,d) € S}.

As outlined in the introduction there are situations in which the players’
claims or expectations should be considered. To this end we define a bargaining

problem with claims as follows.

Definition 2.3 An n—person bargaining problem with claims is e triple
(S, d,c), where

1. (5,d) e .

2.ce R"\ 5, ¢>»d

Let T" be the class of all n-person bargaining problems with claims. A
solution on a class of bargaining problems with claims D} C X7 is 2 mapping
F:D? — R" such that F(S,d,c) € § for all (S,d,c) € D?. The class £ C 37
is given by ' ‘ :

$r = {(S,d,c) € Zt| (S,d) € &}

Now we can define the extended RKS solution (see Figure 1).
Definition 2.4 The extended RKS solution K : " — R™ is given by
CK(S,d,c) = k(5,¢(5,d,¢)), (S,d,¢) € 7,

where t;(S,d,¢c) = max{d;,max{x,—| (zi,¢-4) € S}}, i=1,...,n.2

Observe that the extended RKS solution is well defined: For (S,d,¢c) € s
and t = (5,d,c) either t = d or there exists 1 € N such that t; > d;. Then
(ti,c_;) € S and since t; < ¢;forall y=1,...,n we get (ti,c=;) > t. Therefore,

2By definition max(#)) = —co.



45, d,¢) 4

Figure 1 The extended Raiffa~Kalai-Smorodinsky solution.

by comprehensiveness of S it is true that t € 5. Further, there exists z € S "such

that z > f. Suppose not, then t € PO(S) and therefore ¢; > d; for some : € N.

By definition of #; this implies (£;,c_;) € PO(S) and we conclude that ¢; = ¢;

for all j # i. Again by definition of ¢; and since ¢ ¢ S this is only possible if
¢; = d; for all j # 7 which contradicts ¢ > d. Also, since t(S5,d,¢) > d the set

{z € §| z > t(S,d, )} is bounded. This implies (S, (S, d,c)) € E".

The interpretation of the new adjusted threatpoint or better status quo
t(S,d,c) is straightforward. No player can expect someone else to settle with
less than the amount that is neeessary to satisfy the claims of the other players
and no rational player will accept any payoff below the disagreement utility level.
Thus, all players will egree that the final outcome should not leave any player i
with less than t:(S, d, ¢). In the context of bankruptcy problems Curiel, Maschler
and Tijs [4] call t{S, d, c) the “minimal right of claimant ", i.e. “the amount that
is not claimed by any of the others”. As Herrero [7] puts it: (S, d, c) “represents
a ‘natural concession’ from coalition N \ {i} to agent ¢.” Following Herrero we

will call (S, d, c) the minimally equitable agreement. 3

3Herrero [7) presents a unifying approach to bargaining problems with a reference point and
bargaining problems with a claims point. The threatpoint ¢(S,d,c) in her paper plays the role

of a natural reference point thus mapping any bargaining problem with claims to a bargammg



The definition of the extended RKS solution consists of two steps. First the
original .barga,ining problem with claims is transformed into a problem without
claims by adjusting the threatpoint in a way that takes into account the. claims
point. In the second step the RKS solution is applied.

Note that the utopia point u(S,%(S,d,¢c)) in géneral neither coincides with
u(S,d) (cf. Figure 1) nor has the property that u(S,t(S,d,c)) < ¢ (see the

. following example). The latter is only true if n = 2.

Example 2.5 Let n = 3 and let S = CoCon{(1,0,0),(0,2,0),(0,0,3)}, d =
(0,0,0), ¢ = (0.5,1,1.5). Then #(8,d,c) = d = (0,0,0) and w(S,(S,d,c)) =
(1,2,3) > c.

Up to now we have argued that there is a natural way in which one can deduce
a bargaining problem without claims from a problem with claims (5,d,¢) € ﬁ?
We now pose the reverse question: Is there a natural way in which one can embed
=" into ﬁ?"

Remark 2.6 1. £ can be embedded into L7 in the following way. Let
(5,d) € $". Then u(S,d) ¢ S, u(S,d) > d, and therefore (5, d, u(S,d)) €
$r. Since (S, d,u(S,d)) = d the game (5,d, u(.S,d)) is an embedding of
(S,d) into 7. ' '

2. Given the embedding defined above K is indeed an extension of the RKS
solution k : £* = R" to bargaining problems with claims: It is straight-
forward to see that for (5,d) € £~

K(S,d,u(S,d)) = k(S, d).

We: believe that the embedding of £ into X? we have defined in Remark
2.6 is natural since the utopia point is usually interpreted as a claims point for
the underlying bargaining game. It represents the maximal expecta;t.ions the
players can have about their payoffs if they believe that the others are rational,
- meaning that the others will not accept anything less than their disagreement

level. However, if we only impose the condition that ¢(5,d, ¢) = d for regarding

problem with reference point. .



(S,d,c) € £7 as an embedding of (S,d) € 3" into £ there are several other
possibilities for choosing the claims point ¢ as we will see in the following.
Let (S,d) € £*. For i =1,...,n define '
C; = {z € R"| (d;,z-;) € PO(S) NIR(S, d)}
and ¢(S, d).= " Ci It is easy to see that given the conditions on (S5,d)
the set ¢(8, d) is nonempty and defines a unique point in R".* Also, ¢(5,d) ¢
S, ¢(S,d) > d and therefore (5,d, ¢(S,d)) € $ir. We have the following lemma.

Lemma 2.7 I Let (S,d,c) € &7 be such that ¢ > c(S,d). Then

45, d,c) = d.

2. Let (S,d,c) € E7 be such that ¢ < ¢(S,d). Then
t(S,d,c) > d.
Proof:

1. The claim directly follows from the fact that (d;,c_:(5,d)) € PO(5).

2. Let (S,d,c) € £ be given with ¢ < ¢(5,d). Let j € N be such that
¢ < ¢(5,d) and let i # j. Then (di,ci) < (di,c—i(S,d)) € PO(S) and
therefore :(S, d, c) > d:. -

Q.E.D.

The lemma shows that in principle any ¢ > ¢(S,d) but no ¢ < ¢(S,d) could
define an embedding of (5,d) € " into 37, Nevertheless, the embedding defined

by choosing ¢ = u(S, d) seems to be the most natural one.

4If n = 2 then ¢(S, d) = u(S, d). However, in general it is only true that ¢(S,d) < u(S,d) as
Example 2.5 shows. In this example ¢(5, d) = ¢ but u(S,d) = (1,2, 3).



3 Chéracterization. of the Extended RKS Solu-
tion '

In this section we will show that the extended RKS solution is uniquely charac-
terized by a set of axioms. Since this characterization is a consequence of the
axiomatization of the RKS solution for bargaining games we first recall the latter.
In order to do so we peed some additional definitions (cf. Rosenmiiller {13], Def.
2.4 and Remark 2.8).

Let 7 : N — N be a permutation. Then = also induces a mapping = : R" —

R", which we denote by the same symbol, via
TF(.'.C),‘ = Tr—1(i)y 1 = 1’ . ’n

Again using the same symbol, 7 defines mappings = : Th 4 B, o X BT,
respectively, via ' '

(5, d) = (w(S),w(d)), (S,d) e 7,
(S, d,¢) = (m(§),m(d),7(c)}, (5.d,¢) € =,

respectively.

A mapping L : R — R" is a positive affine transformation if there exist a,b €
R", a > 0, such that for all z € R” and for all 1 € N, Li(z) = a;z; + b;. Using
the same symbol, any positive affine transformation L also induces mappings

L:E" 5 X" [:X" - B7, respectively, via

L(S,d) = (L(S), L(d)), (S5,d) € =,

L(S,d,¢) = (L(S), L(d), L(¢)), (S,d,¢) € I,

respectively.
Now let f : D™ — R" be a solution on a class of bargaining games D" C¥™.

The following axioms are used to characterize the RK3 solution.
(PO*) Pareto Optimality: For all (5,d) € D*: f(S,d) € PO(S).
(SY*) Symmetry: For all (S,d) € D if for all permutations 7 : N — N it is

true that S = m(S) and d = w(d) then fi(S,d) = f;(5,d) for all t,7 € N.
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(INV*) Invariance under Positive Affine Transformatlons For all (S5,d) €
" D" and for all positive affine transformations L : R® — R" lf L(S,d) € D"’
then f(L(S,d)) = L{f(5,d)).

(IM*) Ind1v1dual Monotonicity: For all (S,d),(5',d) € D™, if $ C 8 and if
for some i € N and all j # i, u;(5,d) = u;(S',d), then fi(S,d) < fi(5',d).

- The following theorem is well known (see for example [15]).

Theorem 3.1 The RKS solution k is the unique solution on 5" that satisfies
(PO*),(SY"), (INV*) and (IM").

Now let F' : D® — R” be a solution on a class of bargaining problems with

claims D*'C =7. We consider the following axioms.
(PO) Pareto Optimality: For all (S,d,c) € D} : F(S5,d,c) € PO(S).

(SY) Symmetry: For all (5,d,¢) € D¢ if for all permutations 7 : N — N it is
true that S = 7(S), d = 7(d) and ¢ = 7(c) then Fi(S,d,¢c) = F;(S,d,c) for
all z,7 € N. ' '

(INV) Invariance under Positive Affine Transformations: For all (5,d,¢c) €
D7 and for all positive affine transformations L:R* = R"if L(S,d;c) €
D then F(L(S,d,c)) = L(F(S,d,c)).

(IND) Independence of Non-Equitable Alternatives: For all (S,d,c),
(8',d,¢) e D} if

(zeS|z>HS,do}={zesz2US.d,)}
then F(S,d,c) = F(5',d',¢).

(IM) Individual Monotonicity: For all (8,d,¢),(S",d,c) e DZ if S C 5" and
if for some ¢ € N and all 7 # 1,

{z;] ¢ € S,z 2 1(S5,d,0)} = {zjl £ € §',z 2 (5, d, )},
then Fi(S,d,c) < Fi(5',d,¢).

11



The axioms-(PO), (SY) and (INV) are standard in bargaining theory and
need no further explanation. The axiom (IND) is an adaptation to our context of
bargaining problems with claims of the axiom independence of ’nén—individuaﬂy
rational alternatives that was introduced by Peters [11]. The justification for this

‘axiom is straightforward. In a bargaining problem with claims no player can
expect someone else to settle with less than the nﬁnimally equitable agreement.
Therefore, non—equitable alternatives should not play any role in the determi-
nation of the solution outcome. (IM) describes the behavior of a solution in a
situation in which the feasible set expands. If the expansion is such that the eq-
uitable alternatives for all players but ¢ remain the same then it should be player

i who gains from the expansion (cf. figure 2).

U3
K{5,d,¢) _
L _e=u(5,4(8,d,0)) = u(§, (S, d,c))

T

tS', d,c

Figure 2: Individual monotonicity of the extended RKS solutien.

We get the following result.

Theorem 3.2 The extended RKS solution K is the unique solution' on i’: which
satisfies (PO), (SY), (INV), (IND) and (IM).

12



Proof:

1. K satisfies the axioms. Since (PO),(SY) and (INV) directly follow from
the respective properties of k we only have to show that K satisfies (IND)
and (IM). To this end let (5, d,¢), (5", d',¢') € £ be such that

{zeSlz2 1S d )} ={ze S 2> S d, ). (1)

Then it is immediate that #(S,d,c) = #(S',d',¢) and u(S, (S, d,c)) =
u(S8’, (5", d',)). From (1) and the definition of K we conclude that K
satisfies (IND).

To show (IM) let (S, d, ), (5", 4, c)- € £ be given with § C 5’ and
{z:;,]a: € S,z 21(5,d,c)} ={z;| z € §',2 > £(5',d,¢)} (2)
for some i € N and all j # i. As before this directly implies that
t;(5,d,c) = t;(5",d,¢) for all j # i. (3)

Since S C 5’ we have _
ti( S, d,¢) < ti(S',d, ). - (4)

(3) together with S C S’ implies
wi(S, 1S, dy ) < wi( S, 45", d, ) | (5)
and by (2)
w;(S,4(5, d,¢)) = u; (S, 1S, d, ¢)) for all j # i. (6)
For A > 0 define g(-; 1) : 5" - 3* by
| 9((5,d, ) A) = (1 — A)(S, d, c) + Mu(S, (S, d; c)).
Because of (3), (4), (5), and (6) for all A > 0 we have

gi((S,d,e); ) < gil(S',d, )i ), (7)

gi((S:d, e 2) = gi((S,d,c);A) forall j # 1. (8)

13



Let A be such that K(5,d,¢) = g((S, d, ¢); ). There aré two possibilities.
Either K;(S,d,c) < t:(5',d,c) < Ki(5',d,¢) or Ki(S,d,c) = g:i((S,d,c); \) >
t:(5’,d,c). In the latter case '

gi((Sfi d! C); 0) = ti(Slv d: C) < gi((Sa da C); 5‘) S gf((Sla d? C); X)

Then there exists 0 < A" < X such that g;((S’, d, ¢); X') = ¢:((S, d,¢); A). For
all j # i we have g;((5",d,¢c); ') < g;((5',d, ¢); A) = g;((S,d, c); A). There-
fore, g{(§',d,c); X) < ¢((S,d,¢);A) € § € §' which implies Ki{S'.d,c) >
¢:((8,d,c); X¥) = gi((S,d,¢); A) = Ki(S,d, c). Thus K satisfies (IM).

9. It remains to be shown that K is unique. Let F : £7 — R™ satisfy the
axioms and let (S, d, ¢) € E7. Because of (IND) and since £($,1(S, d,c),c) =
¢(5,d,c) wl.o.g. we can assume that t(5,d,c) = d. Also, by (INV) w.l.o.g.
let ¢(5,d,¢) = 0 and u(S;d) = u(5,4(S,d,¢)) = ¢ (cf. figure 3, where
for ease of presentation we only display the set of equitable agreements).’
Observe that we use the fact that there exists z € S, z > t(5,d,c) = d. Let
z* = K(8,d,c). Obviously, 2= = ce for some o < 1. Define (§',d',¢') € &7
as follows. Let &' = d, ¢ = c and let §' = CoCon{e’,...,€e", z*}. -
Let ¢ = u(S,d) = e. Then (5',d',c') € 3" is symmetric and by (SY)
and {PO) we conclude that F(§,d,¢) = K(8,d,c") = z". It is easy
to see that ¢(5',d',c’) = d& = 0. Since S C 8, d = d, ¢ = c we have
d <t(8,d,¢)<t(S,dc)y=d=d=0,ie {5, d, )= t(S',d',c’) and

therefore
{zesz>tS d,)}={zxeSNz>15d, ¢}
By (IND) this implies F(5',d',¢') = F(S5, d',c¢"). By construction, for all
¢ € N, it is true that )
{zdz € Sz >¢S.do)}={zi| z €5,z 215,d, )}

Also §’ C S and therefore (IM) implies F(S,d,c) > F(S5, d',c"} = z*. By
(PO) of K we have F(S,d, c) = z* and the theorem is proved.

_ Q.ED.

5By 0 we denote the zero vector in R” and by e we denote the vector for which e; = 1 for

alli=1,...,n.

14



Uy : ’

d=d =S, dc) . ! r

Figure 3: Construction of (S',d', ).

Remark 3.3 It is straightforward to show that the axioms are independent.

4 The Claims—Bounded extended RKS Solution

This section deals with an additional axiom that is often imposed upon a solution
for bargaining problems with claims, namely boundedness by the claims point.
There are situations modelled by a bargaining problem with claims that require
a solution to fulfill this axiom. For example in a bankruptcy problem no player
should end up with a payoff larger than the amount he has claimed. On the
other hand there are also situations in which imposing a boundedness axiom
seems to be inappropriate. If, for example, the claims point refiects the players’
“spportunities” outside a given coalition in an NTU game we would consider a
- solution unfair which always bounds the players’ payoffs by what they can achieve
outside the coalition. l

Let F : D* — R" be a solution on a class of bargaining problems with claims
D C 7.

15



(BC) Boundedness by Claims: For all (S, d,¢) € D?:

F(S,d,c) <ec.

Since u({S,#(S,d, c)) < ¢ for all (S,d,¢) € 2”33 the following lemma is straight-

forward.
Lemma 4.1 The extended RKS solution K satisfies (BC) on £2.
In general K does not satisfy (BC) as can be seen from the following example.

Example 4.2 Let n = 3, § = CoCon{(1,0,0),(0,2,0),(0,0,3)}, d =(0,0,0), c =
(0.25,2,3). Then

#(S,d,c) = (0,0,0),
u(S,t(S,d,e)) = (1,2,3),
K(5,dc) = (1/3,2/3,1).

In the'fol_lowing we define a n_]odiﬁcation- of the extended RKS solution which
satisfies (BC). For (S,d,c) € B let S, = {z € S| z < c}.

Definition 4.3 The claims—bounded extended RKS solution KP : f}’;‘ —
R" is given by

K®(8,d,c) = k(S.,t(S,d,¢c)), (S,d,c) e T,
K? is well defined: It remains to be shown that there exists z € S, with x >

t(S,d,c). Since there exists y € S, y > t(5,d, ¢} and since 1;(5,d, ¢} < ¢; for all
i € N, the claim follows by comprehensiveness of S. Thus, (S.,t(S,d,c)) € T".

- Example 4.4 Let (5,d,c) € £2 be given as in Example 4.2. Then

1
K®(S,d,¢) = §(1,8, 12).

In general (S..1(5,d, €) ¢ £” and therefore the following lemma is not obvious.
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Lemma 4.5 K® fulfills (PO).

Proof: Let (5,d,c) € £" and suppose K°(S,d, c) = k(S., (S, d, c)) ¢ PO(S).
Let t = #(5,d,c). We first show that u(S.,?) ¢ S. Suppose u(S.,t) € S and
suppose there exists i € N such that ui(Se, 1) < e Then u;( S, t) = ui(S,t) and
since (u;(5,1),t_;) € PO(S) this implies that u;(S.,t) = t; for all j # ¢. This
contradicts the fact that there exists x € S;, z > ¢. Therefore, u(S.,t) = ¢
which is a contradiction to ¢ ¢ S. Thus, u(S.,1) ¢ S. |

Since u(S.,t) > t the fact that u(S.,¢) € S implies that ¢ > k(S.,t). Further,
because of k(5.,t) ¢ PO(S) there exists y € S, yA>> k(S.,t). For ¢ > 0 small
enough we therefore have k(S5.,¢) +€e € S, which contradicts k(.5;,¢) € WPO(S).

"Q.E.D.

In order to get a characterization of K® we replace (IND) and (IM) by the

following axioms:

(IND2) Independence of Non—Equitable and Unclaimed Alternatives: For
all (5,d,¢), (5',d',¢) e D} if )

{zeSlz2>4S,d,0)} = {x € Sul = > (S, &)}

then
F(S,d,e)= F(5',d, d).

(IM2) Individual Monotonicity on the Relevant Bargaining Region: For
all (S,d,c), (5" d,c) € DFif $ C §' and if for some i € N and all j # 1,

{20 2 € Seyw 2 (S, d, )} = {z;] z € Sz > (5", d, o)},

then

) F,;(S, d., C) S F{(S’, d, C).

Theorem 4.6 K is the unigue solution on X7 that satisfies (PO), (SY), (INV),
(IND2) and (IM2).
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The proof is analogous to the proof of Theorem 3.2 and is therefore skipped.

Remark 4.7 Let (5,d,c) € £*. Then K(S,d,c) < c does not imply that
K®(S,d,c) = K(S,d,c). To see this consider the following example which is
a slight modification of Example 4.2. Let n = 3, § = CoCon{(1,0,0),(0,2,0),
(0,0,3)}, d = (0,0,0), ¢ = (0.5,2,3). Then

K(S,ci,c) = =(1,2,3) € ¢, but

)= Q]

Kb(S,d,c) = =(1,4,6).

In the following we briefly discuss the connection between K® and division
rules for bankruptcy problems. A bankruptcy problem is a pair (F,c}, where
L c € Rf,‘_+ and 0 < E < C:= Y., ¢.® Since in a bankruptcy problem no player
should end up with more than what he claimed, zero creditors can be excluded
from the set of players.” A bankruptcy problem {F,¢) can be represented by a
bargaining problem with claims (S(E,¢),0,¢) € 37, where

S(E,c) = {:r ER Yz < E}

i=1
A division rule is a function g that assigns to each bankruptcy problem (E,c) a
vector g(F,c) € R™ such that 7., ¢:(F, ¢} = E. Division rules for bankruptcy
problems can already be found in the Babylonian Talmud, like for example the
contested garment (CG) principle g®C for two—creditor problems which is defined

as follows:

E+cf~cE E+cf—cF
Q’CG(E,(ChCz)) = ( é 23 ; ! s

~ where ¢f = min{¢;, E}. Curiel, Maschler and Tijs [4] have extended the CG
principle to the n—creditor case. The adjusted proportional (AP) rule gA¥ they
define is given by '

9B = v+ (=) (Z (ef - )) (E' £

7=1 7=1

8We exclude the cases E = 0 and C = E for technical reasons. In fact these cases are not
interesting since if E = 0 there is nothing to distribute and if C' = E all claims can be met. So

in neither case a conflict arises.
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where for : = 1,...,n, v; = vz{E’C) = max {E — i Cj,O}. Observe that v =

#(S(E,c),0,c). The rationale for the AP rule is the following. First each creditor
receives v; which is that part of the estate that is not claimed by the other
players. Then the remainiﬁg part of the estate is divided in proportion to the
relevant claims ¢ that are still outstanding (this also explains the name of the
rulé). Dagan and Volij [5] show that the RKS solution applied to ((S (E, c))c, v)

induces the AP rule, in other words we have the theorem:
Theorem 4.8 Let (E,c) be a bankruptcy game. Then

K®(S(E,c),0,¢) = ¢*°(E, ).

The theorem shows that the claims—bounded extended RKS solution is an exten-
sion of the AP rule — and therefore of the CG priﬁciple — to general bargaining

problems with claims.

5 Conclusion

We have shown that there are two natural ways to derive a bargaining problem
from a given bargaining problem with claims. Which one is more appropriate
depends on whether the modelled situation requires that only those utility payoffs
are feasible which are bounded by the claims point. Thus, any solution on the
| class of problems without claims also defines a solution to a bargaining problem
with claims and therefore the theory of bargaining problems with and without
claims can be unified. Also, we can embed the class of bargaining problems into |
the class of bargaining problems with claims so that any solution defined on
the latter class in the way described above will be an extension of the original
bargaining solution. In this paper we have concentrated on the RKS solution
and have derived the extended and the claims-bounded extended RKS solution.
However, the same analysis can be carried out using any bargaining solution.
One interesting feature of the claims-bounded extended RKS solution is that it
extends the AP rule and therefore the ancient CG principle for bankruptcy games

to the class of general bargaining problems with claims.
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It would be interesting to get a characterization for extensions of other bar-
gaining solutions to the class of bargaining problems with claims. This will be

the topic of future research.
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