- INSTITUTE OF MATHEMATICAL ECONOMICS
WORKING PAPERS

No. 247

| A Formal Approach to Nask’s Program
by

Bezalel Peleg

November 1995.

University of Bielefeld
33501 Bielefeld, Germany




A Formal Approach to Nash’s Program*'

by

Bezalel Peleg

* Tam very grateful to F. Forges and R. Gary-Bobo for several helpful conversations.
' 1 am highly indebted for J. Rosenmiiller for some important discussions.



Abstract

We provide a formal framework which allows for a precise formulation of the Nash
program for n—person decision problems (i.e., n—person cooperative games). Two classes
of decision problems are investigated: Finite decision problems (i-e., decision problems
that may be resolved by means of finite extensive games), and decision problems that
lead to multistage games with observed actions. In both cases some mild (technical)
assumptions imply the rejection of Nash’s program. We suggest to replace Nash’s pro-
gram by the following weaker assumption.

The weak program of Nash: Let N be a set of n rational decision makers, 022, and let §
be a decision problem for N. Then there is a nonempty set I' of n—person noncooperative
extensive games that may resolve 6. The choice of a game from T in order to solve 4, is
left to nature. '



§ 1 Introduction

" As far as we know there is no formal definition of the general decision problem for n
rational agents, n»2. However, game theory provides, at least implicitly, the following
operational meaning to the foregoing problem. Let N = {1, ... , n}, n>2, be a set of
rational decision-makers, and let § be a decision problem for N. Then, according to
game theory (see, e.g., Myerson [ 1991, p. 1]) the agents can choose an n—person game
G such that some solution of G provides a solution to §. Furthermore, by Nash’s pro-
gram for cooperative games (see Harsanyi and Selten [ 1988, Section 1.11}), we may
assume that G is an n-person noncooperative extensive game. These statements are
precisely formulated in Section 2.

We propose a precise formulation of the Nash program for certain classes of decision
problems. In Section 3 we consider finite decision problems, that is, decision problems
that can be resolved by a finite set of finite (noncooperative) extensive games. Our
version of Nash’s program for this class of games is incompatible with the following
assumption. The decision-makers use a game form that satisfies unanimity in order to
select the noncooperative game to be played. This result is generalized in Section 4,
under suitable restrictions, to multi-stage games with observable actions. Section 5 is
devoted to discussion and applications of the formal results. If our model is accepted,
then the main conclusion is that in situations where not only the strategies are to be
chosen by the decision-makers, but also the (game) environment itself, the players
cannot be explicitly rational (i.e., they have to rely on the strategic behavior which is
inherent in their genes).

" The failure of Nash’s program implies that the general multiperson decision problem
must be reformulated (or include also cooperative games). In Section 6 we suggest the
following new formulation. Let N and § be defined as in the first paragraph of this
section. Then, according to our assumption, there exists a nonempty set I of n—person
noncooperative extensive games such that each game G€T has at least one reasonable
Nash equilibrium that solves &. § is solved by the following two—stage procedure. In
stage 1 nature chooses Gel. Then, in stage 2, the members of N have to find some reaso-
nable Nash equilibrium of G.



§ 2 A Framework for Rational Interaction between Rational Decision-Makers

Let N = {1, ..., n} be a set of rational agents. If n = 1 then the structure of the general
decision situation that agent 1 may face is well known: He has to select one alternative
from a recognized set of decision alternatives. His choice is solely determined by his
preference relation on the set of alternatives. The rationality of agent 1 implies that he
will choose a maximal alternative, with respect to his preference relation, if such an

alternative is available.

If n>2 then a description of a framework for rational interaction between the n agents
seems to be highly complicated. However, such a description is provided by game theo-
ry. Indeed Myerson [ 1991, p. 1] writes: "Game theory can be defined as the study of
mathematical models of conflict and cooperation between intelligent rational decision-
makers. Game theory provides generé.l mathematical techniques for analyzing situations
in which two or more individuals make decisions that will influence one another’s wel-
fare. As such, game theory offers insights of fundamental importance for scholars in all
branches of the social sciences, as well as for practical decision~makers. The situations
that game theorists study are not merely recreational activities, as the term "game"
might unfortunately suggest. "Conflict analysis" or "interactive decision theory" might
be more descriptively accurate names for the subject, but the name "game Theory"
seems to be here to stay." Following Myerson we may introduce the following defini-
tion.

Definition 2.1. A full framework for rational interaction between n rational decsion—ma-
kers is an n—person game.

There are two kinds of n—person games: cooperative and noncooperative (see Harsanyi
"~ and Selten [ 1988, Section 1.2] ). Roughly, a game is cooperative if the option of making
binding agreements is available to the players in at least one situation. The game is
noncooperative if the players are unable to make enforceable agreements which are not
specified by the game itself. Now, according to Nash [ 1951}, the analysis of any coope-
rative game G can be based on the solution of a suitable noncooperative game G*. (The
choice of G* may not be unique.). This principle is known as Nash’s program for coope-
rative games (see Harsanyi and Selten| 1988, Section 1.11] and Myerson [ 1991, Section
8.1]). ' '



We now recall the well known fact that every noncooperative game in strategic form
can be represented in extensive form. For a definition of finite games in extensive form
the reader is referred to Myerson [ 1991, Section 2.1] . Infinite games in extensive form
are analyzed in Aumann [1964]. Although our discussion in Section 4 deals with infi-
nite games, a knowledge of finite games in extensive form is sufficient for fuil under-
standing of our result. In view of the foregoing discussion we may formulate Corollary
2.2

Corollary 2.2. A full framework for rational interaction between n rational decision—
makers is an n—person noncooperative game in extensive form.

Our operational interpretation of Corollary 2.2 is as follows. If N = {1, .. , n}, n>2,is a
set of agents that face some decision problem §, then there exists a nonempty set [(4) of
noncooperative extensive games with the follbwing three properties:

(2.1) Each game in I{§) has at least one "reasonable" Nash equilibrium (NE) that
resolves §.

(2.2) If GeI() is given (i.e., it is common knowledge among the players), then the
members of N can choose any n—tuple of strategies of G. '
(2.3) The interaction between the members of N that is necessary for the solution of §
is restricted to a play of an n—tuple of strategies of some game in I(§).

The agents are rational, in the foregoing framework, if-they always choose an NE of
some game in I{#). '

§ 3 Finite Decision Problems

Let N = {1, :.. , n}, n32, be a set of rational decision-makers, and let § be a decision
problem for N. Further, let 4(4) be the family of all sets I{4) (of noncooperative exten-
sive games), that satisfy (2.1)2.3).

Definition 3.1 § is finite if
(3.1) every I&y(6) is finite;
(3.2) if &y(4) and GeT, then G is a finite (noncooperatlve) extensive game.

This section is entirely devoted to the study of finite decision problems.

Now let § be a finite decision problem, let I{§)éy(§), and assume that I{§) is not a sin-



gleton. Although a.ll the games in I{§) are models of §, the members of N may have
conflicting preferences over I(§) (see, e.g., Harsanyi and Selten [ 1988, p. 22] ). Thus, in
order to solve 4§, the problem of choosing GeI{§) must be resolved first. So, actually the
decision—makers face the following two—stage decision problem *:

Stage 1: Choose GeI{(§).

Stage 2: If GeI(6) is chosen, then select a Nash equilibrium of G.

At this point two assumptions are possible:

Assumption I: the choice of GEI{8) (Stage 1) is done by N.
Assumption II: Stage 1 is resolved by some agent who is not a member of N.

3.1 The solution of Stage 1 under Assumption I
We impose only one condition, unanimity, on the choice procedure a.t Stage 1. More
precisely, we introduce the following definition.

Definition 3.2. A choice procedure for Stage 1 is a (generalized) strategic game
M = <I(6), .., [(6); £, where £I(6)" — I(6) satisfies

(3.3) (G, ..., G) = G for all GeI(6).

(Notice that the outcomes of M are (extensive) games.) _

1 is called the choice function (of M). In M the players choose their strategies simultane-
ously, and the outcome is determined by the choice function. The players may also use
mixed strategies. The outcome in this case is the resulting probability distribution over
[{5). The following example illustrates the foregoing discussion. ' |

Example 3.3 Let [{§) = {Gy, G} and let M = <I{§), I{§); £> be given by the following =
matrix: '

-G G
G G | o
Gy G |




Then M is a choice procedure. If player 1 chooses the (mixed) strategy (4, §) and player

2 chooses (4, %), then the outcome is the probability distribution (%, $) on [(6).

3.2 The impossibility of Nash’s program under Assumption L.

_ Let, again, & be a decision problem such that I{§) is not a singleton. M is a choice
procedure for Stage 1, then the decision problem §* is equivalent to the following néper—
" son noncooperative extensive game G*: (i). First play M in order to choose GeI{6). (ii)
If GeI(6) is chosen (the choice is common knowledge) then play G. As we have already
remarked, every strategic game has an extensive representation. Therefore, we may
treat M as extensive game. Thus, G* is, indeed, an extensive game.

The following example illustrates the foregoing discussion.

Example 3.4. Let I{4) and M be as in Example 3.3. Let further G, and G; be given by:

Fig. 1

Then G* is given by:



The extensive form of M is not unique!. Therefore the representation of G* is not uni-
que. However, the set of Nash Equilibria of G* is not affected by this nonuniqueness.

We now observe that, by (3.3), every GeI{§) is a proper subgame of G*. Therefore, if -
GeI{4) and b is an n—tuple of (behavior) strategies for G, then b is not an n—tuple of
(behavior) strategies for G*. Thus, we arrive at the following conclusion.

Theorem 3.5. Let § be a decision problem such that I{é) is not a singleton. Under
. Assumption I and (3.3) Nash’s program is false for §. '

Proof: By (2.3) the interaction between the players is resiricted to a play of some
n—tuple of (behavior) strategies of some game GeI(§). Thus the players are unable to
choose an n-tuple of (behavior) strategies in G*. However, by Assumption I and (2.2)

! However, see Peleg, Rosenmiiller, and Sudholter (1995).



the players can choose any n-tuple of (behavior) strategies of G*. Thus, Corollary 2.2
and Assumption I are incompatible. Because Nash’s program implies Corollary 2.2, it is
also incompatible with Assumption I. Q.E.D.

3.3 Discussion

We conclude from Theorem 3.5 that if we want to maintain Nash’s program, then we
have to reject Assumption I. Now, Assumption II is very broad and does not tell what
exactly happens when it is adopted. In Section 5 we assume that Stage 1 is resolved by
nature, and reformulate Nash’s program accordingly.

The assumption that I{§) is not a singleton (see Theorem 3.5), should be scrutinized.
Actually, we have assumed (implicitly) more than that, namely, that the decision—ma-
kers have conflicting preferences over I(§). A "minimal conflict" may be defined as
follows. There exists, i, JEN, i#j. and Gy€I(§), k = i, j, such that the following conditions
are satisfied. Let NE(Gy) be the set of Nash equilibria of Gk, k = i, j. Then: (i)
NE(Gy)#, k = i, j; and (ii) the maximum payoff to i(j) in NE(G;) (NE(G;)) is greater
than the maximum in NE(G;) (NE(Gi))- '

§ 4 Infinite Decision Problems

4.1 Multi-stage games with observed actions

Multi-stage games with observed actions (MSG’s) model many economic and biological
conflicts (see Fudenberg and Tirole {1991, Ch.4] ). Therefore, we have chosen to repre-
sent infinite deqision problems by MSG’s. In this section we shall define a family of
MSG!s. ' :

Let Q be the Hilbert cube. We recall that Q is the infinite Cartesian product
Q=1[0,1] x[0,] x..x[0,{] x...
We also recall that every compact metric space is homeomorphic to a closed subset of Q

(see Schurle [ 1979, p. 88] ). Because we allow only sets of actions (of the players) that
are compact metric spaces, Q is the basic building block of our model.

Definition 4.1. A multi-stage game with observed actions (MSG)isalist G = < ¥, ...,

¢n; ui, ..., un > with the following 'pmpertiesl



-10 -

(4.1) i is a non—empty closed subset of Q, i€N. Thus, the set Ap=9x..xPisa
nonempty closed subset of QN. Assume now that W{o_l, ieN, where to21, and At(,CQNt

(— (QN)t") have already been defined, and Ag, is a nonempty closed subset of QNt".
Then 90& :Ay, — Q is an upper hemicontinuous correspondence for ieN, and |

(4.2) Avgsy = {(x, 71 s ¥2)|X€AL and ylF.‘Pt (x) for all ieN} (clearly, Agg,1 18 a non-

empty closed subset of QN(‘O +1))
(4.3) ui: QNI — R ig continuous for all i€N. (Here I = {1 2,3, ...} is the set of natural
numbers. ) ,

An MSG G=<¥ , P ud, . L., ul > is played as follows. At time t = 1 player i
chooses (slmulta.neously with the other players), an action aje¥}, i = 1, .., D We now
proceed by induction. Assume that the profiles of actions a; = (a}, ... al}), e

ag- = l(a: FRE a. ), t>2 have already been chosen. Then at time t player i chooses,

smulta.neously Wlth all other players, an a.ctlon a% € Piy(ay, ooy Be-1)- Let a = < ai, 4z

. > be the sequence of action profiles that was. generated in the foregoing way. Then
the payoff to player i€N is ui(a)

We shall now show that all discounted infinite repetitions of finite strategic games are
included in our model. We shall only consider 2 x 3 two—person games. The proof of the
foregoing claim in the general case is similar.

Example 4.2. Let g be a 2 x 3 two—person game.

2 2. -
S, S, | S;
SI ‘allnbll. a129b12 al3ab13

Sy | ay,by | 2505 293,053
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and let 0 < &, 63, < 1 be the discount factors of 1 and 2 respectively. Denote
j-1 '

1 -
§=<0,...,0,40,..>,i=1,2,..

The vectors < &, 0>, < 8,0>, <0, 8 >,< 0,8 >,and <0, &, > are linearly inde-
pendent in Q x Q. Let ¥i be the set of mixed sirategies of player i = 1, 2. We do not
distinguish between i and its canonical embedding in Q{l}. Define ¥} = Xi, i =1, 2,
andt=0,1, .. Also, the map h: 5t x X2 — Q x Q given by
- h{p,q,1) =< pd, + (1-p)8s, qf1 + 8, + (1q-1)8; >

0<p<l, g, r20, q+r<1, is an embedding of Xt x ¥2in Q = Q. Define vt on h(Zt x 32) by

vi(h(p, q, 1)) = pgay + prapz + ... + (1-p)(1—g-r)azs. '
Then v! can be extended to a (bounded) continuous function on Q x Q. Thus, if we
define u! by '

uia) = ui(a} a9), (ad a), .. (ah ad), ) = £ 61 vi(aj, ap)
then u! i3 continuous on Q2I. u? is defined similarly. As the reader may easily verify,
the MSG < @, ¢ ul, u? > is equivalent to the infinite repetition of g.

Remark 4.3. An MSG G = < @, @, ..., ul, .., un > is finite if there exist T>0 and

NT

functions vi:Q" ~ — R such that ui(ay, ..., s ) = vi(ay, ..., aT) foralla = < ay, ...,

Ay o> EQNI and all ieN. If G is finite and T has the foregoing property, then we shali |
assume without loss of generality that ¥ ={0} for all ieN and t2T.

We denote by H the family of all MSG’s.

42 A metricon H : _
Let G=<@,, .., ul, ., un> be an MSG. We denote 9§ = ¥} for all ieN and

(4.4) 9i = {(x, y)[x€A, and ye¥}(x)} for all ieN and t21 (see (4.2)).

Then Ay = 9} = ... x ¥ and

(4.5) Apa={(x, ¥, ..., yo) | (x, yi)egh for all ieN}, t =1, 2, ...

Furthermore, d{’ ieN, 120, is a nonempty closed subset of QtN x Q{i}, and G = < ¥,

o YRy Ul 0P > 520 equivalent representation of G. (Here ¢ = < ¢, ..., ¥, -.,> ).
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- Consider now the reverse approach. Let ¥4, i€N, be a nonempty closed subset of Q{l}',
and let Ay = ¢ x ... x ¥f. Assume now that 1/{ .p i€N, and A, have already been defined,

and A, is a nonempty closed subset of Q . Then we may choose for each i€N a non-
empty closed subset i of QtN x Q{ i} such that

(4.6) the projection of 4{ on Q Nis A
Furthermore, we may define A, by (4.5). If we now define for iEN ¥ = ¢} and ¥:A; —
Q, 21, by

yeri(x) iff (x, ¥) etk |
then G = < @, , ..., ¥ ul, .., u? > is an MSG (for every choice of continuous func-
tions ul, ..., u?). Thus, if 9, ..., Y» have the foregoing properties, then G =< ¢t, ..., ¥8;

ul, ..., u? > is a game. We shall now defire a natural metric on H.

For a natural number q let F9 be the set of all nonempty and closed subsets of Q9, and
let D9 be the Hausdorff metric on F9. Then (Fq D9) is compact metric space {see Hil-
denbrand [1974 p. 17]). Also, let U = C(Q R) be the set of all (real-valued) conti-
nuous functions on Q with the ma.:nmum norm. Then U is a (separable) metnc
space. Clearly,

H X X F"“leN
t=01i=1

Thus, H is a (separable) metric space. Moreover, one can prove that there exists a (non—
empty) closed subset F of the (compact) space ﬁ X Fot+1 such that H = F yN (see

the Appendix). -

4.3 Choice procedures for families of games in H

Let T'be a compact subset of H with two members at least. We shall now define and
analyze choice procedures for I Our analysis will enable us to examine the Nash
program for games in H.

A
Because T is compact there is an embedding h:I' — Q. We denote T' = h(I). The
following Definition is the analog of Definition 3.2.

Definition 4.4. A choice procedure for T (and b) is a (generalized) strategic game M =

A A
< T, .., I} >, where f:l"N —» T (the choice fucntion) is a continuous function that
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satisfies

A
(4.7) f(x, ..., x) = h~Y(x) for all x€T..

Remark 4.5. The "dictatorial" choice functions,namely, fi(x!, ..., x*) = h-i(x') for all

A
(xt, ..., xn)eI‘N and for some i€N, are continuous and satisfy (4.7). Hence there exist

~ choice functions.

Remark 4.6. We observe again that the outcomes of a choice procedure are extensive
games {and not payoff vectors).

A A
Let M = < T, ..., I} f > be a choice procedure for I. We now define the following two—
stage game G* = G* ([ {, h):

Stage 1: Play M in order to choose Gel!
Stage 2: If Gel'is chosen (the choice is common knowledge), then play G.

The game G* will play an important role in the next subsection, where we shall investi-
_ gate the validity of Nash’s program for infinite decision problems. Here we only prove
the following result.

Theorem 4.7. G¥(I {, h)eH. _

Proof: Define ¢, = II\‘for all ieN. Then 4}, is a closed subset of Q (recall that T'is com-
pact and h is an embedding). For t21 and iéN define 9%, in the foﬂoﬁng way.

<ay ., ayb > S<a, . a,b> s et

for all< ay, ..., a, b > Q!N x QU (1f Gel then we write G = < 24, , ..., ga; ug, .
g > =< Y o YR uds s 1R >.) We have to prove that i, is closed. If a;(k) —
ay, ..., at(k) — ag, b(k) — b, and < ay(k), ..., a(k), b(k) > %(al(k))’t-I’ then f(a,(k)) —
— f(a;) because f is continuous. By the definition of the metric in H, ’A‘(al(kn,t-t —
Yha )1 (in the Hausdorff metric). Because < as(k), ..., ay(k), b(k) > €sta ) b1 K =
1,2, ..., it follows that < ay, ..., a;, b > E'zh(al),t_l, that is, < aj, a9, ..., a¢, b > &, If we

now define
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bgp:t. (ah “ey a'l'.) ﬁ'( &y, -y A4,y b> e!/)lt)
then i, is upper hemicontinuous. Clearly, G*=< ¥, , ..., ¥ ul, ..., ul > where uj,

..., u® are given below. Thus, it only remains to prove that the payoff functions of G*

are continuous.

. A
A sequence %EQNI is attainable for G* if a;€T, and < ay, ..., a3 > EAf(al).H for t>2. Let
A be the set of all attainable sequences for G*. We shall prove that A is a closed subset
of QVL. Let a(k) = < ay(k), as(k), s > — 3 = < a3, 83, - >, 3R)EA, k=1,2, ..

A
Then, a; = lli‘m ay(k) is in I Thus, it is sufficient to prove that (the sets) Asga,k),t

converge (in the Hausdorff metric) to Aga;) for t21. We prove this by the following
argument. Choose t>1 and i€N. Then ds}(a (Nt converge, in the Hausdorff metric, to
s Y’ (because f(a(k)) converge to f(a,)). Now, Af(ai(k))t is the domain of definition of
a (Nt that is, it is the projection of i, (e on Q . Hence Afayxy,t converge, in

the Hausdorff metric, to Afa,)t-

Let ieN. The payoff function u! is defined on A by
i(a) = ufa )(32, ag, .-
First we show that u! is continuous on A. Let a(k) < ay(k), .. ag(k), .. > —a =

< ay, ...> on A. Because f(.) is continuous, f(a;(k)) — f(a). Hence, by the definition of
the metric on H, us( k) converge uniformly to g, Thus, by Munkres [ 1975, p. 132

tha (a2, 33, ) = lim v goyaa(k), 2s(k), ...). Hence, uj(a) = lim ui(a(k)).
1 ko 1 k-—w
Thus, u! is continuous on A. We now may extend u! t0 a continuous function on QNI'
Q.E.D.

§ 4.4 The Nash program with M5G’s
Let N = {1, ..., o}, n 2 2, be a set of rational decision makers, and let § be a decision
problem for N. Nash’s program (with games in H) is equivalent to the followmg claim.

Claim 4.8. There exists a nonempty compact subset I{§)CH with the following three
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properties:

(4.8) Each GeI{§) has at least one reasonable Nash equilibrium that resolves 4.

(4.9) If GeI(§) is given (i.e., it is common knowledge among the players), then the
members of N can choose any n—-tuple of strategies of G.

(4.10) The interaction between the members of N that is necessary for the solution of §
is restricted to a play of an n-tuple of strategies of some game in [{9).

Remark 4.9. The assumption that I{§) is compact is equivalent to the following two
conditions: (i)I{6) is closed; and (ii) the projection of I{6) on U™ (U is the space of
utility functions) is compact (see Subsection 4.2 and the Appendix). (i) is clearly accep-
table. (ii) is reasonable because all the games inn I{4) have the same payoff space, name-
ly, the payoff space of 4. In particular, uniform boundedness and equicontinuity seem to
be acceptable for the family of utility functions which is considered in our case.

We shall make the following assumption.

(4.11) The members of N have conflicting preferences over I[{§) (in particular, I{§) is
not a singleton). |

A discussion of (4.11) is contained in Subsection 3.3. If the players themselves choose a
game in I(§), then we shall assume that they use some choice procedure (see Definition
4.4). At this point two assumptions are possible.

Assumption I: The players use some choice procedure M to choose a game G in [{4).
Assumption II: A game Ge[(§) is chosen by an outside agent.

We shall prove that Assumption I may contradict claim 4.8. First we need the following
definitions. Let Gy =< ¢, - Y% u, ., up >, k =1, 2, be two games in H.

Definition 4.10. G, is isomorphic to a subgame of G, if there exist T > 0 and aTEQNT

such that
(4.12) %,t = {Xt,|< aT, Xt > el!)i,T+t}’ 1EN and t = O, 1, 2, .
(4.13) ui(a) = ui(ay, a), €N and QEQNI.
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We now add the following assumption.
(4.14) If G€I{§) then there exists G#I(f) such that

game of G.

G, is not isomorphic to any sub-

Theorem 4.11. Assume that (4.7) and (4.14) hold. Then claim 4.8 (Nash’s program for

§) and Assumption I are incompatible.

that claim 4.8 and Assumption I are both true. Let
A

[ f > be the choice

. Proof: Assume, on the contrary,
h:I(6)—Q be an embedding, let h({(6)) = ’I\‘, and let M = < "i\", ey
procedure that is used by N (according to Assumption I). By Assumption I and (4.9)
the players will solve 6 by choosing a suitable strategy in G¥(I{6), f, b) (see Subsection
4.3 for the definition of G*}. However, by (4.14), G¥(I(6), {, ) is not isomorphic to any
subgame of a game in I{5). Indeed, if G€I(6) and G*(I(6), 1, h) is isomorphic t0 a
subgame of Gj, then every Gel{6) is isomorphic to 2 subgame of G by (4.7). Thus,
(4.14) is contradicted. Now, if G*(I(6), f, h) is not isomorphic to any subgame of a

game in I{4), then, by (4.10), the players cannot use G*(I{6), f, h) in order to solve 5.

QE.D.

We remark that behavior strategies may be allowed in the proof of Theorem 4.11.

Remark 4.12. Theorem 4.11 may be false without Assumption (4.14). For example, let
N ={1, 2}, let G be a2 x 2 two—person game, and let I{§) consist of G and the infinite

game G

G
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If M is given by the following (generalized) strategic game

Table 2
then G*(I{§), M) is insomorphic to Gi.

§ 5 Discussion and Applications

In Sections 5 and 6 we discuss only finite decision problems. We now recall the standard
problem in noncooperative game theory: For a given n—person noncooperative game G
in extensive form the players must find some reasonable Nash equilibrium of G for use
in the game. Thus, the framework for rational interaction is given, and the players’ only
task is to find and follow the equilibrium strategies which are recommended by game
theory. Therefore, it seems that our Theorem 3.5 has no bearing on game theory.
Nevertheless, we shall now argue that the theorem has some implications on the
foundations of game theory and on its applications to economics and psychology.

Example 5.1. Consider two individuals R (Robinson Crusoe) and F (Friday) who are
alone on an island. They face the decision problem of sharing in the island. Their inter-
action, since their first meeting, must be described by a play of some two—person nonco-
operative game G in extensive form (see (2.3)). By Theorem 3.5, the choice of G cannot
be made By R and F. As R and F are the only individuals on the island, the question
who chooses G naturally arises. Unfortunately, as far as we can see, there is no simple
answer to this question. We suggest the following way out. The game G is chosen by
nature from a nonempty set T of two—person noncooperative games in extensive form.
Further, nature is assumed to have a probability distribution 7 on I which is unknown
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to R and F. More concretely, G was selected spontaneously when R and F first met,
according to the parameters I'and 7, by the strategic behavior which is inherent in the
genes of R and F. We shall precisely define our solution in Section 5.

Remark 5.2. In our view Example 5.1 might have some applications to psychology.
First we notice that the interaction between R and F, according to our solution, was
determined by themselves in a (partially) unconscious manner. Furthermore, by Theo-
rem 3.5, it is impossible to find a fully rational explanation (i.e., an explanation based
on a play of a Nash equilibrium in a game chosen by R and F), for the interaction bet-
ween R and F. This example might be generalized to describe the interaction, subject to
the standard of behavior of a society, between any two (or more) individuals in the
society, provided that these individuals have "strong personalities” so that their actions
cannot be manipulated by the rest of the society. '

There are also economic situations where the extensive game to be played must be
chosen by the agents. We shall now mention two cases.

Example 5.3. Consider a meeting of a committee with no final agenda. Then the choice
of the agenda and the voting procedures amounts to choosing the extensive game that
will be played when the committee will make its decisions. Again, we may use (2.3) and
Theorem 3.5 to argue that the interaction between the members of the committee can-
not be fully rationalized in an explicit manner. Indeed, by (2.3) there must be a nonco-
operative extensive game G such that the interaction between the members of the
committee, including the choice of the agenda, is described by a play of an n—tuple of
strategies in G (n denotes the member of committee members). Thus, by the theorem,
G cannot be chosen by the members of the committee.

Example 5.4. Consider the process of merger of two firms. It seems to us that there are
no a priori rules for bargaining on the conditions for the merger. Thus, the extensive
game that models the bargaining before the merger is chosen by the two firms. Again,
there is no complete and explicit rationalization for the foregoing process.

§ 6 Incomplete Games in Extensive Form

An incomplete game in extensive form has the same mathematical structure as an ex-
tensive game except that some of the rules of the game may not be common knowledge.
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For example, a Bayesian game with the property that the priors of the players are
private information is an incomplete game (see Battigalli [1995] }. In the sequé.l we
shall restrict ourselves to finite games in order to simplify the presentation. Motivated
by Example 5.1 and Remark 5.2 we introduce the following definition.

Definition 6.1. A simp]é incomplete n—person game in extensive form is a finite se-
quence < Gy, py;, .--;Gx, Pk > such that:

(i) Gj,j=1,..,kisan n-person game in extensive form;

@ pj>0,j=1,..kand jglpj = L.

< Gy, py;, ---;0k, Px > is played in the following way. First, nature chooses an integer
1< j < k and publicly signals the players that the game Gj will be played. The rules of
G; then become common knowledge. However, the probabilities py, ..., px are unknown
to the players if k > 2. In the second phase of the incomplete game the (ordinary) game
G; is played. As in Remark 5.2, we adopt the “psychological interpretation" of incom-
plete games: py, ..., pix are determined "subconsciously” by the strategic behavior which
is inherent in the genes of the players.

Using Definition 6.1 we suggest to replace Corollary 2.2 by the following postulate.

(*) Sufficiency of simple incomplete games: A full framework for rational interaction
between n rational decision—makers is a simple incomplete n—person game < Gy, py;,
...;Gx, Px >, where Gy, ..., Gx are n—person noncooperative games in extensive form.

The operational interpretation of (*) is as follows. Let N = {1, ..., n}, n > 2, be a group
of n rational decision-makers, and let § be a decision problem for N. Then there is a
(nonempty) set T' of n—person noncooperative games in extensive form which may re-
solve 6. § is resolved by the following three-stage procedure.

Stage 1: Nature chooses an incomplete simple game < Gy, py;, .-Gk, Pk > where G;el'
forj=1, ..,k

Stage 2: Nature publicly chooses an index jo, 1 € jo < k.
Stage 3: The game Gjn i played by N in order to find a solution for §.

Remark 6.2. Stage 2 may be replaced by:

Stage 2*: The agents choose spontaneously, by the strategic behavior inherent in their
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genes, the game G i that will be played in Stage 3.

The mew formulation allows for an explicit presentation of the improvement of the
solution of § by the evolutionary process. Hence, it has an advantage over the first

formulation.

Remark 6.2. In our interpretation of (*¥) we use an assumption which might be called
the "weak program of Nash". We now separately formulate this assumption.

The weak program of Nash: Let N be a set of n rational decision—-makers, n > 2, and let
& be a decision problem for N. Then there is a (nonempty) set I'of n—person noncoopera-
tive games in extensive form which may resolve §. The choice of a game from I} in order
to solve §, must be left to nature.
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Appendix
Throughout the appendiic we use the notations of Section 4.
Theorem A.l. There exists a closed subset F o’x’tﬁ0 'R1 Fnt*t guch that H = FxUN.
=01=

Proof: By the definition of H there is a subset F of tﬁo 'i1 Fot+t sych that H = FxUN
= 1=

Indeed F is the set of all n—tuples of sequences ¥ = < ¥, .., yP > with the following

properties:
(A.1) ¥} is a nonempty closed subset of Q, ieN.

(A.2) Fort 2> 14} is a nonempty closed subset of QtN x Q{i} that satisfies (4.6)
(where Ay is given by (4.5)).

Let f(k)€F, h = 1, 2, ... . f g(k)—pin X i& Fat+1 then 4i(k)—ui in the Hausdorff
metric for t = 0, 1, 2, ... . Therefore, A¢(k)—A: where A, is the projection of ¢i, i€N, on
QN ¢ =1, 2, ..., because of (4.6). Thus, ¥ satisfies (4.6). (A.1) is satisfied by defini-
tion. Thus, it remains to prove that ysatisfies (4.5) for t > 2, that is '
Ay ={< % ¥} ..., y° >|x€A; and (x, y')eyt_, for all ieN} for t = 2, 3, ... . Now
Ay(k) = {< X, ¥, ..., y° > | x€A, (k) and (x, y')e¥h ((k), €N}
As A, = jim A(k),
A< x, 34 ..y ¥° >|x€A;_ and (x, yh)euh y, iEN}
Let < x, ¥, ..., y* >fA, such that x€A¢ ;. Then d(Ayk), < x, ¥4, ..., y* >) 2 & where

§ > 0, for k > K(4) and there is a sequence x(k)€A¢-i(k), x(k)—x. Therefore, for some
iEN, there exists ¢ > 0 such that d({x(k), yi),ho{k)) > € for k > K(e). Hence,

(x, yi) #t ;. This proves that
A {<xy, .., ¥ > |x€A.., and (xr yi)edh ieN}
Q.E.D.
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