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Alienated Extensions and Common
Knowledge Worlds

Abstract

This article concerns the interactive modal propositional calculus, using
the multi-agent epistemic logic S5. For a finite alphabet and a finite num-
ber of agents of at least two there are uncountably many minimal common
knowledge worlds in which only the tautologies are held in common knowl-

edge.



1 Introduction

This paper investigates further the approach to the interactive modal proposi-
tional calculus explored by Robert Aumann in his paper “Notes on Interactive
Epistemology” [Au2]. Working with a finite alphabet of primitive proposi-
tions, a finite number of agents, formulae constructed finitely by “negation”,
the “and” and “or” conjuctions, and symbols for the knowledge of each of the
agents, and the multi-agent epistemic logic $5, I was confronted, like many
others, with two aspects of the relationship between semantics and syntactics.
One has well known completeness results, which present an equivalence be-
tween syntactic and semantic knowledge. On the other hand, this equivalence
takes place only when considering for any given state an agent’s knowledge
or lack of knowledge of all the formulae of the language, a very rich kind
of “knowledge” not expressible within the language. Several authors have
moved toward more complex logical structures in an effort to overcome this
problem; however, this problem has lead me instead to a study of what is im-
plied from intermediate levels of “knowledge” beyond what can be expressed
within the language but short of a knowledge determination for every formula
in the language.

In particular, what can one conclude about the semantic formulation of
common knowledge from the set of formulae held in common knowledge?

Concerning the above question, I have a pessimistic result. There is an
uncountable set of “minimal common knowledge worlds” of the canonical
state space that can never be ruled out by any finite set of formulae and the
fact that the only formulae in common knowledge are the tautologies.

In order to prove this result, I have created a special model for the multi-
agent epistemic logic 55 when there is a finite alphabet and a finite number of
agents. This model is constructed in hierachichal stages, and the end result
1s represented by a Cantor set of a Euclidean space. At all intermediate finite
_stages of this construction there is asymetry with respect to the agents. |
did this for two reasons. First, I thought that an understanding of how
an agent refines its knowledge concerning lower stages in a way cousistent
with those lower stages and the knowledge of other agents is done best by
concentrating on this single agent. Second, to understand the intricacies of
common knowledge I wanted to understand as explicitly as possible what it
means for the knowledge of one agent to remain constant while the knowledge
of other agents is variable. (For other constructions of universal models see



Fagin, Halpern, and Vardi [Fa-Ha-Va)] or Heifetz and Samet [He-Sa).)

The main result of Section 5, the existence of at least one common knowl-
edge world in which only the tautologies are common knowledge, has already
been proven using a previous existing construction [Fa-Ha-Va]. The main
result of this paper, mentioned above and proved in Section 6, seems to be
original, but probably can be proven using the existing universal models.
Whether the construction of the model presented in this paper has unique
heuristic value for this or other results cannot be answered at this time.

Throughout this article, the multi-agent epistemic logic §5 will be as-
sumed, also refered to as S5, when n is the number of agents [Hu-Cr, Ha-

Mo].

2 Background

Construct the set £;{X) of legitimate formulae using the alphabet set X of
primitive propositions with a set of ageuts indexed by [ in the following way:

1) If z € X then z € £;(X),

2) If g e»L;(X) then (—g) € £;(X),

3)Ifg.h e L;(X) then (g A R) € L£1(X).

4) If g € £;(X) then (kjg) € £;(X) for every j € 1.

5) Only formulae constructed through application of the four above rules are
members of £;(X). _
We can consider g V & to be =(—g A =k) and g = k to be ~g V k. Where no
ambiguity exists, we can drop the paretheses.

We will work with the canonical indexing of a finite set of n agents,
namely [, := {1,2,--- ,n}.

For a dt‘;CUSSIOI] of the 55 logic system, see Hughes and Cresswell, An
Introduction to Modal Logic [Hu-Ctl; and for the multi-agent variation $5,.
see Halpern and Moses [Ha-Mo]. Briefly, the S5, logic system is defined by
two rules of inference, modus ponens and necessitation, and five types of
axioms. Modus ponens means that if f is a theorem and f = g is a theorem,
then ¢ is also a theorem. Necessitation means that if f is a theorem then
k;f is also a theorem for all 1 < j < n. The axioms are the followmg, for
every f,g€ £y (X)and 1 <j < n:

1) all formulae resulting from tautologies of the propositional calculus through
substitution,




2) (ki f AK(f = g)) = kg,
3) kif = f,

3) kS = k(K ]),

5} —k;f = ki(=k; f).

A list of formulae in £, (X) is called “complete” if for every formula f €
L;,(X) either f or —f is in this list. A list of formulae is called “consistent”
if no finite subset of this list leads to a logical contradiction, (using the S5,
logic system.) Define a formula f € £; (X) to be “possible” if —~f is not a
tautology of §5,,.

A formula f € £;(X) is common knowledge in a list of formulae A C
Li(X)if f € Aand for every m > | and every function a : {l,---,m} =1
the formula ko) -+« koryf is in A [Le).

Consider any set S with partitions {Q' | i € I} of S, sometimes called an
Aumann structure [Aul]. Foreachi € [ definea mapping i{; : P(5) — P(S5),
from the set of subsets of S to itself, by

Ki{A):={a€A|lae Be Q' = BC A} [Aul].

(Notice that K;(A) = @ is possible when A # 0.} One can interpret Q' as
the collection of sets representing the finest instrument providing discrete
measurements available to the ith agent, that is A € Q7 is a set such that ‘
for every @ € A and b € § the ith agent can discriminate between @ and b it
only if b € A [Aul].

With a set § and partitions {Q' | i € I} of S one can define a semantic
concept of common knowledge. Consider the meet partition Vier@*, which is
the finest partition coarser than Q' for all i € J. The set A C S is common
knowledge at s if and only if s € B € Vi;Q' implies that B C A [Aul].
Equivalently, one can define A to be common knowledge at s € S if and
only if for all 1 < m < oo and functions « : {1,---,m} — I it follows that
8 € Koy -~ (Kyy(A))--+) [Aul]. A “common knowledge world” is a set
B C S such that K(B) = Bforallie [ [Au2}]. The set of minimal common
knowledge worlds is the same as the members of the partition Vs Q"

If in addition to a set S and partitions {Q* | € I} we have a an alphabet
X and a mapping v : X — P(S), the quintuple y = (S; [; {Q1iel}; X;v)
is called a “model.” A model is one easy way to generate completie and
consistent lists of formulae. We can define a mapping ¢* : L1(X) — P(S)
inductively on the structure of the formulae in the following way:



Case 1 f==z¢€ X: ¢*(z) := ¥(a).

Case 2 f = —g: ¢*(f) := 5 — ¢*(9),

Case 3 f=gAh: ¢"(f) := ¢¥(g) N ¢#(R),

Case 4 [ = ki(g): ¢*(f) := Ki(¢"(g)).

For any point s € S one can consider the list of formulae defined by V#(s) :=
{f € Li(X) | s €¢*(f)}. Such alist of formulae is complete and consistent
due to Case 2 and the fact that the implication of f and ~f from the use of
the multi-agent S5 logic system would imply the containment of the point s
in both ¢#(f} and ¢#(—f). (See Hughes and Cresswell [Hu-Cr].)

For a given alphabet X and the canonical index I, of n agents, Aumann
labeled the set of all consistent and complete lists of formulae in L, (X) with
the symbol @ = Q(X, /,)) [Au2]. Can one consider the canonical state space §2
as a model itself? Yes. For | < i < n consider the partition Q* of N generated
by inverse images of the function 3 : Q@ — P(£; (X)) defined by Biw) =
{f € L,(X) ]| k(f) € w). Consider the mapping ¢ : X — P(Q) defined by
Y(z):={w e N|r €w). Now we have a madel Q = (4 1 Q- O™ X ).
Following closely’ the proofs of previously existing completeness theorems,
Aumann showed that ¢?(f) = {w | f € w} for every [ € L. (X) and
V3 w) = w for every w € Q [Au2]. (See also Halpern and Moses [Ha-Mo]
and Hughes and Cresswell [Hu-Cr].) For the purposes of this paper, we will
call this result the “Completeness Theorem.” ,

The Completeness Theorem has fascinating consequences for the mini-
mal common knowledge worlds of I = (0 1; @+ Q™ X;49). Assume that
p= (51, P, , P X;)is a model and f is common knowledge in V#(s)
forsomes € S. Ifse€ BeP'V---VvP"and s € B then it is an easy
induction proof to show that f is also common knowledge in V#(s'). On the
other hand, assume that for some B € P' V... v P" that B C ¢*(f). If
there were some s € B such that f were not common knowledge in V#(s),
then s & ¢¥(kq(;) - - kaqyf) for some j and a: {1,---,5} - {l.--+,n} would
mean that A € ¢*(ko(;1y - km1)f) for the A € P20 containing s. Also by
induction we would get an s’ € B with s’ ¢ ¢#(f), a contradiction. Therefore
we have a nice elementary result: '

Lemma 0: If s € B € P' V-V P" then f is common knowledge in
the list V#(s) if and only if B C ¢*(f) ( Lemma 4.1, [Ha-Ma)).

For the state space (1, using the Completeness Theorem, Lemma 0 would
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imply:

For any B e @Q'v---v @" {f | f is common knowledge in w for some
w € B} = {f: fis common knowledge in w for all w € B} = {f : f € w for
all w € B}.

With the help of the above application of Lernma 0 to (£2; [,; @1, - - - @™ X;v),
one could restate the main result of this paper:

Proposition 3: There is an uncountable subset 7 C @'V ... v Q" such that
for any B € T and any possible formula f € £;,(X) there is a point w € B
such that f € w.

If one gives the state space @ = (X, I,,) the natural topology whose base
of open sets is {¢"(f) | f € £1,(X)}, then Proposition 3 claims that every
member of 7 is dense in the entire state space Q.

Section 3 contains a construction of a special model for the multi-agent
epistemic logic S5 with a finite alphabet and a finite number of agents.
Section 4 establishes some relationships between this construction and models
for this logic in general, especially concerning the state space (1. Section 5
shows a canonical way to extend a finite stage of this special model called
the “alienated extension,” and proves the existence of at least one dense
mimmal common knowledge world in . Section 6 contains a proof of the
main result, through introducing an uncountable set of variations on the
alienated extension.

3 A Construction of the Model (),

To investigate the state space 0 = Q(X,I,) we construct another model
which turns out to be semantically equivalent to £, but which is more
tractible for the present purposes. Since the construction is complicated,
we give first a small sketch of it.

We create a decreasing sequence of closed sets g 2 (3 2 --- in a Eu-
clidean space and partitions F; of Q;, ¢ = 1,2,+--. (If the alphabet X were
infinite, the model would have to be embedded into a different space with
the appropriate topological properties.) The first partition F; describes ba-



sic possible non-epistemic information of the first agent. The second pat-
tition J, describes basic possible non-epistemic information of the second
agent as well as information concerning the first agent’s information parti-
tion Fy. This process does not stop at the nth agent; at the n+1 stage, the
first agent’s information partition JF; is refined by taking into account the
information partitions of the other agents defined in the first round. This re-
finement must not contradict the first agent’s information on the first stage,
which adds some technical conditions to stages greater than n which are not
needed for stages up to and including n. This process does not stop at any
finite stage, and we are interested in the limiting structure. For topological
reasons, in each step we choose a space §); smaller than Q,_,.

In order to define the process and make arguments concerning finite stages
we introduce auxillery partitions G; of ;. G, represents the finest partition
relevant to the ith stage. )

~If Q is a partition of a set § and T is a subset of S, one can always
consider the partition of T induced by @, namely Qlr := {ANT | A €
Q. ANT #§}. After describing the construction, we will be concerned with
the set Q. := NZ,8; and the partitions of O, induced by G; and F; for
finite 7 < oo. The liberty is taken to write that F; and G are partitions of
2 for all ¢ greater than or equal to j and k, including 7 = oo, instead of
writing F; |, and Gilg,.

The sequence of partitions G; will be strictly refining for increasing :; and
foreach 1 < j < n the sequence of partitions Fitin will be strictly refining for
increasing &. The intersection 2, := N2, will be a Cantor set, along with
a mapping Yo, : X — PN ) and knowledge partitions of Q. for each of the
n agents, corresponding to the limits of the partitions F: modulo n. (The
limit partition of G; is not interesting, since it will be the discrete partition
of 0.}

X will always be a fixed non-empty finite set and n will always be a fixed
natural number greater than or equal to 2. Let R’ be a Euclidean space
with ¢ > 1. (One may wish to choose ? large enough to allow for interesting
geometric relationships.) Let

where each R; € R' is a {-dimensonal compact set and R:NR; = @ for every
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i# 7.

We define a function ¥y : X — P(Qy). Consider any bijection « :
{0,1}¥ - {Ry,- -, Byxi}, and let 7; : {0,1}¥ — {0,1} be the projection
onto the :th coordinate. Define

vo(zi) i= a(m (1)).

Define Gy to be the natural partition of Qg with 21Xl members, (G, =
{R1,--,Ryx|},) and define 7y to be the trivial partition of €p, namely
{0}

For any partition Q let Q be the non-empty members of the field gen-
erated by Q, namely the sets created by the finite unions of members of
Q.

For the sake of formality, for all 7 < O let ), = Qp and F, = G; = Fo =
{Qo}. We will define Q;, G;. and F: inductively with the assumption that
2;, F; and G, have been defined for all Jj < i. We will see after the fact that
Gi=F,ANGi_forall:>1.

Because F; will be a refinement of f_ let us consider an arbitrary
A € Fi_n. Consider the double nested partition of A N Q,_; created by the
non empty intersections of ANQ;_; with the members of the partitions G;_,_,
and G,_y, (assuming that G;_; is finer than Gi—n—1.) Let these partitions of
ANy be denoted by G2, | and G2 |, respectively. Let BA, Bf, ... B
be the members of G# w1- (If 2 < n then there is only one A € Fiin,
namely ;. = Qq, m(Q;_ T1) =1, gl 2oty = {4}, and BQ = Q;_,.) For
1 <5 < m(A) let I*(;) be the number of members of QAl coutalued in
B2, (If i < n, then {®=-"(1) is the number of members of G,_, .) For every
C € G ,, assuming that C' C B#, choose '

p(C) = o(t4(j)-1} H (2(1"('0) 1)
k=1, m(A), k#j

mutually disjoint ¢-dimensional compact sets contained in C, called

JDc Dg,---, DP(C) such that diameter (D) < 1/iforall 1 < m < p(C).
(If i < n then p(C) = 219-11- for every C € G, ) After this proceedure is
petformed for every A € Fi_,, and C' € G2, let

#(C)

Q, = U U UDC C Q.

AeF,_ nCEGAl =1
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Let G; : {DC | A€ Fiin,C € GA,,1 <5 < p(C)). (Therefore G; is a
reﬁnement of gl 1 as partitions of {},.)

For any A € Fi_,, and C € G2, there are exactly p(C) different subsets
of AN§_, in ?E containing the set ' with a non-empty intersection with
every BA 1 <5 £m(A). (If: < n then the non-empty intersection condition
can be dropped as there would be only one member in g ‘mrqsnamely 2;_;.)
The number of all such subsets of ANQ,_;, members of G4, with non-empty
intersections with every member of G2 |, is

m(A)

a(A) = [ "0 -1),

j=1

and let §{A) := {51,5, -+, 54} be the collection of all such subsets.. (If
: < n then ¢(f_,) = 21911 |, I.) One can create a collection of mutually
disjoint sets E;, E,,--- s Eqya) € G; such that
1) Ucega |, E,nczeC = S; for every 1 < j < ¢(A4),
2) for every 1 < 7 < ¢(A) and C € GA,, the intersection of E; with C is
either empty or a single member of G;.
3) UIYE, = AnQ,.
The reﬁnement F; of F;_, within AN Q, 1s defined to be the partition
{Er, -+, Eya)} of AN Q. From the above conditions, for all i > 1 it follows
that F; /\ Gi-1 = G; as partitions of €;, and for all : > 1 and A € Ficn,
Gl ={C€Gi |CCA)

From now on we shall assume that F; and G; are partitions of .,

Notice that, by the Nested Interval Principle, for any 0 < i < oo and for
any set S € G; there are points of (2, contained in §. By the condition on
the diameter of a member of G; any decreasing sequence of sets C; € G; will
intersection in a point. _

For 1 < j < n we define the partition F? of 2, to be F, where [ is the
greatest number less than or equal to 7 such that { = j(mod n), and we define

T ]
Fli=lmi. F,

whereby the limiting partition of a refining sequence of partitions is defined
by the relation a ~ b if and only if @ and b share the same partition member
for every partition of the sequence. Let o, : X — P(Q) be defined by
Yoo(z) := Qoo NtYg(z). For every i, including ¢ = oo, we consider the model
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A= (Qoo; X Fl oo Fliboo), and let @ := ¢ 1 L1 (X) = P(Qy) be the
corresponding mapping defiEed in Section 2. Notice that an image of ¢; is
always either a member of G; or the empty set.

4 Basic Results

Lemma 1 If g,h € £}, (X) are such that ¢;(g) = deo(g) for all i > my > 0
and ¢;(h) = doo(h) for all > my > 0 then
1)éi(=g) = $eo(g) for all i > my,
2) ¢i(g A h) = dool(g A k) for all 2 > maz(m,, my), and

3) 9i(k;g) = ¢oo(k;g) for all i > I such that [ is the least number satisfying
- I =j(mod n) and I > maz(1,m,;).

Proof: The first two cases follow from the fact that ¢;(—g) = Q. — ¢i(g)
and ¢:(g A h) = ¢i(g) N di(h).

For the third case, assume that a € A € F,.

Assume that a € ¢;(k,g), which means that A is contained in ¢,(g). By
assumption, A C ¢;(g) for all 2 > [. But since F7 are all refinements of Fi
for z > I, including the case : = oo, we concludeforall i > land a € A’ € F!
that A’ C ¢;(g), and therefore a € ¢;(k;g). ‘

Assume that a & ¢;(k,;g). This implies that there is a D € G; such that
D C Aand D € $i(g). Since ¢i(g) is a member of G; U {B}, we conclude,
also by assumption, that D N ¢;(g) = § for all i > I, including i = co.

Next we claim that for every 0 < m < oo there is a decreasing sequence
of sets D,, € Giymn, Do = D, such that D,, is contained in the member
of Fiym»n containing ¢. This was shown already for m = 0. Assuming that
a€ A, € .7:;_4_(.,"_1),1 and D, _, € g.'.|_(m_1)H with D,y C A,,_; form > 1,
cousider the A, € Fiimn such that ¢ € A,,. Let Cr_; be the element of
Gi4(m-1)m-1 such that D,,_; C C,,_;. By the construction of Fi4..n it follows
that A, NCp_y # 0. Since A,, and C,,_; are both members of Gipmn ONE can
choose a D,, € Giymn with Dy, € A, N Craey. Since Dy = A,y N Comci
from the construction of Giyim-1)n and [+ (m — 1)n > 1 > 1, it follows that
Dm g Dm—l-

The intersection point of the sequence [, will also share with ¢ the same
member of F2_, which completes the claim. q.e.d.

We define the “depth” of a formula inductively on the structure of the
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formulae. If x+ € X, then depth (z) := 0. If f = =g then depth (f) :=
depth (g); if f = g A h then depth (f):= max (depth (g) , depth (&)); and if
J = k;j(g) then depth (f):= depth {g) +1. _

Corollary 1: For all f € £;,(X) and all i > n depth (f), ¢:(f) = doo(f).
Remark: See Lemma 2.5 of [Fa-Ha-Va).

Proof: The statement 1s true for a formula z € £ (X) such that z € X.
The rest follows from induction on the structure of the formulae and Lemma
1.

Lemma 2: Let g = (;1,;Q",---,Q" X;¥') be any model with the
alphabet X and » agents. There is a mapping 4* : Q' — ., such that for
every f € L1, (X) and o' € V. &' € ¢*(f) il and only if v*(w') € doo(f).

Proof: Define the map 75 : ' — Gg by
(&) 1= Qo 1 0Ly (@) - T (7).

For the sake of formality, let us assume that v = for all ¢ < 0. Given
that v, : ¥ — G is already defined for all k¥ < 7, define v* : ¥ — G;
for ¢ > 1 in the following way. Let 1 < j < n satisfy j = ¢(mod n). For
any w' € A" € @, let ¥/(w') := ¥, (w) N A where A € F; satisfies {C €
Gii |[CNA#B}={C€Gi_; |+, (C)n A" # #}. By the construction
of F; there can be at most one A € F; corresponding to this subset, and
by induction the function is well defined for all i < n. Let us suppose for
the sake of contradiction that v is not well defined for some 7 > n but well
defined for all rn < 7. That means that there exists some w’' € A’ € Q7 with
7 =i( mod n) and some B € G;_,_ with BNA* % § and v, "' (B)n A’ = 0,
where A® is the member of Fi_, such that v/, (w') = A= N~ (). It
follows by the definition of 2, that %, _, "' (B)N A’ # 0. Since there exists
an w’ € A’ such that v, (w') C v2,._,(w') = B, we have a contradiction.

Keeping with the above sets, notice that for all # > 1 the A € F; used
to define v/'(w’) is the same for all w' in A’, which means that y*(A’) C A.
Let us examine an arbitrary D € G; with D € A. There exists exactly one
C € Gi_y with D € C, and it follows from ¢ > 1 that C N A = D. By the
definition of 4*, the set 4/, ™(C) N A’ is not empty and its image under /
is D. Therefore 4/(A") = A (as long as ¢ > 1.) ‘

Next we claim that if depth(f) = d then u’ € ¢*(f) if and only if
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Vi (w') C dan(f). We proceed by, induction on the structure of the for-
mulae. The claim is true for a formula z € X. Due to Corollary 1, the only
case presenting a problem is f = k;(g) for some 1 < j < n and for depth
{(9) =d —12>0. Let [ be the largest number less than or equal to nd with
! = j{modn). Let w' € A’ € Q7 and let ¥*,(W') C A € F = F,. 1t
follows that A C ¢,4(g) if and only if A C ¢;(g) if and only if v/'(A’) C &i(g)
if and only if v, ,),(A") C d4-1)x(g) if and only if A" C ¢*(g); the first
implication follows by Corollary 1, the second implication by the above men-
tioned fact that v/ (A’) = A from [ > 1, the third implication by Corollary
1 and the fact that for all ' € A" 4f(w') C Va-1)n(w’) € Ga—1)n and
Sa—1)n(9) € Ga—1)= U {8}, and the fourth implication by the induction hy-
pothesis.

Next define 7* : @' — Qg by y*(w') 1= N27¥(w’). The rest follows from
Corollary 1. q.e.d.

Lemma 3: For every 0 < i < 0o and every C € G; there exists a formula
Jo such that ¢,,(fc) = C for all m > 1, including m = oc.

Remark: See also Lemma 2.9 of [Fa-Va].

Proof: We proceed by induction on i. For C' € Gy and C = RN, with
RE{Rl,---,Rﬂm},]et_ )

fo = /\ I; /\ ;.

ma~l{R)=1 =e~!(R)=0

For all €' € Go, ¢o(fc) = C implies by Lemma 1 that ¢;(fc) = C for all
t 2 0. We assume that fp is defined for every B € G with 0 < k < 4.
Assume that C € G;,, CC A€ F;,j=1i(modn)and C C D € G;_;. Define

fe = fp A{ A ~k;(—fp) A ki(-f8))-
BeGi_1, BnA#d BeG,—y, BnA=)
From the fact that G; = F; A G;_; for all ¢ > 1 the sets {¢i{fc) | C € G}
are pairwise disjoint. By Lemma 1 applied to the above definition of fg, it
suffices to show that C C é;(f¢) for all C € G;. As above, let A be the
member of F; containing C' and j = ¢(mod n). By the induction hypothesis
ANB =@ and B € G;_, imply that AN¢;(fg) = 0, which in turn implies that
A C ¢:(~fg) and C C ¢i(k;j(—fp)). On the other hand, ANB # 0, B € G,;_,
and the induction hypothesis imply that A € ¢:(=fg) and C € ¢;(k;(—fB))-
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Since C € G; and ¢;(k;(—=fg)) € G; U {B} we have C N éi(ki(—fg)) = @
and C C ¢;(~k;(-fp)). Likewise the induction hypothesis guarantees that
C C D = ¢;(fp). The rest follows from the definition of &;. q.e.d.

Proposition 1: If Q = ({17,;9',---, Q" X, ") is the canonical state
space on the alphabet X with n agents, the mapping v% : 0 — Q. is a
bijection. ‘

Proof: Two distinct members of Q differ on the containment of some
f € £1,(X). By Lemma 2 and the Completeness Theorem one is mapped
by 19 into ¢u.(f) and the other into Goo(~f) = Qoo — Poo(f). Therefore v
1s injective. :

Since (Qoo; 1n; Foy -+ F2s X oo ) is @ model, every point of . has a
consistent and complete list of formulae determined by V., := V" : Q_ — 0
(as defined in Section 2 with V,, corresponding to ®o.) Observe that [ €
w € Qifand only if w € ¢*(f) if and only if v¥{w) € $ool(f) if and only if f €
Vo (7H{w)), the first implication by the Completeness Theorem, the second
implication by Lemma 2, and the third implication by definition. Therefore
Voy" is the identity mapping of 0 to itself. Lemma 3 demonstrates the
injectivity of V.. With the previous paragraph this implies the surjectivity
of +%. q.e.d.

Notice that if we give the state space (2 the natural topology as defined at
the end of the Section 2 then the mapping 4 :  — 0 is also a homeomor-
phism between compact sets, due to Proposition 1, Corollary 1, Lemma 3,
and the condition on the diameter of the members of G;. Because of this and
Lemma 2, for most purposes we can consider the above constructed model
Moo = (Qoot Ins Foy+++ Fib s X hoo ) to be that of the state space 2 = Q( X, I,,).

5 Alienated Extension

For any set C' € G; with: > 0 we define a point p(C) € C called the “alienated
extension of C”. (See also the “no-information extension” of [Ha-Fa-Va} and
[He-Sa}.) Consider the A € F;_,.4, such that C C A, and consider the unique
A" € Fiyq such that A’ N C* # @ whenever C' € G; and C' € A. Define
pi(C) :=C and p;(C) := A'NC € Giyy; for k > ¢ define pr inductively by
Pe(C) := pr(pe-1(C)); and define p(C) := NZ;pi(C).

For any ¢ > 0 and any C € G; we call the point p(C) € Q. a point of
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“alienation.” We call the 2! points {p(C) | C € Gy} the points of maximal
altenation. '

Lemmad4: Let ' CCwithC'€ G, CeGiyand: > 1. If p(C)e A €
FI_ with j # {(mod n) then p(C’) € A.

Proof: Let | be the largest number strictly less than z and equivalent to j
(mod n), and let A; be the member of F; such that A C A;. C € G,_; means
that C' C A;, which also means that piyn_1(C) C A; and pin—1(C') C Ay

It suffices to show that both pii(ks1)n-1(C) and pry(e41)a—1(C’) are con-
tained in Ajig, for all & > 0, where Aiy4, is the member of Fj; 4y, containing
A. Proceed by induction on k; the claim for & = 0 was shown above. Assuine
that pryn-1(C) C Asi—1yn a0d Prikn—1(C’) C© Apye_rye for & > 1. Then
the A" € Fiig, defining prym (C7) 1s equal to Ay, because it is the unique
A" € Fiykn defining pryin(D) for all D € Gy with D C Appeoryn. It
follows that both pii(iq1)n_1{C) and piyrir1yn-1(C’) are contained in A4 .
q.e.d.

For any set S with n partitions {Q* |7 € I} of S define s to be i-adjacent to
&' if s and ' belong to the same member of @°. For s, s’ € S, define adjacency-

distance (s,s') := min{m | there exists a sequence s = sg, 81, -+, S = &
and a mapping e : {1.---,m} — [ such that for all 1 < j < m s; is a(j)
adjacent to s;_;.}. Let adjaceny-distance (s,s’) := oo if no such sequence

exists; and let adjacency distance (s, s) := 0. The equivalence relation defined
by s ~ s’ if and only if adjaceny-distance (s,s’) < oo defines the partition
ViEIQz-

Proposition 2: There is a minimal common knowledge world of
(Qoo; In; FL, -+, F2; X thoo ) that contains all points of alienation, (and there-
fore it is dense in Q,.) :

Remark: See Corollary 4.13 of [Fa-Ha-Va].

Proof: Consider an arbitrary ¢ > 0 and C' € G;. By Lemnma 4, ad)acency-
distance (p(C;), p(Co)) < ¢ where Cy is the member of G containing C. We
need only show that adjacency-distance (p(Co),p(C§)) < oo for any two
distinct members Cy and Cy of Go. But j-adjacency of p(Cy) and p(C}) is
easy to prove using any j = 1,2,--- ., n. q.e.d.
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6 Relative Alienation

Lemma 5: For every ¢ < oo there is only one common knowledge world of
the model A; = (Qoo; In; F1, o+, FP5 X thoo ), namely all of Q.

Proof: Let C,C"’ be any two distinct members of G;. By Proposition 2,
p(C) and p(C’) are in the same minimal common knowledge world of the
model (Qoo; FL -+, Fio; Xithoo). Since for every 1 < j < n, F? is a coarser
partition of 0, than FZ , it follows that p(C') and p(C’) are in the same min-
imal common knowledge world of the model X' = (Quo; F, -+ FI' X 1ho).
The rest follows from the containment p(D)YC D forall D € G,. q.e.d.

Let P, (Np) be the set of subsets of the whole numbers Ng = {0,1,2,-- -}
with infinite cardinality (S € P(Ng) = |S| = o0.) For any member S
of Pw(No) and C € G; with i € S we will define a special point in
called the alienated extension of €' with respect to S, labeled pS(C). If
1 € § € Pu(No) define ng(1) := inf{j € No | j > i,j € §}. Define
Phy = pns(;,(ﬂy:;(i)_l(C)), where 'y;\' is the mapping defined in Lemma 2
corresponding to the model A; (with v* = ﬂf‘;l.'y;'.) For every j € S with
j =i and p3(C) already defined, define pf(j)(C) to be pf(j)(pf(C)). Lastly,
for all i € § € Poo(No)} and C € G; define .

P(C):= [ #(O)

JES, j>i

Notice from Lemmata 2 and 3 that if C € G; then 4;*(C) = C, which means
that pNo = p. For any 1 € 5 € Po(No) and C € G; we call the point p®(C)
a point of alienation with respect to S.

Lemma 6: If : € S € P(Ng), 1 < j < n, and € and ¢’ are both
members of G; and both are contained in the same member A of Fl, then
p°(C) and p°(C') are both contained in the same member of Fl.

Proof: For any model p = (S;1,; P', -+, P* X;9) and I > 0 it follows
from the definition of 4" that s,s’ € 4’ € P/ implies that 4*(s) and v/*(s’) are
contained in the same member of F]. Therefore it suffices to show that for
any I >0 and D, D" € G that if D, D’ C A € F] then piy1(D) and piyy (D)
helong to the same member of F/,,. Since I+ 1=/j(mod n) implies that A is
also a member of _ﬁil, it 1s suflicient to consider the case of j = I41{mod n).
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But as in the proof of Lemma 4, for any given A’ € F;_, 41 there is only one
A* € Fiy1 defining pi (D) for all D € G, satisfying D C A'. q.e.d.

Corollary 2: Forevery 5 € P, (INg) all alienated extensions with respect
to S share the same dense minimal common knowledge world.

Proof: Given any i,k € S with C € G; and D € Gy consider p;,,.; (C),
pfmx(i‘k}(D) € Gmaz(ik)- The result follows from Lemma 5 and repeated
application of Lemma 6. q-e.d.

For every 0 € 17 < o0, | SjSn,CegiandCQAfE.ﬁjdeﬁnea
formula

n

fic=fe=(ANC N -k(=fo) A k(=/o))

J=1 Deg,, DCA? DegG,, DNA! =0

where fo and fp are the formulae defined in Lemma 3. Then define

= A fic-

Ceg,

For all ¢ > n define k; := k; where 1 < j < n and j = i{(mod n).

Lemma 7: If i > 1,7 € § € Pw(Ng) and C € G;, then 7,,,(C) C
Cboo( 1+1k1+l 1° i+1kifi)‘

Proof: Notice that ¢*'(f;) = ¢;(f;) = Qc, which implies by Lemma
2 and Lemma 0 in Section 2 that *y’\‘(ﬂoo) C boo(kapmy - - kany fi) for all
m > 1 and all @ : {1,---,m} — {I,---,n}. Notice that by Lemma 1
¢i+n—1+m(fi) = ¢oo(fz) and Gipnytam (Kigr - ki f:) = d’oo( Cit - k; fz) for all
m > 0. Suppose for the sake of contradmtnon that v, ,,(C) Q Goo(kigr -+
kifi) = Giynytlkive - - ki fo). Because ¢iynqr(kiyi---kifi) € g:+n+1 U {0}, we
have that 7;‘)5;-1;-1-!( )ﬂ¢z+n+i( :+I - kifi) = 'Yt+n+1‘( NN Goo(Kigr - kifi) = 0,
a contradiction since 7% (C) € M) N 'y{\;,lJr,(C). q.e.d.

Define functions z : N — N = {1,2,---} and 2 : {0,---,n} — N by
h{0) := 21X if 1 < i < n then z(i) := 2M-V-1 and k(i) := 2(s)A(i — 1), and
if 2 > n then

2(i) == 27 LS 20
Lemma 8: If: > 1 and C' € G;_, then |{D € G; | D C C}| > z(z).
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Proof: A(0) is the number of members of Gy. One can show by induction
that if i < n then h(7) is the number of members of G; and that the inequality
is an equality.

Let us assume that 2 > n and that the statement is true for every j < z.
Consider the B € G;_,.; and A € Fi_, with C € AN B € G;—,. By the
induction hypothesis the number of members of G;_; in AN B is at least
172! z(i — 7). Therefore for the construction of G; we have p(C} = z(z),
where p is the function defined in Section 3. g.e.d.

Lemma 9: If i > 1 and C € G; then p;y.(C) N ¢oo(kifi) = 0.

Proof: Consider the A € F,;,.. containing C, the A" € Fi;; with
pit1(C) = AN C, the A* € F; containing C, and the B € G;_,, contalning
C. Consider ANB € Giyy—p,or ANB =0, if7 < n—1. By Lemma
8 there is some C’ € G; with ' # C and ' € AN B. (We needed from
Lemma 8 only that z(¢) > 2 for all 7 > I!) Therefore there is an A" € Fiy
with A” £ A, A"NC # 0,and A"NnC" = 0. Let C" := A" NC € G,
Since (" C A” we have A=" N C* # @ where pi1(C) = pign—1(C) N A™ and
A € Fipn. It follows that A== N A” # B, which means that p;;,.(C) C
Cﬁ,‘+n(_'k,‘(ﬂ(k,'+]_'fc'))), or equivalenth pH-n( )m ¢t+n( 1(_'}":+] _‘fC')) = 0.
C' C A shows that ¢in(kifi) C Gisn(ki(=kiz1i—fc')). Finally Lemma |
implies that ¢, . (k:fi) = @ (ki fi)- q.e.d.

Notice that the statements of Lemmata 7 and 9 must be altered slightly
for the case of i = 0.

Define a mapping 3 : P(No) ~ Pw(No) by 8(S) := {0,1,2,4,8, - -} U
{2241, 2%~ 1 |1 € S}

Define an equivalence relation on P(Ng) by S ~ T if and only 1if there
exists an m € Ng such that S —{0,1,2,---m} =T —{0,1,2,---,m}. The
cosets of this equivalence relation is an uncountable set.

Proposition 3: There is an uncountable set of dense minimal common

knowledge worlds of {2,

Proof: Due to Corollary 2, if suffices to show that if S and T' are both
subsets of Ng with § # T° then pﬁ(q)(C) does not share the same minimal
common knowledge world as p?(T)(C) for some € € G;. For the sake of con-
tradiction, let us suppose that adjacency-distance (p®5)(C), p"TN(C)) =
| < oo. Because § # T there exists an 1 > logy{({ + 1)n) such that
1 € S and ¢ € T, or vice versa. By symmetry, let us assume that : € S
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and 1 € T. By Lemma 7 applied to p'g,-(T)(C) it follows that pPFH(C) €
boo(kgtt_neq -+ - by f2:). But adjacency-distance (p?S)(C), pPTHCY)) = 1 im-
plies that p?S)(C) € Boo (Kot _(141)n1 " Fai f21) C Goolkai f2i), a contradic-
tion to Lemma 9. q.e.d.
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