


Abstract

We exhibit the structure of totally balanced games, discuss some conditions for a game to be
extreme within the cone of totally balanced games and provide conditions for the core to be a
von Neumann - Morgenstern stable set. Our emphasis is put on exact and 'orthogonal’ games.
The main message is that the unique representation of such games, the extremepoint property,

and the existence of stable sets can be ensured if the game has 'sufficiently many players’ of each
of a finite set of types.
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0 Introduction

We consider cooperative games, represented by a triple (V, E,v). Here N is a
finite set (‘the set of players’), B is the power set (‘the system of coalitions’) and
v: P — IR,,v(@) = 0, is the 'coalitional’ or 'characteristic’ function (frequently
also referred to as 'the game’); we prefer to consider nonnegative functions only. We

always use n = |N| and frequently assume tacitly N = {1,--- ,n}.

The identification of a vector m € IR™ and an additive set function m on B via

m(S):=%"m; (S )
ies

will be common, we call m a measure if it is nonnegative (A > 0) and normalized ( a
probability ) if m(N) = 1 holds true. The set of additive set functions is denoted by
A, we use e.g. Al in order to denote probabilities. The carrier of some m € A is
denoted by C(m). For §,T € P disjoint we write § + T instead of S U T, thus additive
set functions are characterized by m(S+T) = m(S)+m(T). (S,T € B disjoint).

Our discussion is focussed on a class of games which can be equivalently represented
by one of the following types of set functions.

(1) Totally balanced games: ] .
no coalition improves by a balanced decomposition.i.e.,
3 esu(S) < v(T)
S

for everv S admitting a 'partition of the unit’, i.e., a set of nonnegative coefi-
cients (cs)g. g such that

Z 131![5} = 1*1",
S

where 1g denotes the indicator function (or vector) of a set S (see [2] , [16]).
(2) Games with a nonempty core of every restriction.
Clor) # 0
for all T € N. (see [2] , [16]).

(3) Market Games:
generated by a TU.-market, that is, v = v* is described via

o(S) = max {Zu*"(f‘) | S Yd, (Se z;};

iEs ies ies



* INTRODUCTION * 3

here U = (N, RT. (u')ien. (a')ien) denotes a market or pure exchange economy
specified by the set of players, the space of commodities, the (continuous, mono-
tone, concave) utility functions and the initial asignments of the players (see
[17], [20]).

(4) Flow Games: generated by generalized 'maximal-flow’ / 'minimal cut’ prob-
lems and written v = v*. Here I' is directed network allowing 'flows’ from
'source’ to ’sink’such that each edge is assigned to a player. vT(5) is the maz-
flow / min-cut value assigned to the subnetwork with edges restricted to the
members of S and nodes beeing unchanged. (see [5]).

(5) L.-P.-Games:
generated by a linear programming setup and a vector-valued measure (distri-
bution of raw factors). v = v is given via

v(S) =max{cz |z € RT, Az < b(S)}, (S€P)

here A is an | x m— matrix, ¢ € IRT, and b is a 'vector-valued measure’on P

ie., b= (b*,---,b) with &' € R", b(S) = T, b]. (All quantities are assumed
to be positive in order to avoid any existence problems) (see [6]).

(6) Minima of finitely many measures:
We shall write these functions as

(1) v=A{N,--, 2}

Here A!,---, A" € A, and A denotes the minimum taken in the space (lattice)
of set functions, i.e. we mean v as defined via

(2) v(S) = min{X(S),---,X"(S)} (SeB).

(see [5]).
It is well known the the above description vields one and the same class, i.e., the
totally balanced games. Since the last way of describing such games / set functions

seems to be the most simple one, we shall consider functions described by item (6)
above. 3

Among these we want to restrict ourselves to the normalized case; the class obtained
this way is described by

E = {1.:' | v is totally balanced, v >0, 3Al---, A e€Al: v = f\{}nl,---,}n‘"}}
It is well known, that IE consists precisely of the eract (totally balanced) games, i.e.,

E = {v|v>0, v is exact }
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We discuss some topics concerning the possibly unique or canonical representation
of some v € JF by means of some set A!,---,\" € Al | the structure of the class [F
given by its extremepoints ([E is a convex polyhedron) and solution concepts. The
latter will deal with the question whether of presenting conditions such that the core
is a stable set in the sense of VON NEUMANN - MORGENSTERN[19].

Within the framework of our disscussion a major tool will be be provided by the notion
of nondegeneracy of a measure with respect to a system or family of sets. Basically
this means that the measure is uniquely defined by its values on this system. For a
start, let us recall what it means that a measure, say m is nondegenerate w.r.t. a set
system S € P :

Definition 0.1 A (nonnegative) additive set function m is nondegenerate with
respect to a system of sets S if the system of linear equations in variables (;)icn

3) Sz=m(S) (Se§)

ics

admits of the unique solution m only. In particular we say that m is nondegenerate -
w.rt a (m n.d. a)ifmnd Q_ where the system Q_ is given by

Applications of this concept have been found in various contexts:

(1) CONVEX GAMES:
Let v = f om such that f is a piecewise linear and monotone function having
increasing first differences and m is a vectorvalued measure. Essentially it is
true that m is n.d. with respect to the ’critical values'a of f, (the 'kinks’ that
is,) if and only if f o m is extreme. This is the main result of extreme point
theory of convex games as developped in ROSENMULLER - WEIDNER [14] and
[15].

(2) HOMOGENEQUS GAMES: Let m me a probability and let o € (0,1). Let
y := 1jp ojomn denote a (simple) homogenous game (see OSTMANN [7], ROSEN-
MULLER [12], SUDHOLTER [18] ). Then v]' has no steps if and only if m n.d. «
1s true. :

(3) LP GAMES:
These were introduced by OWEN([6] . See [11] for the following observations:
Let v = v*®¢. Assume that the grand coalition has a unique shadow price, say
7 (i.e., assume some type of nondegeneracy in the LP sense). If b is n.d. with
respect to @ = {S | S has shadow prices of N}, then

C(v) ={b- 7},
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o

here § denotes the shadow price of the grand coalition N. Note that the totally
balanced games satisfying this kind of nondegeneracy in the L.P - sense are typ-
ically not the normalized elements of JE - rather there is unique A? minimizing
at N in the representation of formulas (1) or (2)

We consider nondegeneracy to be a 'finite surrogate’ for the non-atomic property in
the continuous case. in some well defined sense it has allways been the case that
nondegeneracy could be obtained by requiring the presence of 'many’ (small) players.
Thus one is is usually concerned with 'large’ games when dealing with versions of
nondegeneracy. This view is supported by extreme-point results, convergence results
or 'equivalence theorems’ etc. as well as the fact that the 'n.d.’ property can be
sensibly established for nonatomic measures on a continuum.

We would like to study these methods as applied to totally balanced games, more
precisely to the class JE . The ’critical system’ in this case is foremost given by the
'diagonal sets’ or for short the 'diagonal’. For v € IE the diagonal is given by

(4) A={SeE | v(S)+2(5) = v(N)}

It is not hard to see that for any set A',---, A" € Al yielding v = A {\,--- A"} it
follows that

(5) A={S€B [N(S)=---=X(5)}

holds true. le., the 'vector valued measure’ A = (A',---, A7) throws diagonal sets
into the diagonal of [0, 1]7; this explains the notation.

Clearly this system is very decisive for the behavior of v, there is evidence in various
papers already mentioned. OQur first task will be to develop a suitable version of
nondegeneracy within this context. It turns out that this is connected to the question
of a 'canonical’ representation of v (Section 1).

Next Section 2 exhibits the application of a type of n.d. requirement to the extreme-
point problem in IF .

Finally, Section 3 shows that for some large games in [E' the core is stable in analogy
to the results obtained for the nonatomic case in [3].



6 - SEcTIiOoN 1 *

1 Complete Games.

Let v € [E, i.e., let v be a nonnegative, totally balanced and exact set function. We
call a set of measures A!,---, A" € A} a representation of v if v = A{\,---, A"}
holds true. The extreme points of the core of v allways constitute a representation -
but some of them may be superfluous. Therefore we supply the following definition.

Definition 1.1 Let v € IE and let ', --- A" be the extremepoints of C(v). v is called
complete if, for every p€ {1,---,r}, there is S € P such that

v(8) = X(8) < X°(8) (o e{l,---,r},c #p)
holds true.

Roughly speaking in a complete game all the extremepoints are necessary in order to
supply a representation of v as the minimum. It is also seen at once that this way
the representation is ‘minimally unique’(in the set theoretical sense):

Theorem 1.2 If v € [E' is complete, then there is a unigue minimal representation
v = A{A, - AT} with A%, .-, 0 € Al. The X (p = 1,---,r) are exactly the
extreme points of C(v).

The Proof is obvious: Pick the extremes of the core, say A',--- A" € Al:asv € FE,
we know that v = A{A,--- A"}.

Now let v = A {,u,l, e ;_:,K} constitute a further representation of v. All of the u~*
are in the core. Hence all the u* are convex combinations of the A” (o # p). Thus
should it occur for some p that A\? & { pt, -, pK} holds true, then, if we choose S
suitable according to Definition 1.1, we find that (with suitable sets of cefficients a,

X(S) < T @A (S) = u5(S)
TEp
would follow for all k, which is clearly not possible. q.e.d.

Example 1.3 Let A! := (3,4,0,0) and A* := (0,0,2,5). The extreme points of
v = A{M, N?} apart from A' and A? are given by (2,4,0,1), (0,2,2,3), (2,2,0,3),
(3,2,0,2), (1,0,2,4), and (1,2,2,2).

Remark 1.4 (1) Clearly extreme points of the core of satisfy the ’equivalence theo-
rem’, i.e,, every element of the core is a conver combination of them and hence
a solution of the dual program of the grand coalition in the LP-game sense. A
non complete game might however have representations consisting of less than
all extremes of the core. Completeness is ¢ property of the game (of v), the
equivalence theorem is a property of a representation.
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(2) If v € E allows for a representation v = A{A,---, AT} with A',--- A" € AL
mutually orthogonal, then the \* are extreme in C{v). For suppose we have
A = 2(u+v) with p,v € C(v), then the carriers C(u) and C(v) are contained
in C(A!), that is p and v are orthogonal to all the \* , p = 2,...,r. Now
choose i such that u; < A; is true and take S := {i}UC?U...UC". Then we
have

il 8y = ol 100 = 3 >l = 5]

which contradicts p € C(v). Hencep = v = M.

(3) Again assume that v € IE allows for a representation v = A{A',---, A"} with
AL - X" € Al mutually orthogonal. Consider a second such representation
given by probabilities p', ..., p° which are mutually orthogonal as well. Assume
w.l.o.g s = r. Since v((C*)¢) = 0, it follows that for every o there is p with
p((C*)°) = 0, i.e., p° is living on the carrier of A\* . It is seen atf once that
the carrier of u° cannot be strictly smaler than the one of AP, (v would be 0 on
a larger complement), hence r = s. The p° are exiremes of the core as we
have seen above, and the above consideration can be repeated in order to show
that u= = N holds true. Hence the orthogonal representation is unique.

In order to proceed with our general study we now turn to some simple conclusions
that can be inferred from separation or duality theorems. We choose to base these
on the appropriate versions of the 'Theorem of the Alternative’ or 'Farkas Lemma’.
The first version is s

Lemma 1.5 Let A be a matriz and b a vector (with the appropriate dimensions).
Then one and only one of the following statements is true:

(A) There exists a vector y satisfying

Ay < b.

(B) There exists a vector u satisfying

uAd=0,ub<0,u>0.
In our present context this can reformulated to yield

Corollary 1.6 Let A',--- A, u € A, and let v =A{A',---,A"}. Then one and only
one of the following statements is true:
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(AA) pe L. Thereemistsce IR™, Y., ¢, =1, such that

T

CpAp = b
1

p:

holds true.
(BB) There existsx € IRY,z# 0,t € IR,{ > 0 such that
ur < t= Az {P‘:lt-'”:f:]

13 satisfied.

*

Proof: Applying Lemma 1.5 we find that one and only one of the following two

statements is true.

Either
-1,---,-1 et |
: AL AT r
or else
_1?...1_]_ Eray
(7) (t,z) ( ) =0, (t,p) ( ) <0, (t,p) = 0.
Al,"',.}f 7

This version is rewritten at once to yield either

(8] ()"11 i }‘r)y E‘ K. €Y E ]--.
or else
(9) 2(AL, AT =te, pr <t [z.8) 2 0.

These alternatives are indeed equivalent to the ones of Corollary 1.6. E.g., as all the

AP are nonnegative and normalized, equation (8) implies

1= 4@ > SN =ey > 1

=1

hence all the inequalities involved are indeed equations and this shows the first alter-
native of Corollary 1.6. The remaining equivalences are demonstrated accordingly.

q.e.d.
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Corollary 1.6 admits for an obvious interpretation if we accept the notion of profiles
or generalized coalitions Then u is either an affine combination of the A?, or else for
some diagonal profile = the value p(z) is below the common value Mz =--- = A"z (
= v(z) with obvious interpretation). If x where to be the profile of a coalition or an
indicator function, say £ = lg, then 1.6 means that diagonal sets have to be affine
combinations of the extreme core elements. Of course we would prefer an improved
statement concerning the core. This is obtained by a slightly modified version of the
"Theorem of the Alternative’ as follows:

Lemma 1.7 Let A be a matriz and b o vector (with the appropriate dimensions).
Then one and only one of the following statements is true:

(C) There erists a vector y = 0 satisfying

Ay < b.

(D) There exists a vector u satisfying

uA>0ub<0,u>0.
Analogously to the development following Lemma 1.5 we obtain the following

Corollary 1.8 Let \',--- A", u € A.. Then one and only one of the following state-
ments 15 true:

(CC) 3acR,, T)0,=1, p=%7 0, =al
(DD) 3z € R}, z # 0, such that
B L T SR

is satisfied.

This clearly means that, in terms of profiles, a probability which weakly dominates
A{AL -+, A"} is a convex combination of the A?. Obviously this yields a kind of clue
to completeness: again, if r were to be the profile of a coalition, £ = 1g, then p
cannot be extreme in the core unless it is the only measure attaining the value v(S).

Of course this vague remarks do not really establish a precise statement. The tradi-
tional way would be to replace z by a rational vector (a continuity argument) and
then by an integer vector (since Alternative (DD) is a linear relation ). Thereafter
the profile can be interpreted as the profile of a large coalition in a suitably large
‘replica game’ - and this would yield a statement of the type that large replicated
games are complete. Essentially, this result is the one discussed in different context
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in [6] as well as (for the nonatomic context) in [1]. We shall presently come back to
this subject.

To proceed further with our general treatment we now define some affine spaces
related to some set Al,---, A" € AL or to some v € .

To every finite set of measures A = (A',-«+, A7) € (AL)" we assign the affine manifold
spanned of them and denote it by

r T
(10) E::L’J‘:={:t:ER”|EIcElR”, Zcp=1,x=2cp}nﬂ=ck}.
=1

=1

Also, given v € IE, we denote
(11) X:=A"{zeR": |z(5) =v(8) (S A)}.

Remark 1.9 If A iz a representation of v, then clearly we have L C X as well as
Clv) € X. It would seem to constitute a¢ generalized version of nondegeneracy to
require that the A span the affine manifold A'.

To follow up this path, we introduce two further spaces which are in close connection

to the diagonal A of some vector of measures A',---, A" € A}. or of some v € E.

Given v € IE, define

[12).8 e 5" {3 €R"|s= ) dsls for some set of coefficients (ds)s. g ¢ -
se A 0

Also, given A = (A%, -+, A7) € (A,)" define
(13) D:tD)‘:{SER"EA‘S:---:A’S}.

Remark 1.10 Clearly, D is a generalized version of the diagonal {again thinking in
terms of profiles). Also, § is the span of the indicators of diagonal sets. Generally,
we have & C D provided X is representingv. . If § = D | i.e., if the indicators of
the diagonal span the full space D, then there are ‘'many’ diagonal sets which would
mean that again some kind of nondegeneracy prevails.

The fact that these notions are useful is also corroborated by our first
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Lemma 1.11 Let M,---, 3" € A} and let v = A{)\,---,X"}. IfS = D, then
X C L. In particular , as C(v) C & it follows that S = D implies C(v) C L, i.e., the
core is contained in the affine span of A',---, \".

Proof: Let pu € & For any s € D there is a set of cefficients (ds),_g such that

&= Z ﬂ!glg

Sz A
is satisfied. Hence we obtain for all p=1,-.-.r the following set of equations:
= ESEé dsA(S) = A(5) X A dsls

= As.
That is, alternative (BB) of Corollary 1.6 does not occur and therefore alternative

(AA) ,ie., pu € L is the true one. Thus we have shown that X C L is satisfied.

However, a slightly more comprehensive statement can be directly drawn from some
rank considerations. To this end, given Al,--- AT € Ai we denote by A the matrix
with rows A',---A7. Also, let us denote by E the matrix the rows of which are the
indicators of all coalitions S € &. Thus we define :

L
(14) et ( ) E: = (ISJSEQ
}LT

Then we have :

Theorem 1.12 Let A',---, A" € Al and let v=A{)\', -+, A"} be represented by A.
Then the following statements are equivalent.

(1) e
2j& =D
{(3) (n+1)— rank A = rank E.

Proof:
1*STEP : For 5 € A and t = v(5) = A'(S) we have clearly

i
Z’*::(f)
€S 1
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from which it follows that

; =1 2
(15) rank A = rank (;‘i ) :
=l

Analogously, in view of the equation

AY(S) = 3 1s(i)A; = v(S)

1£8

which holds true for every S € S, we derive the equation
rank E = rank (ls)sca = rank (15,9(S))sc A = rank(E,v(")).

This we are going to use as follows.

2"4STEP : The spaces

D={:rER“|Ja1x=~~-=A*m}
and

D: = {(zf)e B | Mz—t=0,/--, Mz —1=0}

—i
= {[:ﬁ,t]€ﬂi’“+1| (ﬁ ){m,i):ﬂ}
-1

have the same dimension, since the mapping R® — IR™*! given by z — (z,A\'z)
throws D bijectively onto D'. Therefore the dimensions are given by

dim D = dim T

—_1
(16) = (n+1)— rank (.-*L : )

-1
= (n+1)— rank A.

Now the indicators (1s)g. o Will spann the space D (i.e. S = D holds true) if and

only if the vectors (1s, A'(S)) s, A span D' and this is the case if and only if we have

(17) rank E = rank (E,v(-)) = (n+1)— rank A.
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S°BTEP

Similarly, consider the space

X = {ze€R"|z(8) =vS)}
= {z€R"|Ez=v()}

This time the vectors A? will span the affine manifold A’ ("affinely’) if and only if the
dimension of A satisfies dim A = rankA — 1; however this dimension is obviously
given by

dim X =n— rank E.

That is, the vectors A? span X if and only if n — rank E = rank A—1or

(18) (n+1)= rank A = rank E

holds true. Now comparing equations { 17) and { 18) we obtain the desired result.
g.e.d.

We believe that the conditions of Theorem 1.12 are a constituting a version of non-
degeneracy. This is supported by a study of the case r = 1. In this situation A’ spans
the space X which means A! is the only solution of the linear system (3) required
by Definition 0.1 w.r.t A . And simultaneously, the indicators (1s),_ A mMmust spann

the full space, which means that the coefficient matrix of the iinea,r_system (3) of
Definition 0.1 is nonsingular. This motivates the following definition.

Definition 1.13 A4 set of measures A\',---, A" € Al is said to be weakly non de-
generate (weakly n.d.) if either one of the conditions of Theorem 1.12 is satisfied.

As a first simple consequence we note:
Theorem 1.14 Let v € IE. Then the extremepoints of the core are weakly n.d.

Proof: We are going to show that the extremepoints of the core, say A',---. A" €
Al span the space A . Now let Z € X. Define i := 137 _, * > 0. We claim that,
for small positive e

= (1—eji+ € € C(v).

Indeed, for any S € A we have p*(S) = v(S) as f, # € X. And for any S not in the
diagonal there is at least one A” such that A7(S) > v(S5). hence we have a(S) > v(S)
and p(S) > v(S). So p* € C(v) is indeed true.
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Since the A? constitute the extremes of the core, we find that u° is a convex combi-
nation of the A?. But then I is a linear combination of the A?, q.e.d.

Thus the extremepoints of the core allways span the corresponding space £. The
main question is, whether ther is a canonical representation of a balanced game by
means of a well specified set A',---, A". This is the case if v is complete and Theorem
1.15 provides a clue to completeness: it can be said that large orthogonal games
are complete. A first and easy step into this direction is provided by the following
theorem.

Theorem 1.15 Let A',--- A" € Al be orthogonal and weakly n.d. Then v =
A{AY -+, A"} is complete and A, -+, X" constitute ezactly the ertremepoints of the
core of v.

Proof: The A',--- A" are core elements of v. If u happens to be any further
core element then, because of weak non degeneracy, there are affine coefficients
Coy T=1,--+,7, Tlo1¢ =1,such that p = 37_, ¢, A holds true. Since the )? are
orthogonal and nonnegative and p is nonnegative, it is seen at once that the coeffi-
cients ¢, have to be nonnegative as well. This means that u is indeed a conver combi-
nation of the A?. Again since the A? are orthogonal they have to be extremepoints of
the core and there are no further extreme points (¢f. Remark 1.4). Now, to every p the
set S := (C”)° has exactly the property that v(S) =0 = 3*(S) <1 =A(S) (o # p),
which is required by Definition 1.1, q.e.d.

Another simple observation is

Remark 1.16 If v = A{AY,--- X"} is weakly n.d., then equal treatment pre-
vails. Indeed, as C(v) C X = L, we know that any element of the core satisfies
B = Xp=1,.rCo with suitable ‘affine’ coefficients. If two players have the same AL

then they have the same ;.

So far we have more or less exploited duality theorems. N.D. Theory however strives to
imitate the nonatomic result not by replica objects but by describing the distributions
of players over the types such that a 'limit theorem’ or ‘equivalence theorem’ holds
true.This is done by exploiting the linear relations with the aid of combinatorial
methods. For the nondegenerate version the discussion is found in [11]. For the space
IE' we shall present a formulation which is not bound to a replica version but also not
as comprehensive as [11]. To this end we first introduce 'types’

Remark 1.17. When assigning ‘types’ to the players we have to leave the range of
probabilities as the representing measures are concerned. Instead, we assume that the
measures are integer valued.

To this end, let g*,. .., g7 be positive integer valued vectors, i.e., elements of IN". Also
let ky,...kr € IN be integers such that ¥2_, k. = n holds true. Fiz a decomposition
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of N into T disjoint sets Ky,... Kr (the sets of ‘types’) with N = YI_, K.. Now

define A" € A" by ;

1
(19) MN(e) = > | K,ne|gl

=1 [
We always assume that X'(N) = ... X" (N) so as to have v = A{}',--- . A"} € E. In
this contert we shall say that A = (Al,---,A") € A" is type patterned. Also, for
any S € P we call the vector s = (|SNK;|,...,|SN Kr|) the profile of S.

A first consequence of this change of setup is presented by the following simple ob-
servation.

Remark 1.18 Letv = A{AY, -, A"} € FE such that X is type patterned. Assume
that there is a diagonal set S which properly cuts into each type, i.e.,

(20) el GL80E =N k=1 T

Then equal treatment prevails in the core.

Indeed, let T € C(v) and choose S € A satisfying (20) such that S contains of each
type the players that are 'best off’ at £. Then Z(S) = v(S) as S is diagonal. Choose
S' to have the same profile as S hence satisfving (20) as well but containing the
players worst off of each type. Since S and S’ have the same profile, we have 7(S5') =
v(8) = x(S) but if equal treatment does not prevail we must have Z(S) > Z(5'),
which cannot happen.

The following is the well known equivalence theorem for L.-P.-games slightly disguised
and improved with respect to the quantifiers. It is traditional (cf. [6]) and we provide
the present version in order to contrast it with the final result of this section, i.e.
Theorem 1.22 .

Theorem 1.19 Letv = A{Al,---, A"} with A integer valued, orthogonal, and type
g

patterned (cf. Remark 1.17), i.e., A(e) = ¥ | K.Ne | g2. Then there are constants
T=1

and 'i"'r (r=1,...,T) depending on g, only with the following property: whenever
k, > k(r=1,...,T), then \',---, X" are the extremepoints of the core of v. i.e., the
representation satisfies the equivalence theorem. -

|}:.
Proof: First of all choose k, such that equal treatment is ensured (e.g. by choosing

every one of them to be even). Next consider v” := A{g',...,¢"} and let H =
L h*} denote the sets of extremepoints of the core of v° different from the g°.
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We may assume that H # 0, for every p in the core of v, with u # M for all p, implies
an element in H in view of equal treatment.

To every h = h” € H choose & = #7 with h# < g°% according to Corollary 1.8
(p=1,...,7). Next choose T = T° rational close to # such that h¥ < ¢°F is true

for (p=1,...,r). Multiplying by the common denominator yields an integer vector
§ = bars” which finally yields

: T T
(21) S oheal <Y glE
=1 =1

again for (p = 1,...,r). All these quantities vary with the elements in H, ie., they
depend on o. Since we have finitely many h°, we may now choose k, exceeding all
5 =8 foro=1,...5 Next, defining u*: = T WK . Ne|foro=1,...,s, we
see at once that (21) reads

(22) W(E)SXNE) o=1,....5, p=1,...,r.

Now return to the study of v = A{A,--- A"}. If u is extreme in C(v) and not
one of the A', ..., A7 | then it is not a convex combination of the A!,---, A". Because
of equal treatment, p has the form y:. = ¥T_, h.|K, N | with suitable h in the

core of v* and it is easily seen that h is no convex combination of the g° constituting
¥, As u is extreme, so is h, that is h € H. Hence there is some S satisfving (22), a
contradiction to the fact that p € C(v), q.e.d.

For the remainder of this section we focus on the orthogonal case. We will come up
with an improvement of the last theorem within this context.

Remark 1.20 Given a set of measures A',---, X" with carriers C? = C(X*) (p =
1,...,7) and the resulting diagonal A, let us define the systems

(23) AP: = {SNC*|Se A} (p=1,...,1)

If an orthogonal set of measures \',--- A" is weakly n.d., then each M is n.d. with
respect to A" (p = 1,...,r). This definition refers to Definition 0.1, the relevant
system of linear equations in variables (z;)icce can also be written as

(24) 3. 2 =X(S)=vu(5), [T A).

=5 ieCw

Indeed, if for some p the system (24) has at least two different solutions, say A
and pf, then because of orthogonality there are at least r + 1 {affinely independent)
elements A',---, AP, pP,-- -, X" which will render the dimension of X to be

dimX =r >r—1=dimL,
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meaning that the A',---, A" are not weakly n.d.

Generally the opposite direction is not necessarily true: if each A* considered as a
measure living on C” is n.d. with respect to the the system A° (p=1....,r) then
it does not necessarily follow that A',.-- A" is weakly nondegenerate. However, if
we require slightly more,then we can indeed state a converse relation and this has
important consequences.

Theorem 1.21 Let X',.--, A" be orthogonaly = Al,--- A" € Al and let § be
a value of the diagonal, i.e., there is 5 € QA such that é§ = v(S) = M(S) for all
p=1,---,7. Assume that each »* on C” is n.d. w.r.t. § {i.e. w.r.t. ga = ; , See
Definition ( 0.1) of Section 0 - this is slightly more than to ask for n.d. w.r.t. the
system ( 24) ). Then A,--- A" is weakly nondegenerate. Consequently, by Theorem
1.15 v is complete and the A',--- A" constitute all the extremepoints. Besides, all

the A* are rational (hence can be renormalized to be integer-valued).

Proof: 1**STEP : The rank of each matrix

25 ls)scorae(s)=s = (1s °
(25) (1s)scomaeis) ) 5eQ’
is |C?|, this is actually the meaning of the original version of n.d - or a special (trivial)
version of Theorem 1.12.

2"STEP : The rank of A on the other hand is clearly r since the A are assumed
to be orthogonal. According to Theorem 1.12 it suffices, therefore, to show that
rank E = (n+1)—r holds true. Here E is the matrix of indicators of the diagonal
sets (in all of N.)

3STEP : Now E contains (among others) at least those rows which are obtained by
combining all the indicators of some § € Qf for all p=1,---,r. That is, the matrix
indicated by

1 lez S
fa 1 L
Sl S SRR
1a 1 2. i
{26} 131 15'2- 151‘-
S
i'\. 151----- 152----- L ': .1.5‘“---* )

is a submatrix of E. We now have to convince ouselves that the matrix indicated by
( 26) has indeed rank n — (r — 1).
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4*STEP : E.g., if a k x k-matrix

of rank k and an [ x [-matrix

b
are combined in order to construct a matrix
T

al ¥
G

b:

a b

ki )

with n = k+1[ columns, then C is easily seen to have rank k<41 —1 = n—1, and this
is generalized at once.

As for the final comment (the A? are rational, note that this is a consequence of n.d.
as stated in [14], q.e.d.

As a final consequence we are now in the position to state

Theorem 1.22 (Large orthogonal games are n.d.,complete, and uniguely represented. )
Let v = A{M,---, A"} with X integer valued, orthogonal, and type patterned (cf.
T
Remark 1.17), i.e., A(e) = % | K, e | g°. Then there are nice constants
1

E wd il r=213:.:7T) deper:?iing on ¢ only with the following property: if
k.=l (t=1,....,T) and ¥(N) 2 R (p=1,...,r), then v iz complete and the )*
constitute exactly the ertremepoints of Clv).

Proof: Denocte the greatest common divisor of gf,...,g% by g.c.d. g* and let
D = [l g.cd. g°. Choose the quantities R” and I as defined by ¢” via The-
orem 3.5 of [14] such that for k2 > I , A°(N) — R? > s > RP and s within the ideal
spanned by ¢ (i.e. s a multiple of g.c.d. g°), it follows that
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(27) M jsnd. wrt. @, = {SeP|XNG) = s}

holds true. Next define

: c ke
_{28} i L pﬂaxr [E] :

G D will play the réle of 4 in Theorem 1.21,i.e., we will show that each I? is n.d. w.r.t.
d. Indeed, we have for all p

CD = D + Dmax-ﬂ=l,...,r [%:]
(29) > D+D|%]
> R
as well as
M(N) > D+R°+R°
(30) > D+§£D1]D:-Rﬂ
= (1+[Z])D+FR°
for all o. meaning
: ' R
(31) N(N) > max (1+ [E] \D+ R? = CD + R°.

Writing (29) and (31) in one line we have

(32) - N(N)—R°'>CD> R

while clearly CD is a multiple of each g.c.d. g°. These are just the conditions to apply
Theorem 3.5. of [14] which says that now indeed each A* is n.d. wrt. ¢ := CD.
The present Theorem therefore follows now from Theorem 1.21, . q.e.d.



20 * SEcTION II *

2 Extreme Games.

The set IF is a closed, convex, and polyhedral cone when seen, say, as a subset of
IR?"~! . This is a consequence of an appropriate modification of SHAPLEY’ S proof in
[16]. We shortly discuss a class of extremal rays of this cone that can be obtained by
combinatorial methods quite analogously to those employed in the previous section.

Remark 2.1 Given a set of measures A',--- X" with carriers C* = C()\*) (p =
1,...,7), we may consider systems of 'subdiagonals’ via

(33) .47 = {SNC?|SeB, (&) =M(S) <N (S)(r #p0)} (0#0p)

We also want to introduce

(34) a,:=J 4%
which in view of the following results will be called the system defining M.

Theorem 2.2 Let v = A{A',- -, A"} € E and assume the A* to be mutually or-
thogonal. If v is extremal in IE, then every A* is nondegenerate with respect to
A

= p"

Proof: Assume that v is extremal in JE. Suppose that for some p there is a solution
T # AP, Then, for real ¢ define

(35) AP = (1 — €)NP + €i.

Now for small e clearly AP* is nonnegative since AY > 0 (i € C*) holds true; moreover
APE(N) = 1 is obviously true.

Hence, if we define

(36) 2 :=ﬁ{}L1!...?),Lﬂ,E?...}),1T},

then, for sufficiently small ¢, we find that v* € IF holds true. Note that A*€ £ )3
follows immediately from the fact that T differs from A? while the argument that
v® # v uses orthogonality: one has to consider a set S € C? , Sf # C”? on which
AP<(8P) # AP(8P) and construct S := C'U...US?U...UC" such that v(S) # v(S5)
holds true. Next observe the equation

e e
(37) % =¥
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Now, whenever 3*(5) < A?(S5) holds true for some S € P and all ¢ # p, then
AP xP=¢ < A S) for all ¢ provided ¢ is sufficiently small. From this observation and
(37) it follows that indeed

'UE + .L:—E
==y
2
holds true and this shows that v is not extremal in IF. g.e.d.

As for the converse direction we have to require that v is complete in order to prove
the following theorem. Also we initially want to slightly modify the version of non-
degeneracy as given in definition (0.1 ) of Section 0. To this end we restrict ourselves
for the moment to probabilities. Instead of requiring an additive m to be the unique
solution of (3) in Section 0, we want a slightly more general version given by

Definition 2.3 A probability m is strongly non-degenerate w.r.t. S if the system
of linear equations in variables (T;)icq. (0s)s. g

Tzi—as = 0 (Se8)

{33) L= ;
Lz = 1 (S€§)
i€l

admits of the unique solution m, (m(S)); g only.

Theorem 2.4 Let v = A{A, -, X"} € E be complete. If every A\ is strongly
nondegenerate with respect to A then v is extremal in IE'.

Proof:

1*STEP :

Assume v to be a convex combination of two elements of E’, say
v+ 2?

g

(39) V=

2

we have to prove that v! = v? = v holds true.

To this end assume that both the v* are represented as members of IE, say

'Uk = ’!’\ {}Lk’lf“,}tk'rk}.

Now it is seen at once that

}'u,l"' “ b }|2.r

il
2 .

€ C(v)
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holds true. Moreover, for every S there has to be a pair o, 7 such that

v}(8) + v3(S) _ A(S) + X7(8)

se = 2 2

= X*7(8)

is satisfied. The consequence is clearly that we a given a representation of v via
(40) =25

274STEP : Because of the completeness we have required we can now apply Theorem
1.2. Accordingly, we know that for every p there is a pair o, 7 such that

)ll,-:r s }LE.-.*
2

(41) - M= AT =

holds true.

Now, whenever A? = 0 is the case then necessarily A}*” = A>™ = 0 is a consequence
as all quantities involved are nonnegative.

Next, observe that the diagonal of v 1s contained in the diagonals of both ¢! and v*;
for if S € A the v(S) +v(S¢) = 1, hence v}(S) + v}(S¢) = 1 for otherwise v* would
yield an inequality contradicting superadditivity. Therefore, the pair A',v'(S)|s_ A
constitutes a solution of the linear system of equations i

Tri—as = 0 (S€ Q)
iES

iEfl

Iy = 0 (iécﬂ'].

However, by the assumption of strong nondegeneracy, A? and the corresponding values
of v are the only solution of this system, hence we conclude that in particular A7 = Af
and analogously A*™ = )? is indeed the case. (Already at this stage it follows also
that v!(S) = v?(S) = u(S) is true for S € A - but we want this relation to be
trueforall S 4.)

3"4STEP : Thus we see that all the A? involved in the representation of v appear also
in the representation of v! as well as in the representation of v? . As a consequence
v! and v® are dominated by v (we take minima !). But strict domination of either
one of them would result in strict domination of the convex combination, which is v
- and this cannot occur. Thus we finally come up with v = v! = v, meaning that v
is indeed extreme in IE; g.e.d. .
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Remark 2.5 Some simple facts concerning the various types of nondegeneracy are
now being collected.

(1) To require (strong) nondegénemcy w.r.t. ép is less than to require it w.r.i. A°
since the former sysiem iz larger.

(2) Nondegeneracy w.r.t. some value & of a measure (see Definition 0.1 in Section
0 ) is the same as strong nondegeneracy.

(8) The relation towards weak n.d. has been pointed out in Remark 1.20 .

Similarly to the procedure in Section 1 and in view of the n.d. results obtained in
[14] we may now construct large extreme games of [E as follows:

Theorem 2.6 Let A',---,\" be orthogonal, v = Al,--- A" € Al € [E', and let &
be a value of the diagonal, i.e., there is S € Q such that & = v(S) = A?(S) for all
p=1,---,r. Assume that each \* on C* is n.d. w.r.t. 8. Then v is extremal in IE.
Also, all the A\ are rational (hence can be renormalized to be integer-valued).

Proof:

This follows clearly from Remark 2.5 and Theorem 2.4 For, since we have a set of
pairwise orthogonal measures, each A? beeing nondegenerate w.r.t. a value on the
diagonal, we know that each A7 is (strongly) nd. w.ort. A7 | that is, the n.d.
condition of Theorem 2.4 holds true. Completeness follows from Theorem 1.21, hence
all conditions of Theorem 2.4 are ensured. g.e.d.

Finally we have

Theorem 2.7 (Large orthogonal games are extremal.)
Let v = A{A,--- A"} with A integer valued, orthogonal, and type patterned (cf.
T
Remark 1.17), i.e, M(e) = ¥ | K,Nne | g°. Then there are nice constants
i

KEandl, =11} depen&z'ng on g; only with the following property: if
k2l t=L....T)and (N} = R (p=1,...,r), then v constitutes an extremal
ray in IE.

The Proof of course runs quite analogously to the one of Theorem 1.22.
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3 The Core is stable.

Again we consider a totally balanced game represented as

v:f\{}ll,---,i"}

which during this section is assumed to be normalized and orthogonal. The {mﬁtually
disjoint) carriers of the measures A? will be denoted by C* (p = 1,---,7). In what
follows £ will denote an imputation of v.

Definition 3.1 (1) Let S CC?, 5 # 0. Then

. i
e 1= OUN —
ot 1S }kf

is the minimal rate of S; similarly
s &i
SE= T af

15 the maximal rate. A player k € S having the property that

g 5=§—E

is satisfied will be called a player worst off in S since his share at £ compared
to his weight is minimal. Similarly there are players best off in S.

(2) Let < be an ordering on a subset T of Q. For disjoint sets S, 58" C T we write
S < S" if and only if 1 < i' holds true foralli€ 5,i' € ',

(8) Let 8 C P be a decomposition of Q. For every S € 8 we abbreviate S° := SNC*?
(the partners constituting S. Also we use 8° := {SNC”? | S € 8} in order to
denote the decomposition induced on C°. If it so happens that 8 C A (this is
the case we are interested in), then clearly 3°7_) 5% = § and A}(S') = - - - A?(S5¥).

(4) Now consider a binary relation < on §1 such that every C* is ordered as well
as a decomposition 8. We shall say that 8 is well ordered by < if every
S* is ordered and this is done in a consistent manner, i.e., if it is true that
for S,T € S the relation S < T? or the relation T < S° is simultaneously
satisfied for all p - in which case we shall of course write S < T or T =< 5.
Thus, while < orders within each C* only, the induced ordering acting on the
C? - elements of the decomposition can globally be viewed as an ordering of the
decomposition as such.

Eventually the ordering we have in mind will be closely related to the relative share
of the players w.r.t. an imputation £ of v. Our first attempt to link both concepts is
as follows.
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Definition 3.2 Let £ be an imputation of v. A decomposition 8 C A of Q is said

to be £ - consistent if there exists a binary relation < on Q such that S is well
ordered and in addition the following conditions are satisfied.

(1) For every S? € 8” there is S C C? with the following properties:

(a) i = j wheneveri € S°,j € 57 is the case.

(b) Gge < g
(c) A(5°) = X#(5%)

(2) For every S € S having a predecessor there exists a p such that S < S*
holds true.

Thus, if we look at a member 57 of the (induced) decomposition, then there is a
coalition preceeding it (strictly, up to possibly one common member) which has the
same total weight. The members of this preceeding coalition all are worse off than
the members of the original coalition. And at least in the territory of one A# the
precedence relation is strict with the possible exemption of the first elements of S

The following remark contains some observations which are more or less obvious but
may be helpful to have in mind.

Remark 3.3 = (1) S° is not necessarily an element of the decomposition S.

(2) However, because of condition (1c) it follows clearly that 37_, 5 € & holds
true.

(3) If 5% is a singleton, then trivially ds. = g, holds true, hence it may well occur
that 5° = 5* is the case.

(4) 5° and S* do have at most one common element: this is why condition (la)
is formulated the way it is and not via S < 5° . Recall however that < is an
ordering, so both coalitions cannot have two players in common.

(5) Therefore, if Sy € 8 is the first element of the decomposition according to <,
then necessarily all S§ have to be singletons and it follows that S§ = S5 is the
case. It is then reasonable to write

0

Q,

= ﬂsg — gsg.

Theorem 3.4 Let £ be an imputation of v which admits of a £-consistent decompo-
sition 8 C A of Q. If € ¢ C(v), then there exist u € C(v) and S € B such that
p domg £. In other words, imputations ouiside the core are being dominated from
inside the core given a consistent decomposition.
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Proof: 1%*STEP: Fix S € S and consider the partner-sets S° .i.e., we have
§=7%T_, S?. For every 5° choose S” according to condition (1).

Let us first assume

(43) Y age < 1.
=1
Then, in view of the definition of &g» we have for each p:

(44) S <ap , Gsagh (€8

Now choose ¢, >0 (p=1,---,r) such that
{45} Z&Eﬂ"‘ﬁp:l-,
=1

Then it follows at once that for each p:

(46) & < (age +€)X (i€ 5%).
Hence, if we define g° € C{v) by
(47) : EEDY (ay +e) M,

g=1

then (46) means just

{48} -ﬁ':}‘f‘i (EESP ? p:l}-'-,f].

On the other hand we observe that §:=3%7_, 5 € A is true and hence we infer the
equations

B(S) = Ty (@s +¢) M(S7)
= o (G +¢) v(8)
= (Salas +¢)) v(S)
= w(fS).

(49)

Now combining (48) and (49) we have indeed
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{5{]] ﬁf dﬂmi “E

Hence the case indicated by the inequality (43) has been delt with; henceforth we
may assume that the opposite is true,i.e., we now assumme

(51) : Z dige = 1.
=1

274STEP : Because of condition (1b) it is clear that equation (51) implies another
one which reads

(52) > ag 21,
=1

Again compare definitions: the way g, is defined {c.f. 1 of Definition 3.1 }, we know
that for each p

(53) & 2 age X (i € 57)

holds true. Since S is a decomposition of (2, we have therefore the following chain of
inequalities and equations: '

I
e
JE)?_‘
k-] ¥
g
e,
o

£(5)

T
|l
=

[
g
[
5
=
e

8-
Il
—

(54) = v T as

W
e
=

Now, observe that all inequalities involved in (54) must necessarily be equations. This
vields

(55) Y aa—l

(in view of (52)) as well as

(56) & = ag X (i€ §%)
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(in view of (53)), which is true for all p. The last equation (56) renders the quotient
& /AL to be equal for all ¢ € S” (for any p), that is , all players in some 57 are equally
well off. Thus it follows that

(57) a5 =G5 =i ase (S € §)

is the case. Also, we obtain from (51), (55) and the condition {lb] the additional
information that

{58J _Ep = QS# — ﬂ'sp

holds true for all p (and all S € 8).

This completes the second step: all players in an arbitrary 5 are equally well off and
the player best off in the predecessor set also has the same wealth .

3"STEP : Now let S; be the first element of S and let

(59} a{l e [&?5" :'CEE} = [a.‘f&%:«”Wﬂ:Sg}:

c.f. (5) in Remark 3.3 . Within this step we are now going to show by induction that
all as are the same, i.e., we prove the equation

{Er{:l') ag = a’ {3" E E} i

For S = S° there is nothing to show. Let S € S be arbitrary and assume that all
~ —preceeding S’ € S satisfy (60).

Choose S* such that 5% < S5” holds true, this may be performed by condition 2 of
Definition 3.2. By induction hypothesis we have § = o) (i € S, S% < S*.
Because of

e U g
Srege
it follows therefore that we have
Ll o A
Siger = s ==k

As well as '
&= (ie8)

holds true. It follows then from (58) that indeed the equation

— P |
Qfs,o—&'iﬂ—ﬂp
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prevails. This completes the induction step, hence (60) is verified.

4*»"STEP : The final step is now quite obvious: indeed (60) shows that £ is a convex
combination of the A”?, i.e.

(61) _ £= }i‘a-g,xﬂ,

This means that £ is located in the core of v . We have however assumed that we are
dealing with an element outside the core. Therefore, equation (51) cannot prevail,
instead the only alternative is equation (43). In the first step of our proof we have
already established that this implies the domination of £ from inside the core. q.e.d.

In order to prove that the core is stable we can now, given an imputation outside the
core, try to construct a consistent decomposition of {1 by diagonal sets. Clearly the
potential of admitting such a decomposition for every imputation not contained in
the core should be a universal property of the game, hence in a next step we must
somehow get of the specific attachment of S to £. This attempt is prepared by the
following decomposition.

Definition 3.5 Let 8 C & be a partition of ) and let < be a binary relation on (1.
We shall say that is universally ordered by < if S is well ordered (c.f. Definition
3.1 ) and in addition the following conditions are satisfied.

(1) For every S € S and p € {1,---,r} such that S° is not a singleton, there exists
, Jor any i € S° some T* C C* with the following properties:

(a) TP —1i =< S°
(b) T contains players with the same weight as i only.
(c) A(T?) = A(S%).

(2) For every S E S except the < —first one, there exists p € {1,---,7} such that
T* £ 8P holds true.

Theorem 3.6 Ifv= A{A,---, A"} admits of a universally ordered partition S € &,
then , for very imputation £ € C(v), there exists a £ — consistent partition.

Proof: 1*STEP : Let § be universaly ordered by means of some binary relation
~ and let £ be an arbitrary imputation not contained in the core. We are going to
define some partition 8 C A as well as some binary relation < such that the ordering
% is not changed across the types ( i.e. players of equal weight) but within the types
satisfies
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in g | 7
(62) - f.~<J=‘~,-1%£F.
Or, in other words, within some S° we exchange players of the same tvpe until
equation ( 62 ) is satisfied. This defines the newrelation < when leaving < unchanged
otherwise.

More precisely, define = to be a permutation of ! which leaves every C? N K? un-
changed and within the types of each C” satisfies

(63) ")3n() = < F (.5 €OPNK?)

Then define the new binary relation < by

(64) i <j = n(i)=7(j) r(i,j€Q).

2™STEP :

Next the partition 8 is given by

Again let us be more precise: Sp is the coalition that for each p yields the small-
est S§ which in addition is a singleton. Hence, if S¢ = {iy}, then it follows that
w(ig)=m(j) (j € C?).ie., iy <j (j € C”) meaning that , for each p, the coalition
S is the < —smallest one. Assume that for each S we have already constructed
5” = 7(5) for all §' which are <—preceeding $. As the types of S are exactly
copied there are of each type exactly as many players available in

({5 | s#38¢})°

as in $7. Of these we take the < —minimal ones and collect of the first ones so many -
as to render the profile to be exactly the one of 5. This then yields 5.

Now given some i € 57 we put T := 7(T*) and observe that T# with respect to (i)
satisfies the conditions (1) of Definition 3.5. That is, S is universally ordered with
respect to < .

3r9STEP : We are now going to show that S in addition is £—consistent in view of
= . To this end we have to define, for any given p, the predecessor set S” for any S”.
This task is performed as follows.

o If S” is a singleton, the we put 87 := 57,
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e If 57 is no singleton, then let 1y be the player worst off in this coalition. Let T%
be the chosen corresponding to S? and iy as given by condition (1) in Definition
3.5 Deline 57 ='T".

Clearly we have constructed the data such that A\?(S”) = A?(T%) = A7(S?) as T”? and
S° have equal measure according to condition ( 1 ) of Definition 3.5, hence ( 1a) and
( 1c) of Definition 3.2 are satisfied. Moreocer, since all players of T# are of the same
tvpe as ip and as < respects the quotients f; , we may conclude that

{65} __.ﬁ‘ =07 = — = oo
X
holds true. Hence , all of Definition 3.2 is satisfied, q.e.d.

The consequence is immediately given by the following corollary.

Corollary 3.7 Let v = A{Al,---,\"} € IE. Suppose there erists a universally
ordered partition S € A. Then the core C(v) is stable.

Proof: By Theorem 3.4 and Theorem 3.6.

The important point is that universally ordered partitions can be constructed without
reference to imputations, hence it is indeed a property of the game ( or rather of
Al ..+, A7) to admit such a decomposition.

The construction of a universally ordered decomposition can be viewed as a suces-
sive introduction of larger weights into a sequence of diagonal sets which eventually
contains all players, hence is a decomposition. To clear the foggy picture we consider
some examples. We restrict ourselves to the case r = 2, hence a coalition consists
of two partners of equal weight. The coalitions of S are listet parewise. Players are
indicated by their weights and the ordering is from left to right.

Example 3.8

i 11 11 11 1itll 4 4 12
| S 6 6 22 22 6222

The first coalition consists of two singleton partners. Then successively larger weights
can be introduced. E.g. the weight 6 (located in C*) can be introduced by the
coalition

111111
S =
6

since 5 players with weight 1 are preceding S - this is condition (1) of Definition 3.5.
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Similarly, weight 12 {in C') can be introduced since its partners 6 2 2 2 do have the
required preceeding coalitions of the same type for every member: there are 2 players
of weight 6 (which yields 12 - one 6 would be sufficient !} and there are 6 players of
weight 2 (5 would be sufficient since one can always be supplied from 52 ).

the next example suggests how to introduce large weights provided there are suffi-
ciently many players of small weight:

Example 3.9

g O TS 0 B b o G R R 24
11 13 3 33 33333 12 12 123333

In a simple context the concept of sufficiently many small players available is exhibited
as follows:

Example 3.10 We take again r = 2 and assume A*, A? to be type patterned as in
Remark 1.17 , but with two types only. In each carrier the first type has weight 1.
other than in Remark 1.17 we admit the zize of each type to depend on p, i.e. we have
Jorp = 1,2

2
¥(e) = % |Kfne|g
(66) : =1

= | Kine | + | Kfne | g5.

How miany players of weight 1 will be necessary in order to admit for the construction
of a universally ordered partition? Let d denote the greatest common divisor of the
two nontrivial weights, i.e., d = g.c.d. (g3, ¢3).

Assuming we have a large reservoir of players of weight 1 available, we construct a
universally ordered partition as follows: First we take pairs of singletons with weight
1

e A G S e e |
s e R S o S e L

(67)

the number being at least max,(gf — 1). Next we introduce g; by collecting pairs
consisting of this weight and the corresponding number of weight 1:

(68)
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the number of these blocks we choose to be min{k;,’% — 1). Similarly we choose
min(k2, Edi — 1) blocks of the analogous shape

(69)

After we have taken all these blocks away, the remaining set, if any, is a diagonal
one which can be decomposed into blocks having shape similar to those indicated in
(67),(68), (69) or else the shape

959

70

o g3 g3.

All other blocks being introduced, the remainder (if any) is of shape (70) - and it
has to be diagonal. Let p and g denote the number of the remaining players, i.e., the
number of weights appearing in the upper and lower row of (70) respectively. Then
necessarily pg; = qgs or p%} = gﬁdi holds true, meaning that ¢? is a divisor of p and
g3 is a divisor of ¢. Thus we can arrange the remainder in blocks of shape (70) such
that in the upper row the number of weights is Edi and in the lower row the number

L
of weights is 2 . But this kind of block can be introduced under the criterion for
universally ordered decompositions into the present construction in view of number

of blocks of shape (68) and (69) already constructed.

This way we have indeed constructed a universally ordered decomposition which can
be imagined by lining up all blocks of the 4 shapes described above. We can also
exactly indicate the number of players of weight 1 in each carrier which was necessary
for the construction, thisisfor p = 1,2

3—p
(71) N,: = max(gf~1) + gfmin(kf, T -1).

Hence we have the following insight:

Remark 3.11 In the situatuin described by example $.10 there are nice numbers
N, (p = 1,2), such that, whenever kY > N, (p = 1,2) holds true, it follows that
there exists a universally ordered decomposition S and hence forv = A {A', A%} the
core C(v) s stable.

We call the numbers N, 'nice’ because they are sharp lower bounds. In general it
is now easy to see that there exist lower bounds for the number of players of weight
1 in order to construct universally ordered decompositions. We restrict ourseves to
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the case of two (orthogonal}'measures in order to simplyfy the notation. A slightly
modified argument would do the job for arbitrary r.

We assume that the A (r = 1,2) are type patterned according to

Ts
(72) ¥{m) o= | Kine| 5 3 | KEoe [

=2

with integergf. Let the greatest common divisors be denoted by
(73) #,: = ged (gg")

The relevant numbers are given by

(74) N,: = max gh—1) + Zg,, z min(k’, g{, - 1).

p=L2,7=2... =} =2

Indeed, we have

Theorem 3.12 Let ) (p=1,2) be given by ( 72) and N, (p=1,2) by ( 74). Then,
whenever ki > N, (p = 1,2) holds true, it follows that there exists a universally
ordered decomposition S and hence forv = A{M',---, X"} the core C(v) is stable.

Proof: In order to construct the universally ordered decomposition, we start out
by taking blocks of shape (67), their number is taken to be

(75) max (g5 —1)

p=l27=2_.T,

and the number of players of weight necessary for this procedure is the same. Next,
for fixed p, we buildt up blocks of shape

(76)

corresponding to shape (68) above; the amount of such blocks required is for each 7
given by

Taep QS—p
(77) i f A2 N {EE -1
: g=1 e

and hence the number of weights 1 necessary to construct these blocks is

Ta—p g.'i—,a .
(78) g¢° - min (kf, (Z é’g{r ) — 1) :

=1
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Summing these terms up over T we obtain the second part in ( 74). Suppose now we
have introduce all blocks of the first and second shape, consider a remaining block
which may look like

02:---193: ** Ghs--r9h

HE+ -*:5’%: =y E:Qi"zs---rﬁ%z

since the set is diagonal, the numbers of weights appearing in each C* (i.e. on top
and on the bottom of 79) have to satisfy

(79)

T Ta
(80) 3 pepl = 3 wap

] ; =2

Now, if it so happens that, for some 7, we have

(81) Pr l_‘-‘

|:r-2

then it would follow that

T

(82) fria Z s {f{’ =% 5
a=2 o

is the case. Hence, in view of (80), not all the g, could satisfy

gl

{83} o = -
4.
Therefore, we could find & with
gz
84 i
I: :] 2 Z d'}a d&a
and :
(85) i
This means that we can ta.ke a subblock of the shape
l e . 1
(86) L
e g

(with number of weights on top -%7- number of weights at bottom -5}-] out of the
remainder of shape (79) , this block can be introduced into the pa,rtltmn since we
have already enough blocks { 76) introduced.

After having repeated this procedure as many times as necessary, we know that

(ST] Pr =< Z _:

|:r—2
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and the analogue for g, is satisfied. Hence we can introduce the remaining block of
shape (79) again in view of the number of blocks ( 76).

A similar consideraton can be offered if (79) does have a slightly different shape, e.g..
some weights of shape 1 appear. g.e.d.

Remark 3.13 (1) The condition that the smallest weight in each carrier equals 1

(2)

(3)

(4)

can be relazed. g ean be a divisor of all ¢° (v > 2) which must, however, be
the same in each carrier.

In a slightly changed setup, let A be an integer valued measure which is homoge-
nous w.r.t some integer & constituting a (nontrivial) simple homogeneous game
‘without steps’ (see [7],/12], or [9]). Let A\',---, A" be orthogonal copies of X°.
Then with some milder conditions (e.g. k? > 2%—1 — 1 ) towards the number
of players of the smaller weights the existence of a universally ordered partition
and hence the stability of the core of v = A{A',---, X"} can be established.

The numbers (74) cannot be called nice. The examples show that the introduc-
tion of larger weights can be managed by smaller weights other that 1; we cannot
claim that we have found good lower bounds. This may be a combinatorial prob-
lem which iz not gquite straightforward.

The numbers (74) are bounds for the numbers of players of smallest type, i.e. k{
which involve numbers of players of larger type, i.e., k2 (r =2,...,T,). There-
fore we have specified regions of distributions of players over the type (i.e. vec-
tors kf) such that the core is stable. This is not uncommon in n.d. theory, see

ag AL
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