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1. Introduction

This paper continues the development of a purely -ordinal approach to
potential games started in Kukushkin (1999). Since the latter paper has not
yet appeared, its basic ideas are reproduced ‘in the text below.

The main points are these. Generally following Monderer and Shapley
(1996), we reject their (cardinalistic) view that a potential must be a
numeric function: an order containing effective preferences of all  players
will do. Instead, we impose a topological restriction, monotone upper semi-
continuity (MUSC), guaranteeing nice dynamics of better replies and the exist-
ence of a Nash equilibrium if every strategy set is ‘compact in a metrics.
Thus, in the f{inite case, the class‘ of potential games as defined here coin-
cides with the class of “generalized ordinal potentiai games” as defined by
Monderer and Shapley. In the infinite case, both components of the symmetric
difference of the two classes are not empty.

This paper pursueé three main objectives. First, we define a strong
potential, related to coalition improvements and strong equilibrium in the
same way as the potential is related to individual improvements and Nash equi-
librium, and provide examples of strong potential games. Second, we describe
games with perfect information giving rise to potential normal forms; an
important particular case are agent normal games, és was shown in Kukushkin
(1999). Here the potential for such games is somewhat modified, providing an
adequate expression for the backward induction principle. Finally, a weaker
concept of a semi-potential is introduced, providing an insight into better
reply dynamics in models such as games with perfect information and voting by
veto.

In Section 2, basic definitions from Kukushkin (1999) are reproducéd;

Theorem 1 (cited from the same paper) provides a justification for the MUSC



condition.

In Section 3, a definition of a (very) strong potential is given; two
classes of strong potential games are described. The second one, "games with
public and private objectives” is not devoid of serious economic meaning.

‘Section 4 contains the definition of a finite potential game form and a
technical lemma useful for establishing the property. The important concept of
" a semi-potential is also defined there.

In Section 5, a necessary and suificient condition for a finite game with
perfect information to have a potential normal form is established. A poten-
tial for the agent normal form is introduced, a bit improving that constructed
in Kukushkin (1999): A strategy profile is a maximizer for the potential if
and only if it is a subgame perfect equilibrium.

Theorem 6 of Section 6 shows that every game ‘with perfect information
gives rise to a semi-potential game form.

Two classes of semi-potential game forms generated by the voting by veto

principle are presented in the last Section 7.

2. Basic Concepts

A strategic game is defined by a set of players N ahd, for each i€N, a
set of strategies X and a preference relation U, a strict order on the set
of strategy profiles X=II; N%,;- We usually assume that each Ui can be described
with an ordinal utility function u, ie gUx |if and only if ui(y)>ui(x).
This assumption considerably simplifies the exposition even though I believe
it is not necessary for the results as such. Anyway, we are only losing rather
exotic preferences: incomplete or too complicated. Furthermore, we assume a
metrics on each Xi such that each u -is, at least, upper semi-continuous in
own variable; normally, we assume each Xi compact in the metrics.

First, we define the effective preference relation Pi for each ieN:



yPx | ui(y)>ui(x) & y =x_ ].

Obviously, x is a Nash equilibrium if and only if x is a maximizer for each Pi
(or,‘ the same, for their union). If preferences Ui - are replaced 'with Pi, the
set of Nash equilibria remains intact (although the new preferences are in-
complete).

The most obvious property of a binary relation conducive to the existence
of a maximizer is transitivity. Hence our preliminary definition (quite
satisfactory for the finite case):

A potential P is a strict order (ie. an anti-reflexive and transitive
binary relation) on X containing each P, (i.e. yPx = yPx).

For an infinite game, our preliminary definition does not guarantee
either the existence of a Nash equilibrium, or. good behaviour of "myopic;,l"
learning processes; this was shown in Kukushkin (1999), Example 2.

Let P be a strict order on a metric space X; we call P monotone upper

semi—continuolus (MUSC) if this condition holds:
[x5 5> x® & TP for all 2=1,2,...] = x®PxE for all £=1,2,...

Theorem 1. Every strict MUSC order on a compact metric space has a maxi-
mizer.

The idea behind the theorem is  quite straightforward: suppose we try to
build a P-increasing infinite sequence; if this proves impossible, we have a
maximizer; otherwise, we pick a limit point and continue. The MUSC condition
ensures that we never come back; therefore, eventually” we will find a maxi-
mizer. A rigorous proof, based on Zom's‘ Lemma, is to be found in Kukushkin
(1999).

| Ultimately, we call P. a potential if it is a strict, MUSC order contain-
ing every P, A game is called a potential game if it admits a potential. '

Corollary. Every potential game with a compéct set of strategy profiles



has a Nash equilibrium.

Remark. There remains an interésting question of whether the MUSC condi-
tion on P can be derived from PP if P'i are defined with good enough ﬁtil-
ities u’i(x). In the above-mentioned Example 2 of Kukushkin (1999), the util-
ities were only upper semi-continuous; no similar example with continuous-
utilities is known. |

Since every strict order on a finite set can be extended to one defined
with a numeric function, in the f{inite case what we call "a potential game” is
exactly what Monderer and Shapley call "a generalized ordinal potential game.”
In the infinite case, there are two diiferences: on the one hand, we impose
the MUSC condition; on the other hand, we do not impose the condition that the
potential should be represénted by a numeric function. I must confess I am

unable to understand motivation for the second restriction.

At the end of this section, we introduce an- abstract concept to be wused

in Sections 6 and 7. Let v=<v >, o, be a finite cortege of real numbers; we

he
denote Az?(v)=<§1(v),...,z?m(v)> a cortege of the same length obtained by arrang-
ing all v in the increasing order. Now, having two corteges of the same
length m, v’ and 0", we say that v’ dominates v”, v’@v”, if 9 (v")=d (v") for
- all k=1,.,m; we say that v’ strictly dominates v”, v’@%"”, if #(v’) Pareto
dominates #{v”). For technical convenience we also allow em.pty corteges with
m=0; for such corteges, @ is always true'and g°, never. |

Remark. This relation is a partial case of the stochastic dominance
relation. I have preferred an independent definition because there is no

stochastics in our context. Actually, several equivalent definitions are

possible.

3. Strong Potential Games
Let us turn to coalitions. Assuming / to be a non-empty subset of N, we
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define the effective coalition preference relation PI in this way:

yPx « [ (Viel ui(9)>ui(X)) &y =x 1

A strong potential is a strict, MUSC order on X containing every PI.

We also define the effective weak coalition preference relation PI:
yPwa e [ (vie! ui(y)aui(x)) & Qies ui(y)>ui(x)) & y =x_ 1.

A very strong potential is a strict, MUSC order on X containing every PIw.

A (very) strong potential game is such that admits a (very) strong poten-
tial. Every (very) stfong' potential game with compact strategy sets has a
- strong  equilibrium  (there are two slightly different definitions for the
latter in the literature).

Remark. When this paper was practically finished, I discovered the paper
of Holzman and Law-Yone (1997), introducing a concept of a strong potential
differing from ours in the same way 'as that of Monderer and Shapley’s. Holzman
| and Law-Yone suggest different examples of strong potential games.

In the following, two classes of strong potential games are considered.
Games of both classes may have arbitrary (finite) sets of players and arbit-
rary (compact) strategy sets X. It is the structure of utilities that ensures
the exiétence of a strong potential in either case. _

Suppose the set of players is ordered, say, N={1,..,n}, and each play-
er's utility only depe.nd's on' his own choice and the choicés of the preceding
players, i.e. ul(x)=u1(x1), uz(x)=u2(x1,x2), étc. We define an order P on X
as: zPx if and only if there exists jEN such that y=x for all i<j and
uj(y)>uj(x); its transitivity is checked easily.

Theorem 2. P is a strong potential if every utility has the structure
indicated and is upper semi-continucus in own choice. |

Let us prove the inclusion PIEP first. Suppose yPIx and denote j=min/.

Now yPyx implies uj(g)>uj(x) while y=x for all i<j since y =x_; therefore,
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yPx.

~ Now assume xk_-:’ x? and x**'PxE for all £=1,2,..; we only need to prove
x@PxE for arbitrarily large k. For each &, we take j(k) from the definition of
£5*1pxk and define j=lim iy, j(k). For every i<j, the sequence of xik sta-

w:

bilizes at some stage, so x, xik for all k2 large enough. Now we may restrict

ourseives to those large k’s; then at every step we have either xjk“=xjk or
uj(xk+1)>uj(xk), with the latter inequality emerging for arbitrarily large &,
50 uj(xw)>uj(xk) by the upper semi-continuity of ey hence x@PxE,

Remark. Ii every utility is upper semi-continuous in x, we can use a
simpler potential, just lexicography in the | utilities space. Although this
potential also need not be very strong, it contains the Pareto dominance, so
every maximizer is (stro_ng) Pareto optimal. However, under milder topological
assumptions such lexicography need not be MUSC (and indeed, there may be no
Pareto optimal equilibrium).

This simple class of strong potential games demonstrates an inconvenience
stemming from imposing the restriction that a potential must be numeric. Since
the lexicography cannot generally be described by a numeric function, some
games from the class would be classified as allowing no potential if such a
restriction were imposed (see e.g. Example 4.1 of Voorneveld and Norde, 1996)
while for others establishing the existence of a numeric strong potential
could be a serious problem. On the other hand, game-theoretic irhplications of
the existence of a potential are the same regardless of whether it is numeric

or not.

Now let us consider a few modifications of a model due to Germeier and
Vatel’ (1974), see also Kukushkin (1992, 1994); a rather partial case of the
model was, apparently independently, considered in Moulin (1995).

This time, the structure of utilities is as foilows. There is a “public”



characteristic of a situation described by a function fN(x) (e.g. minus logar-
ithm of the concentration of a pollutant in the air) and a “private” charac-
teristic described by a function fi(xi) (e.g. monetary income) for each iEN.

Each player i€EN has an aggregating function Fi: R® > R% and
ulx) = FAf (x).fLe )}

Even assuming that all functions fN, fi are upper semi-continuous in their
variables, we cannot hope for any good properties of such a game as long as
»aggregators” Fi' remain arbitrary.

If each Fi is the sum, ie. the public and private characteristics are
perfect subs‘titutes for each other from every playef’s viewpoint, there is a

cardinal potential

flx) + =, ol lx).
(The proof is straightforward.) Under milder (and ordinal) assumption that F-
is the sum up to monotonic -transformations, ui(x)=li(pN(fN(x))+yi(fi(xi)), the
potential becomes only ordinal in the sense of Monderer and Shapley. Roughly
speaking, this is the case for a Cournot model with identical linear costs.

More interesting is the situation where both characteristics are “absolu-

tely 'complementary”, ie.
ul(x) = min {f (x), fi(xi)}. | (1)

Denote & the strict leximin order on RY and define a strict order P on X as
yPx o u(y)@u(x).

Theorem 3. P just defined is a very strong potential for a game with
utilities satisfying - (i ).

The MUSC property easily follows ifrom the upper semi-continuity of u in
x (somewhat similar to how it was done in the‘ proof of Theorem 2); let us show

PYcP for each /SN. Assuming that y.x€X are such that y =x , ui(y)aui'(x) for



all i€/, and ui(y)>ui(x) for some i€/, we have to show u(y)@u(x).

Suppose [, (y) a_fN(x); then y=x, implies uj(y)zuj(x) for all je&l There-
fore, u(y) Pareto dominates u(x). 7

Now let fN(y)<fN(x); for each i€l we have ui_(x)s_:ui(y)st(y) (and the
first inequality is strict for some ). On the other hand, if j@&/ and uj(x)<
fN(y), then uj(x)=fj(xj)=fj(yj)=uj(y). Finally, if j&fl and uj(x)afN(y), then
fj(yj)=fj(xj)a_uj(x)2 fN(y), hence uj(y)=fN(y). It follows immediately that
uly) 2ulx). | |

If each Fi is the maximum, the exact analogue of Theorem 3 remains valid.
One can also consider combinations of the minimum and maximum of a certain
kind, see Kukushkin (1992); the latter paper did not use the concept of a
potential explicitly, but the suificiency part of its main theorem can be

reformulated in these terms.

4. Potential and Semi-Potential Game Forms

A game form G is defined by a set of players N, a strategy set X for
each i€EN, a set of outcomes A and a projection z: X > A, where X=HieNXi is the
set of strategy profiles. Once preferences of the players over the outcomes
are specified (and we always assume this to be done with utilities X A > R), .
a derivative game G(u) (where u denotes a list <u>;_\) emerges. A notational
abuse is thus committed when we simultaneously have utilities ui(a) and ui(x)=
ui(n(x)); however, as long as the abuse is recognized, it cannot have any
disastrous consequences. Actually, we consider only finite sets Xi, so there
is no need for any topological assumption.

Naturally enough, we call G a potential game form if every derivative
game: G{u) admits a potential. Exémple 1 of Kukushkin (1999) shows that the
agent normal form of any (finite) game with perfect information (see Selten,

1975) is a potential game form.



There are two principal ways to establish the existence of a potential
for a finite strategic game: either to define a potential explicitly, or to
show the impossibility of improvement cycles {(for an. infinite game, the second
method is rarely workable, see, however, Nakamura, 1975). When it comes to
game forms, we may use either method assuming arbitrary preferences; there
also exists a “third. way” based on the game jorm itsell without any reference
to utilities.

Let us introduce necessary definitions. A strategic path';c is a sequence

Ol xPeX together with i(k)EN for each k=l,.m such that x*'=x*

-i(k) -i(k);
a strategic cycle is a strategic path such that x%=x™ With every path x, we
associate N(;c)={i(k)l ke{l,..m} } (the set of players involved) and, for

each i€N(x), a binary relation Ri(;c) on A:
aR(x)b & T [ n(r")=b & nl¥)=a & ik)=i].

A bad cycle is a strategic cycle x for which every Ri(;) is acycltic (in par-
ticular, asymmetric).

Lemma 1. A finite game form is a pofenﬁal one if and only if it allows
no bad cycle.

If there is a bad cycle, then each Ri(;) can be extended to a strict
order relation, which can be taken for preferences of player i. Now the bad
cycle becomes an improvement cycle (regardiess of how the preferences for
players not invelved in the cycle are defined).

- On the other hand, for whatever preferences, a strategic cycle generating
Ri(;c) with a cycle cannot be an improvement cycle. |

Examples. Let us consider two game forms with twe players:

1.a a a 2.¢c ¢ b
b ¢ c a a
b d e b a b

It can easily be seen that neither of them allows a bad cycle (actually,
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Example 1 belongs to Section 5 below and Example 2, to Section 7).

The idea of a potential may work (e.g. as a reason for equilibrium exist-
ence) even when there is no potential as defined so far.

Let G be a ‘game form and G(u) its derivative game. A semi-potential for
G(u) consists of a strict order S on X (semipotential proper) and binary
relations S, (for all i€N) such that

i SeP,

(i) S.<S,

(i} yPx = 3z [ 2Sx & n(2)=xn(y) 1.

The relation ySix is pronounced as "y is an admissible improvement over x (by
player i)*. The existence of a semi-potential implies that no cycle can be
formed of admissible improvements, while for any one-sided improvement- there
exists an equivalent admissible one. In particular, everf maxifnizer of § is a
Nash equilibrium. As to better replies dynamics, very much depends on the
interpretation of the system of Si’s; the conclusion may range from "an im-
provement cycle is impossible unless the players deliberately create it” to
"an improvement cycle cannot happen if the .players are careful enough”.

Quite similarly, a strong semi-potential for G(u) consists of a strict
order S on X and binary relations S (for all non-empty /€N) such that

@ ScP,

(i) S.g8,

(iii) yPx = 2 [ 28x & n(z)=n(y) .

The interpretation is largelj the same. Every maximizer of § is a strong
equilibrium. A very strong semi-potential could have been defined easily, but
so far no example of such a thing is known.

If every derivative game G(u) admits a (strong) semi-potential, we call

G itself a (strong) semi-potential game for_ml. Examples of such forms are given
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| in Sections 6 and 7 below.

5. Games with Perfect Information: Potentials

Since the concept itself should be familiar, I just fix notation. The
game tree has the set K=MUT of nodes, where T consists of terminal nodes and M
of decision nodes. M is partitioned into Mi for i€N so that player { moves at
nodes from Mi. The structure of the tree can be described by the tree order on
K, a>f -meaning o« comes after B; in terms of this order, 7 is the set of maxi-
mizers and the origin « is the least element of K. The set of moves available
at each node a€M may be identified with the set pf immediate successors XQQK.
For the necessity part of Theorem 4 below to be true, we demand #X >1 and €M,
= [XmﬁMi is empty]; obviously, these restrictions inflict no loss in general-
ity. For every x€X and deM, wa.x)E€T is uniguely defined as the result of
pléying x starting at o. |

The standard normal form is a game form with X =I7 X  (so the set of
i aEMi o .

strategy profiles is X=I1; - ;X =II M‘on)’ A=T, and n(x)=1:(a0,x). As is shown in
Kukushkin (1999), a derivative game of a form of this kind need not allow a
potential; however, a potential always exists if each _Mi is a singleton. Here
we provide a description of games with perfect information guaranteeing the
existence of a potential regardless of preferences.

Just one definition more is needed. We say that a game with perfect in-
formation has well arranged moves if every Mi is a chain in the tree order
(i.e. for every player there exists a play of the game cbntaining all his
decision nodes).

Remark. Although the property is quite easy to comprehend and to test for
a particular game tree, it is not intuitively clear why it should play the key

role in the problem of a potential.

Theorem 4. The normal form of a game with periect information is a poten-
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tial game form if and only if the game has well arranged moves.

The necessity proof essentially consists of two examples.

Example 3.
2 1 3
a<—ﬂl<-a0—>ﬁ2—>d
v 4
b c

We assume M1={ozo}, M2={ﬁ1,ﬁz}.
Now we note that the following strategic path is a bad cycle:
<Bad>, <Bad>, <Bbc>, <B bc>, <B .ad>;
/indeed, the cycle generatés these binary relations: dea, lec, chd, asz.

Example 4.
1 2 1 3 1
a<—y2<—ﬁ2<—a0—>ﬁ3—)y3->f
v 3 ¢ L
b c d ‘e

We assume M ={a,p.v}, M,=18}, M =8}.
This time, the bad cycle looks as follows:
<ﬁ2af,y2,y3>, <ﬂ2af,c,y3>, <)33ae,c.y3>, <83ae,c,d>, <ﬁ2be,c,d>,
<ﬁzbe,y2,d>, <ﬁ3bf,y2,d>, <ﬁ3bf-,y2,y3>, <ﬁ2af Yy¥s”
generating these binary relations: éRlchdeb, ale, _szcha, fdeRse.

It is important to note that the union of R2 and R3 is also acyclic. If
we “consolidate” players 2 and 3 into a single player, the bad cycle will
remain a bad cycle.

Let us now finish with the necessity proof. Suppose a player i has two
decision nodes, «’ and «”, incomparable in the tree order. Then we define a=
a’Na” (K is a lower semilattice in the tree order) and denote j the player
who moves at « If i#j, we may use the bad cycle from Example 3 (fixing the
decisions taken before a, or between « and «’, etc. in an obvious way) with «

as a, a’ as ﬁ‘l-, and a” as ﬁl. If i=j, we pick a decision node Bz between «

13



and «’ belonging to a different player and a decision node B, between a and a”
also belonging to a different plaver and use the bad cycle from Example 4 (as
was noted there, it does not matter whether the same player moves at ﬁz and
B, or two different players). - ‘

The sufficiency proof goes by induction (e.g. in the number of nodes). A
game with a single node obviously admits a potential.

Supposing the existence of a bad cycle x in a game with well arranged
moves, we, first of all, note that subsequent changes of strategy by the same
player can be combined together (if i(2)=i(k+1), x* can be deleted from the
cycle), so we may assume i(k)#i(k+1) for all £=0,1,..m. Then we define «_for
each k=1,..m as the least node where a decision taken was changed in the

k-1

transfer from x5! to xf (it is well defined because each M is a chain).

Finally, we pick a minimal o for £=1,..m (actually, it must be the leaSt
among all a, but we do not need this statement). The followihg diagram may

help a little.
4

’ "
« « ... € < -2 2 e 2 >
ak'-l . ﬁ ak ﬁ ak+l

4 +

By the choice of o, 1o change is ever made at the nodes between o, and

@, SO we may just forgét about them. Since Mi(k) is a chain, at least one of
the subtrees starting at g’ or B8~ cqntains no. node from Mi(k); we may assume’
it to be that starting at 8. Denote L={y€K | y=p’} and N(L)={ieN() l MNL is
not empty}; N(L) itself is not empty because i(k-1)€N(L). With every strategy
profile x of the initial game, we associate its projection x to the subgame
L: in particular, every x® is transformed into xLl' (for A=0,1,..m). Let us
show that ;cL turns, after deleting repeﬁtions, into a bad cycle for the sub-
game. This will contradict the induction hypothesis.

Indeed, if i(#)&N(L), then player i(h) has no decision node in L and th=

b-1

x " when considering x , we simply delete such steps. If i(r)eN(L), then

14



all the decision nodes. player i(4) has outside L precede . hence every
actual change is done ‘inside L; therefore N(;cL)=N(L) and each time when
(R eN(L), we have n(x")=tla,x™) and n(x")=rla x®). It follows easily

that Ri(;cL)=Ri(;c) for every i&€N(L). The theorem is proved.

It should be noted that we thus only have an indirect proof of the exist-
ence of a potential. For an important particular case of a game with singleton
Mi’s, an explicit potential was defined in Kukushkin (1999), every maximizer
of which is a subgame perfect equilibrium. The importance of the case stems
from the fact that we may, in any game, replace every player with a team of
agents having the same preferences so that each agent has just one decision
node (Selten, - 1975); the sets of subgame perfect equilibria of both games
coincide. Now I present a modification of that potential. '

Suppose #Mi=1 fqr every {E€N; we may then identity M with N and consider
the tree order as én order on the set of players. First we define auxiliary,
"subgame perfect” utilities: wi(x)=ui(t(i,x)j, ie. each oplayer is only inter-
ested in the result of aﬁ "imaginary” play starting at his decision node; we
may use notation G(w) for the game with strategy sets Xi and utilities @, but -
it should be stressed that G(w) is not a derivative game of the same game with
perfect information G. The set of Nash equilibria of G(w) coincides with the
set of subgame perfect equilibria of G(u).

Now let us define a strict order P on X:
yPr = [ 3ieN w(y)>wlx) & ViEN (g =x = Tizj wy)>wlx) )]

(Checking the transitivity of P is a bit more sophisticated than in Theorem 2,
but still quite straightforward.)

Theorem 5. If every player has just one decision node in G, then P just
defined is a potential for G{u), and a profile x&€X is a maximizer for P if and

only if x is a subgame perfect equilibrium of G(u).

15



Let yPx; then wix)=n(x) and z(i,y)==n(y), so wi(y)=ui(y)>ui(x)=wi(x).
‘Since Y=x, fof all j#i, we have yPx.

If x€X is not a subgame periect equilibrium, it cannot be a maximizer of
P - just pick any profitable individual deviation in a subgame. If x€X is not
a maximizer of P, then yPx, hence {{EN | yithi} is not empty, so we may pick a
maximal element of it, i.e. {EN such that y#x and y=x, for all j>i. Since
yPx, there must be wi(y)>wi(x) but wi(y)=wi(x.i,yi); therefore the equilibrium
condition for i at x in. the subgame starting at { is violated.

Remark. It is funny to note that P is a strong potential for G(w), cf.

Theorem 2. This property is lost when we return to utilities .

6: Games with Perfect Information: Semi-Potentials

Now the concept of a semi-potential comes to the scene. Both bad cycles
of Examples 3 and 4 contained changes of decisions outside actual play, which
cannot serve any useful purpose. A hypothesis naturally emerges that cycling
would become impossible if we prohibited such unnatural behaviour. The hypo-
thesis proves correct.

From now on, we consider the normal form of an arbitrary game with per-
fect information' with fixed (arbitrary) preferences. Let x€X and iEN; we call
y€X an admissible improvement over x by player i, ySix, if yPix and for each
acM | X EYy = Y= n{y) 1. To define a semi-potential proper, we need further
notation. Let x&€X, a€T, we say that a is blocked -by player { at x if there
- exist a€EM, and ﬁ'eXa such that (f.x)=a and xa-f:ﬁ. It is easily checked that
every a€T\{n(x)} is blocked by a unique piayer i; we denote this fact by
aéT(i,x), obtaining a partitioning of T\{zm(x)}. It is important to note that
mi=#T(i,x) does not depend on x; actually, mi=[22‘"x e M.#Xa]-#Mi' With every pro-

file x€X, we associate n corteges vi(x)=<ui(a)> aeT(y) ©f the lengths m.

Now we define our semi-potential as
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ySx & | VieN v{x)@'(y) & FieN v'(x)2%'(y) ],

where the relations @ and @° were defined at the end of Section 2.

Theorem 6. The relations S and S, (i€EN) just defined form a semi-
potential for the normal form of any finite game with perfect information.

The conditions (i) and (iii) from the definition are checked easily; only
condition (ii) may deserve a few words. Let ySix; we have to show ySx.

We denote a=n(x) and b=n(y); let us show T(jx)=T(jy) for each jsi.
Assuming c€T{jx), we, by the definition of blocking, have aEMj and ﬁeXa such
that z(8,x)=c and x,#p. Since j#i, y =x #B, so c& T(j,y) could only be possibie
if 7(8,y)=%c. However, y=p is incompatible with y<b because § is incomparable
with &; therefore, by yS., ¥y=%,, for all y=p, hence z(8,y)=1(8,x)=c. Now
T(j,x)=T(j,y) for all jwi implies T(jx)=T(j,y) for all j#i, hence T(iy)=
(TG)\{BHU{a}.  Since u(b)>ula), v ()F(y); since vi(x)=(y) for j=#i,
we have ySx. The theorem is proved. |

Example 5.

We assume M1={a0}, M2={ﬂ}; ula)=<1,2>, u(b)=<2,1>, ulc)=<0,0>.

There are just rtwo equilibria here: <B,6> and <a,c>, only the first one
being subgame perfect. According to Theorem 5, <B,b> is the unique maximizer
of the potential defined there. Let us look at the semi-potential from Theorem
6. At <Bb>, we have T(1,8,6)={a}, T(2,8,0)={c}, so v'(B.6)=<1>, 0v*(B,b)=<0>;
at <a,c> T(Lac)={c}, T2a.c)={b}, so v'(ac)=<0> ov*ac)=<1>. Both equi-
libria are maximizers for the semi-potential (which, incidentally, is a poten-
tial in this example).

I must confess I do not believe that Example 5 points out any deficiendy
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of our semi-potential. The very idea of a -potential is naturally associated
with gradual, "myopic” adaptation of the players to a situation they may not
perceive as a whole. The subgame perfeciness concept, on the contrary, assumes
the whole tree under consideration at once. If the players start at the
profile <gB,c> and playér 1 adapts the tirst, player 2 will never have an
opportunity to reconsider his choice. After all, the choice between the two
equilibria here is a question of leadership, of who is to adapt the f{irst, and
the semi-potential catches this aspect perfectly. VCertainly, evolutionists
would argue that myopic adaptation implies subgame perfectness if small mis-
takes are allowed for. However, there is no place for "small mistakes” in the

strictly ordinal world considered here.

7. Voting by Veto

The principle of voting by veto appears to be due to Peleg (1978) and
Mueller (1978). Here we are not concerned with the importance of the idea for
social choice theory; I will consider strategic games based on the principle
just as examples of game forms ensuring the existence of strong equilibria for
every preferences of the players. And the main objective of this section is to
“establish the presence of a strong semi-potential in such games.

There is the set of players N and the set of outcomes, or alternatives,
A. The players -may have arbitrary. preferences over outcomes described by
(ordinal) utilites #: A » R. A voting by veto procedure specifies positive

integer numbers A(a) and u, for each a€A and i€N such that
zaeA Ma) = ziEN B+ L ‘ 2)

B, is the number of black balls given to player i; Ala) is  "veto-resistance”
of outcome a. We assume a finite set Ti with #Ti=,ui for each i€N such that all
Ti’s are disjoint; we denote T=UTi. A strategy of player [ is a mapping X T,

» A. Having a strategy profile x, which can be understood as a mapping x: T -
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A, we denote x(a,x)=#x"(a). An outcome a is vetoed at x if x{a.x)=Ai(a) and
over-vetoed if the. inequality | is strict. Equality (2) ensures the existence of
non-vetoed outcomes at every strategy profile; if no outcome is over-vetoed,
there is just one non-vetoed outcome. A voting procedure is ultimately de-
scribed by a mapping 7 X » A such that =(x) is not vetoed at x for all x€X.

Peleg (1978) effectively showed that every such game has a strong equi-
librium, at which no. outcome is over-vetoed; more good properties are de-
scribed in Moulin (1983). Unfortunately, I cannot say anything about poten-
tials or semi-potentials for all games from this wide class; we have to
specifly m. Actually, we consider two such mechanisms. The first of them uses a
more or less standard procedure for tie-breaking. The second was introduced by
Gol'berg and Gurvich (1986); its only justification lies in good formal pro-
- perties of the games generated (Gol'berg and Gurvich showed that the mechanism
ensures dominance-solvability in most cases; here it turns' out that it also
allows a  rather simple semi-potential). I know of no convincing interpretation
for the mechanism in any voting context. -

The first mechanism, 7, presupposes a complete order on A. If more than
one outcome is not vetoed, the highest of them is selected.

The second mechanism, M assumes. that A is arranged into an oriented
circle and superfluous black balls are shifted clockwise till all the empty
places but one are filled; the only outcome that remains not vetbed after this
procedure is declared winner (formal definitions are given below).

Theorem - 7. The mechanism T always gives rise to a semi-potential garhe
form.

Let us construct a strong serni-potentiél for any game from the class. As
a preliminary explanation of the concept of admissible changes adopted, 1 can
~put forward two general ideas. First, the players should avoid unnecessary

changes. (e.g. a coalition might order twe members to exchange some of their
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ballots cast to different outcomes; such a change cannot promote ény change in
the outcome selected, but may well upset a forming equilibrium); the
admissibility concept in the previous section was based on this idea alone.
Second, the players should not rely too heavily on peculiarities of the
procedure as contrasted to its general spirit (if you are not satisfied with
the currently selected outcome, add more black balls to it rather than
inventing indirect ways to have another one selected). In particular, we
assume that the players should never deliberately create over-vetoing.

The exact definition of an ‘admissible improvement, ySIx, naturally,
includes the requirement that yPIx, ie. y must be an improvement over x for
coalition and the following four “rules” (which seem easier to .perceive
than a single logical formula):

1) if K(a,y)i"}.(a) and y(f)=a, then x(f)=a (for any a€A and t€T);

9) if xlax)>Ala) and xla.y)<xla,x) for some acA, then no further rule
applies; |

3) if b=nly)>n(x)=a, then there exists I"€T such that x(#°)=b, y(f)=gq,
and y(t)=x(t) for all t#t% |

4) if b=n(y)<n(x)=a, then [y(t)=c = x(t)=c] and [x(t})=d = y(#)=d] for all
c<b<d and t€T.

Rule 1) says that the players should not Creafe new over-vetoing or add
to existing one; rule 2), that if over-vetoing is actually diminished then
nothing - else matters. 1f the change does not toﬁch over-vetoed outcomes, rules
3) and 4) prescribe economy of effort. To shift the outcome selected upwards,
it is sufficient to remove just one ball from the outcome desired, so rule 3)
deménds that exactly one ball should be removed and put to the previously
select_ed outcome. To shift the outcome downwards, one has to veto everything
between the former and the new outcomes; however, there cannot be‘ any need fo

put new balls below the desired outcome or remove balls from above it, so rule
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4} prohibits such superfluous activity.

The explanation of the rules simultaneously. proves condition (iii) from
the definition at the end of .Section 4 (it may be worthwhile to add that
equality (2) implies that a ball removed from an over-vetoed outcome can
always be put somewhere without creating new over-vetoing); condition (i) is -
included into the definition of Si. Let us define the semi-potential proper.

I again avoid complicated logical formulas; § is lexicography over the
three following orders. Comparing two outcomes, y and x, ‘we look at their
“total over-vetoing” first: if X - 4 maxix(a,x}-A(a),0] > Zae a4 maxlila.y)-ia),
0], then ySx. In the case of equality, we invoke the second criterion. For
every profile x€X, we introduce notation s(x)=max{a€A | Zpsn max[A{#)-x(b,x),0]
> 9}, (assuming the maximum of an empty set to be mind), B(x) = {deAI
Ma)=klax) & a=zs(x)}, (not over-vetoed outcomes not below “the second
blank”), T(ix) = xi'l(B(x)), mx) = #T(x), mx) = <m(x)> n v'x) =
<ui(x(t)->fET(i,x)' Now, if m(y) Pareto dominates m(x), we set ySx. Finally, if
m(y)=m(x), then ySx if and only if v(x)@v(y) for all ieN and v(x)P°0'(y)
for some i€N (where the relations @ and @° were defined at the end of Section
2). | |

Suppose ySix; we have to show ySx. If rule 2) is applicable, then the
first criterion works; so we may assume that no over-vetoed outcome was
touched. Let us denote a=n(x), b=n(y).

Suppose b>g first; then rule 3) must be applicabie. Everything above a is
vetoed at x, so s(x)sa. To be more precise, s(x}=a if Ala)>x{ax)+l, and
sx)<a if Ala)=xlax)+1; in either case, s(y)=s{x), hence B(y)=B(x) and
m(y)=m(x). Moreover, for all j%i (where €T for £ from rule 3)) we have
Hy)=c/(x), while x)@°0'(y) because i€J, hence ui(b)>ui(a). Therefore,
ySx.

Suppose b<g; then rule 4) must be applicable. Since everything above & is
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vetoed at y, s(y)sb.. Consider four alternatives. If i(a)>x(a,x)+l, then s(x)=
a>sly), so Blx)CB(y), m(y)zm(x) for all i€N, and mly)>m(x) eg for every
player i with x{t)=#y(t)=a for teT. If Alc)>xlc,x) for b<c<a, then s(x)=c>
s(y), so B(x)CB(y), mi(y)zmi(x) for all i€N, and mi(y)>mi(x) e.g. for every
player i with x(8)#y(f)=c for te T. If both inequalities considered are wrong,
a unique ball e T, (iel) was shifted from somewhere =& to a. If x(°)<b, then
AMb)>k(b,x), so s(x)=b=sly), hence x(t)&B(x), hence m_ strictly increased.
Finally, if x(:°)=b, then s(y)=s(x), hehce B(y)=B(x), hence m(y)=mlx), but
Hy)=v*(x) for j=i while v(x)@°'(y) because u(b)>u(a).

The theorem is proved.

Example 6. Let A={ab.cd.e} arranged in the alphabetic ordér, N={1,2,3},
all g's and A's be equal to 1; certainly, equality (2) is thus violated, but
we may assume the presence of other, over-vetoed outcomes not touched in the
following. Assume u(c)>u (a)>u (8), u(B)>ufa)>uld), u(d)>u(b)>ulc), and’
consider the following.cycl‘e: x°=<ad.e>, x'=<cde> x*=<cae> x=<cab>,
t=<c,d b>, X*=<a,db>, £%=x° it is easily checked that X% form an improve-

5

ment cycle. On the steps from x° to x' and from x* to x° rule 3) is not

complied with - indirect vetoing is used instead.

Turning to our second mechanism, =, we start with formal definitions. A
one-to-one mapping o: A > A with a single orbit is fixed. For each a€A, O0=sk=
#A-1, we define vk(a,x)=2‘s:0[).(as(a))-x(as(a),x)] and v(a,x)=min{vk(a,x)}. It
can be derived from (2), see Gol'berg and Gurvich (1986), that o(e,x)>0 (in
fact, v(a,x)=1) for a uniqﬁe a€A at each x€X; ng(x) is this outcome.

An‘ interpretatlion with the rotating of A was given above; note that when-
ever vla,x)=0, -vla,x) is the number of black balls that passes between @ and
its "leeward” neighbour, ¢™'(a), during the rotation of balls. When it comes

to improvement paths, it should be understood clearly that the rotation s
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only performed in imagination or simulated in a computer: the real balls
remain where the playérs put them until the players themselves shift them
elsewhere. | w |

Theorem 8. The mechanism . always gifres rise to a semi-potential game
form. |

As was noted above, the mechanism lacks a serious interpretation, which
drastically diminishes the importance of the theorem. I restrict myself to an
explicit formulation of a semi-potential and an informal sketch of the proof.

Let us start with the definition of a strict order § on X, the semi-
potential proper. Denote B(x)={a€A| wv(a,x)=0} ("outcomes over which no balls
pass further leeward”), T(i,x)=xi'1(B(x)), mi(x)=#T(_i,x), m(x)=<mi(x)$ ieN
z:i(x)=<ui(x(2f)>’f e Tlix) We .set ySx if and only if m(y) Pareto dominates m(x),
or if m(y)=m(x), v'(x)Pv'(y) for all iEN and v*(x)2°v'(y) for some iEN (where
the relations @ and @° were defined at the end of Section 2).

Now we define admissible improvements. Besides yPIx, two more conditions
are imposed. Denote a=n(x), b=n{y), T ={teT| y()=x(t)}, m"=#T . The first
condition is: m'<l-v(bx); the second: a€y(T"). Interpretation: m" is the
total number of balls shiited; the first condition demands that the number of
balls shifted should not exceed that of balls vetoing & (directly or indirect-
ly); the second, that at least one ball should be shifted to a.

Let us show that condition (iii) from the definition of a semi-potential
is satisfied. Let yPx, a=n{x) and b=n(y); since ol(b,x})=<0 and wv(b,y)=1, coali-
tion / was able to remove l-v(b,x) balls from "windward” of 5. At the equi-
valent admissible improvement, it shifts only these balls, fulfilling the
first condition as an equality. Further, the -vw(b.x) balls that passed from &
"leeward” during the rotating procedure at x, found empty places for them-
selves no later than at ¢, and just one empty place at @ was still left -

otherwise, v(a,x)=1 would be impossible. Now we put one ball to a and -v(b,x)
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others to those empty places, denoting the new profile. z; clearly, wv(b,z)=1,
so n(z)=b=n(y). |

Finally, suppose - ySIx and show ySx. As is easily understood, the shift |
from x to y must be organized exactly as described in the previous paragraph.
Consider two alternatives. _ |

Suppose v{b,x)<0 first. Then b&B(x), and every ball of 1-v(b,x) that were
shifted was removed from c@&B(x) (otherwise, the ball would have been shifted
without necessity and then, since the total number of bails shifted is just
enough, v(b,y)>0 would be impossible); as to their new positions, at least one
of them went to a€B(y)., while the others cannot spoil” their new positions
because they occupy places that are filled during the rotating procedure at x
anyway (to be more formal, [k{c,y)>x(c.x) & c€B(x)] = c€B(y) ). Thus, ballots
cast to outcomes from B(x) remain. in B(y), while at least one ball shifts from
outside B(x) to inside B(y); therefore, m(y) Pareto dominates m{x).

IF u(b,x)=0, just one ball is shifted from & to a. Since B(x)=B(y), we
have m{x)=m(y); now the last term in the definition of S works because-
ui(b)>ui(a) for all i€l, in particular, for the player who actually shifted
the ball. |

References

Germeiér Yu.B. and LA. Vatel’, 1974, On games with a hierarchical %rector
of interests. Izvestiya Akademii Nauk SSSR. Tekhnicheskaya .Kibernetika, N.3,
54-69 (in Russian; English translation in Engineering Cybernetics, V.12). |

Gol'berg’ Al and V.A. Gurvich, 1986, Collective choice based on the veto
principle. VINITI Manuscript #3182 (in Russian).

Holzman R. and N. Law-Yone, 1997, Strong equilibrium in congestion games.

Games and Economic Behavior 21, 85-101.

24



Kukushkin N.S., 1992, On existence of stable and efficient outcomes in
games with public and private objectives. International Journal of Game Theory
20, 295-303.

Kukushkin N.S., 1994, A conditidn for the existence of a Nash equilibrium
in games with public | and private objectiveé. Games and Economic Behavior 7,
177-192. |

Kukushkin N.S., 1999, Potential games: A purely ordinal approach. Econ-
omics Letters, forthcoming. '

Monderer D. and L.S. Shapley, 1996, Potential games. Games and Economic
Behavior 14, 124-143. _

- Moulin H., 1983, The Strategy of Social Choice. North-Holland Publ,
Amsterdam.

Moulin H., 1993, Cooperative Microeconomics. Princeton University Press,
Princeton. _ |

Mueller D.C., 1978, Votiﬁg by veto. Journal of Public Economics 10, 57-
75. |

- Nakamura K., 1975, The core of a simple game with ordinal preferences.
International Journal of Game Theory 4, 95-104.

Peleg B., 1978, Consistent voting systems. ‘Econometrica 46, 153—161.

Selteri- R., 1975, Reexamination of the perfectness concept for equilibrium
points in extensive games. International Journal of Game Theory 4, 25-55.

Voorneveld M. and H. Norde, 1996, A characterization of ordinal potential

games. Games and Economic Behavior 19, 235-242.

25



