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Abstract

Ii a game is represented as a combination of simpler games, it seems
natural to expect a connection between symmetries exhibited by the whole
game and by its components. An exact analysis of such a. ‘s.ituation is given
for games with public and private ~objectives under additional assumption
that the strategy sets are‘ finite and all the players use the same aggrega-
tion function, which is strictly increasing in each variable. It turns out
that each symmetry of a PP-game comes {rom symmetries of its components, but
~ the converse need not be true. However, the group of motions of the whole

gamé is determined by the groups of motions of its constituent components.
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0. Introduction .

Although the idea of symmetry appears to have emerged in pre-historic
times, its exact definitions in partic':ular contexts are still being given.
Quite recently, Peleg, Rosenmiller, and Sudhslter (1996). suggested 2 general
definition of symmetry for normai-form and extensive games.

The purpose of this paper is to apply the new definition to a parti-
cular context of games with public and private objectives (henceforth, PP-
games). This class of games characterized by a specific structure of utility
functions emerged in Germeier and Vatel' (1974), Kukushkin (1992, 1994),'and
is remarkable for the existence of equilibria. In a sense, every PP-game is
a combination of its two componenis, public and private, each of which is a.
sirategic game with rather simple utilities.

Theorem | below shows that the group of motions of a PP-game is deter-
mined by the group of motions of ité constituent corﬁponents. For symmetry
groups, the situation is a bit more complicated: each symmetry of a PP-game
comes from symmetries of its components, but the converse need not be true.

The results: obtained and the technique developed may be regarded as
just a first step in the analysis of what happens to symm‘etries when several

games are "combined” (in some sense) into a new one.

-1. General Definitions

A_.general definition of 2 PP-game sounds as follows. There is a finite
set of player-s N; for each {€N, there are a strategy set X and a (private)
function f: X 5 R; there is a (public) function f; X » R where X =
HiGNXi; for each €N, there is an aggregator, a function Fi: R* 5 R increas-

ing in each argument. Now the utility function of the game is defined as
ulx) = FAf (), [(x)).
‘Remark. Without the monotonicity of Fi, every strategic game (with no
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more than continuum of strategies) could be represented as a PP-game.

Such games will be considered here under additional assumptions,
namely, each set X is finite, all the functions F. are the same and it
strictly increases in each wvariable. Actually, we will regard thé aggregator

as a kind of binary operation and denote o, so
ulx) = fo(x)ofi(xi). : (1)

The assumed strict monotonicity implies cancellation properties: gob=goc
implies b=c and aob=c 0 b implies a=c.

With every PP-game G, two games, G™® and G™, are associated. Each of
them has the same set of players and the same strategies; in GF®, we have

uiPB(x)=f0(x); in G*&, uipk(x)=fi(xi).

2. Motions

In the sequel, we will use definitions and notations from Peleg et al.
(1996), in particular, dencting {G) the set of motions of G and Z(G) the
set of its symmetries. Obviously, the games G, G and G™ have the same
preform, so their motions are members of the same set.

Theorem 1. .G™) N (G™) = #G).

‘The inclusion of the left-hand side inio the right-hand side is q.uite
obvious (it does not even need the strict monotonicity of ©).#It also easily
follows frorr; the cancellation properties that AAGT) N\ M G) = M(G™®). Therefore,
we only need to prove #(G) S M(G™™).

The following notion will be very useful. Let a=<a,..a_> and b=
<b,,...b_> be two corteges (vectors) of reals. We write_aab when a=<a, if
and only if bisbj for all i,je{l,.,m}; this is an equivalence relation. If
A€r\{0}, then Aa=Ab if and only if a=b.

Now fbr every motion (7,9) EAG), player iEN, and strategy -xi°EXi, we

have to show that



[(x°) = f

R CAC AN | (2)
For more convenient notations, we will usually assume i=1.

As is well known, every permutation of a finite set can be decomposed
into cycles. We consider two basic cases.

Case 1. Let z=(1)(2).., ie. there are two players each matched to
himself; the rest does not matter.

Pick x°€X arbitrarily and define the sequence x~ by x**'=p(x%). Then we
define y° by y1°=x11(=¢91(x1°)), yi.°=xi° for i#! and the sequence z* by
¥ '=p(y*). We may assume x°#3° because (2) for i=1 is already true other-
wise. |

Since X is finite and ¢ is a bijection, there is an integer m for which

x™=x° and y™=y°. In the following formulas we assume (m-1)+1=0.

k+1) k+1)

For every k=0,1,..m-1, we have ui(xk)=ui(x and ui(yk)=ui(y

for i=1,2, which means

FO90f (xf) = £ of () 3)
Flyof ) = F " Do (x %) | (4)
FYof (x)f) = [ (5 of (x ) | (5)
fo(yk)sz(xzk) = fo(yk+1)0f2(x2k+1) | (6)

From (5), we have <f0(xk)>'—'<-f2(x2k)>; from (6), <f0(yk)>=<—f2(x2k)>; hence
<f0(xk)5=<f0(yk')>. Similarly, from (3) and (4) we have <f0(xk)>z<-f1(x1k)>
and <f0(yk)>z<-f1(xlk+l)>. Combining ali that, we obtain ‘<f1(xlk)>e<-fo(xk)>
z<—_f0(yk)>z<f_1(xlk+1)>, ie. -a cyclical shift does not change the order
relations on the set <f1(21k)>. Clearly, fl(xlk) does not depend on k£ And
this is exactly (2) for i=1.

Case 2. Let n=(12,..s).. with $=2, ie player 1 is involved in a
non-trivial cycle.

Pick xl" and xi" for i¢12,..,s} arbitrarity and define x;lk=¢i_l(xi_1k)

for i=2,...s, xlk“'—'eps(xsk) for all k=0,1,.. Now we define y° by y°=x°
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for all (€N and y**'=¢(y5) for all £=0,1,.. Each step from y* fo ' i

k

accompanied with a single change, at most, in the coordinates y, _fbr‘

i€{l,...,s}; more precisely, we have yik=xi(kfs'i) @ s g

or all =1, .., s
and 'k=0,1,... If it happens that x11=x1°, then yik does not depend on k& at
all (for i=1,.,s), but there is no necessity to treat this case different-
ly.

 Since X is finite and @ is a bijection, there is an integer m for which
ym=y°. I xll';&xl", m must contain s; otherwise, we may repeat. the cycie
(determined by the other players) s times if needed and obtain m=r+s in any

case. In the following, we assume {m-1)+1=0.

By the symmetry conditions, we have
— 0 V o __ 1 0y_ -1 oy _ Iy
v=f(y°) of (x °)=f (y) o [ (x*)=..=[ (5" ) o (x O)=f (y*) o f (x )=...
- 0 OY em 1 NN —f (,5] o ] Iy
w=f (y°) of (« )=f (y) o f{x )= .=f (s ) o[ (x )=f () of (x )=...
Applying the cancellation property to expressions from different lines with

identical  terms fi(xik‘), we  obtain  <v,w>=< fo(yk“), fo( /> for  all

£=0,1,....m-1. ~Therefore, fo(yk) does not -depend on k; then from the first

equality we have fl(xl")ifz(x2°)=fn(l)(¢l(xl°)). |
If among the other players there is a player matched by =z to himsell,
ie.  7=(12..8).().; we have f(1)0f(x)=f (4 of(x),  hence
0y Iy o
fj(xj ) fj(xj ) [[Tf(j)(wj(xj ).

To finish with the theorem, we only have to observe that the cases
considered cover all possibilities. If | player i is involved in a non-trivial
cycle, then he is exactly in the same poéition as player 1 in Case 2. If
player i is matched to himself and there is a non-trivial cycle among thé
other -players, then player i is in the same position as player j in the
previous paragraph. Finally, if every player is -matched to himself, Case 1
applies. Theorem 1 is proved. |

Without the canceilation properties, Theorem 1 would not be true.



Example 1. Let N={1,2}, Xi={1,2}, Fi(vo,vi)=min{vo,vi} (ieN) and the
functions fo’ fi are given by the following matrices (player 1 chooses rows,
player 2, columns):

3 - 0 2

fo: i
0 2 1

£ f1 5].

Then we have the bi-matrix game (the first number is the utility of player

1, the second, of player 2):

I'(2,1) (0,0)

[(0,0) (1,2) |

Clearly, the game is symmetric but its private component is not.

3. Sym'metries—

Before we go to symmetries, la terminological note is in order. Peleg et
al. (1996) defined symmetriés as a quotient group, which does not allow us
to speak of Z(G*®)NZ(G™®) even though both games have the same preform.
However, we may notice that the projection to the first coordinate,
pln.@)=m, rﬁaps A G) into T(N) and the kernel of this homomorphism is exactly
the group of impersonal motions &AG); therefore, its image, p(G)), is
isomorphic to A(G)/AG)=X(G). Now we may identify Z(G) with this image, thus
assuming Z(G)EZ(N).

Theorem 2. Z(G) = XZ(G™) n Z(GF).

Easily follows from Theorem 1 and from the observation that the homo-
morphism p is delined by fhe preform rather than by the game itself.

The opposite inclusion, trivially true in the case of motions, is not
at all true here. Consider the 'following example. | _

Exa_m_ple 2. Let N={1,2}, X={1.2}, F(v,v)=v +v (i€N) and the func-

tions fo’ fi are given by the following matrices {player 1. chooses rows,



player 2, columns):

3 0 1
iy % [ (0 11
0 2 0
Then we have the bi-matrix game (the first number is the utility of player

1, the second, of player 2):

(4,3) (1,1)7.

(0,00  (2,3)

Both components are symmetric, but the game itself is not.
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