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Abstract

In the existing literature the Kalai-Smorodinsky bargaining solution is im-
plemented either by using the Nash equilibrium or the subgame perfect equi-
librium concept. In this paper we provide a setup for implementing bargaining
solutions and construct a strategic mechanism for n players that implements
the Kalai-Smorodinsky bargaining solution in dominant strategies. Moreover
we have uniqueness of dominant strategy equilibria in each of the induced
games. From this mechanism we can derive an extensive game form such
that the final outcome in the unique subgame—perfect equilibrium again coin-
cides with the Kalai-Smorodinsky bargaining solution. So we get both from
“the original mechanism — dominant strategy equilibrium and also subgame-
perfect implementation. ‘
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0 Introduction

One application of implementation theory is to give a non-cooperative foundation for
cooperative solution concepts. In any possible situation (e.g. for any possible set of play-
ers) we want to obtain the cooperative solution by playing a non—cooperative game. The
rules that determine these games are given by a mechansim or game form. The “type
of implementation” then depends on the solution concept we apply to the induced non-
cooperative games. So implementation tn dominant strategies requires that all games
that are induced by the mechanism possess an equilibrium in dominant strategies and the
outcome in this equilibrium will be the given cooperative solution.

A special class of cooperative solutions is of course the class of bargaining solutions. In this
paper we want to concentrate on one special bargaining solution, which was introduced
by Kalai & Smorodinsky {1975). Their solution for the bargaining problem is axiomatized
by some monotonicity axiom and incorporates fairness by allocating equal proportions of
blisspoint payoffs.

In the early fifties efforts started to give a non—cooperative foundation of axiomatic bar-
gaining solutions, known as the “Nash—program”. Nash (1953) himself was the first to
make a contribution to this topic by discussing his “simple demand game”. He obtains his
bargaining solution by a Nash equilibrium of this game. However, the problem is that this
game has multiple equilibria and one could get any Pareto—efficient allocation of utility
by an appropriate Nash equilibrium.

For the Kalai-Smorodinsky bargaining solution (or KS solution) we only have few refer-
ences concerning a non—cooperative foundation. In the existing literature the KS solution
is either implemented by a subgame—perfect equilibrium or by a Nash equilibrium.
Crawford (1978) suggests a procedure to -achieve Pareto—efficient egalitarian—equivalent
allocations in a two—player exchange economy by combining an auction with a sort of
Divide and Choose mechanism. Those allocations yield the Kalai-Smorodinsky solution
in the referring utility space. Crawford’s procedure was refined and extended to an n-
player setup by Demange (1984). Both authors derive games in extensive form, where
the first stage consists of an auction that determines one divider and an order of the |
choosers. Stage 2 is left for proposing a division (by the divider) and consecutively agree-
ing or rejecting by the choosers. With this mechanism the KS solution is implemented
by a subgame—perfect equilibrium (SPE), meaning that the outcome in the SPE of the
game yields the Kalai-Smorodinsky solution. To observe this result, both authors have
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to impose strong assumptions on an individual’s behaviour when he or she is indifferent.
A similar result in a welfaristic bargaining approach is obtained by Moulin (1984). There
the KS bargaining solution is implemented by a subgame-perfect equilibrium, using the
“Game of Auctioning Fractions of Dictatorship”. Stage 0 of this game is again a sealed
bid auction that determines a ranking of the players. Then the first player has to propose
a utility allocation that can be accepted or rejected by the other participants. The first
one, who rejects this proposal (if it is rejected at all}, is then allowed to behave like a
dictator and ensure himself a utility that depends on the winning bid of the auction.
This game in extensive form possesses a subgame—perfect equilibrium, whose outcome is
the Kalai-Smorodinsky bargaining solution. To obtain this result, one has to claim that
a player has to accept a proposal, even if there is no incentive for him to do so. Without
this behavioural restriction, one gets additional equilibria that ensure the KS utility to at
most one of the participants.

Van Damme (1991) briefly discusses two mechanisms for two players, which Nash-imple-
ment the KS bargaining solution. The idea behind the derived one—shot games is to trade
off own interest and probability that one’s proposal will be enforced. Both games have a
unique Nash equilibrium that yields KS utilities.

Trockel (1998) presents a mechanism that implements the Nash bargaining solution in
dominant strategies. Since the concept of “equilibrium in dominant strategies” is stronger
than that of a Nash equilibrium, he gets a stronger notion of implementation. For this
he modifies Nash’s original simple demand game. It turns out that he in fact suggests a
method we can use to implement other bargaining solutions as well. -

In the present paper we provide a setup (or implementation context), in which we will
implement the KS bargaining solution in dominant strategies. For this we modify Nash’s
simple demand game in a different way. That means that our mechanism induces non-
cooperative one—shot games in strategic form that have exactly one equilibrium in dom-
inanft strategies and the outcome in this equilibrinm coincides with the KS bargaining
solution. So individual payoff maximization will be the point that leads us to this result.
With a slight modification, we extend the mechanism to the case, where n players are
involved. Even in this case we have existence and uniqueness of a dominant strategy
equilibrium. The rough idea behind is to trade off “modesty”, which is connected with
low gains from cooperation, and punishment of “unmodest behaviour”.

This strategic mechanism also gives rise to-the construction of games in extensive form,
implementing the KS solution by a (unique) subgame-perfect equilibrium. In contrast to



1 THE FRAMEWORK 4

the apprbaches discussed above, here we do not have to start with an auction. because
- a special order of the players is not necessary. Moreover, we need not impose any re-
strictions on players’ “indifference behaviour” to achieve this result. And since we have
uniqueness of equilibria, there is no coordination or choice problem for the players.

To summarize, this paper bears two main differences to the existing literature. First, we
get a stronger notion of implementation than Nash implementation, namely implementa-
tion in dominant strategies. And second, we get subgame—perfect implementation without
having to determine a special order of the players and without imposing restrictions on
individuals’ “indifference behaviour”.

The organization of the paper is as follows: After a short introduction to bargaining and
implementation theory, our mechanism is discussed in section 2. The extension to the
n—player case is presented in Section 3. Subgame-perfect implementation is then derived
in section 4. Section 5 concludes.

1 The Framework

This section roughly falls into two parts. The first part provides some basic definitions
from (axiomatic) bargaining theory. In the desciption of a bargaining problem we focus
on the welfaristic problem. That means that all analysis takes place in utility space.
Having some von Neumann-Morgenstern utilities over lotteries in mind, we do not state
explicitly where these utilities come from.

Part two deals with the concepts of implementation thebry in general. This is mainly done
by introducing the notion of a context. A context describes a setup, in which a social
plander proposes the design for a mechanism, without knowing how the “real” situation
looks like. Both worlds will then be linked in the next section by defining the so called
bargaining context.

To introduce the basic framework we concentrate on the two—player case, but all definitions
and concepts can easily be carried over to an n—player setup. This will be briefly discussed

at the beginning of section three.
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1.1 Bar'gaining Problems

A 2—person bargaining problem is a pair (S, d) such that S is a closed, comprehensive
and convex subset of IR, called the set of feasible utility allocations. The point
d € S is called disagreement point. In addition we assume that the set of individual
rational utility allocations {z € S|z > d} is bounded and that there exists an element
z € S satisfying x >> d. Let B¢ denote the set of all 2-person bargaining problems with
disagreement point d. |

We think of S as the set of utility allocations arising from some eardinal utility functions
over an abstract set of states of nature (e.g. allocations in an economy). Therefore we can
assume w.l.o.g. that the disagreement point is zero.

Denote by B the set of all 2-person bargaining problems with disagreement point 0,
i.e. B := BY and identify the bargaining problem (5,0} € B with the utility set S itself.
No confusion will result.

A bargaining solution is a mapping ¢ : B — IR? satisfying the feasibility assumption
p(S) € S. |

We omit further “reasonable” properties of bargaining solutions like indvidual rationality,
efficiency or covariance under affine linear transformations, because we do not want to
characterize a bargaining solution by a set of axioms.

Next we define a special bargaining solution introduced by Kalai & Smorodinsky (1975).
For a given bargaining problem S € B we define

Bi(S) = max{t € R|te' € S} (1=1,2)
B(S) = PB(She +p(S):¢

G:(S) is called blisslevel of player i. Due to comprehensiveness of each utility set S,
Bi(S) gives the maximal utility player ¢ can achieve, while guaranteeing at least a utility of
zero to the other player. 5(S) is called blisspoint. Note that (for notational convenience)
B:(S) is a real number whereas 3(S) describes a point in IR?.

Denote by [(S) the largest fraction of the blisspoint that is feasible in S, i.e.

[(S) =max {t e R[tB(S) € S}.

Then the Kalai-Smorodinsky (KS) bargaining solution is the mapping « : B — IR?,
satisfying

K(S) = I(S) B(S).
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The idea of fairness behind this bargaining solution is that both players should get the
same proportion of their individual blisslevels. This idea of a proportional allocation
ensures envy—freeness in the sense that all players get the same percentage of their “max-
-imal utility”. Moreover the solution is Pareto—efficient, since this percentage is chosen
maximal. '

One can identify absolute utilities arising from application of a bargaining solution with
the referring fractions of blisslevels. In the sequel we consider bargaining solutions as
functions assigning fractions rather than utilities. Therefore we define the fractional KS
bargaining solution «/ : B — [0,1] x [0,1] by

k1 (S) == (1(8),U(S)).

This completes the introduction to two person bargaining problems.

1.2 Mechanisms and Implementation

The mechanism design problem treats the question how to achieve a socially desired
outcome. This should be done by offering incentives to the individuals such that they
behave accordingly. To explain what the term “socially desired” means, we can think of a
social planner (or society itself), who selects for each possible state of nature (characterized
by individual preferences) one or more outcomes. Formally this is reflected in a social
choice rule (see formal definition below). Implementation of a social choice rule means
that the planner “sets up rules for a (non—cooperative) game” such that application of a
certain solution concept yields the desired outcome.

In order to formalize this problem, we have to clarify the following questions:
1. In which setup (or context) does the planner operate?
2. Which social choice rule should be implemented?
3. Which solution concept should yield the socially desired outcome?

4. How does the referring mechanism look like?

The remainder of this section treats these questions in general. Section two then describes
a special context, linking bargaining problems with implementation theory.

A context describes an environment in which a mechanism designer can operate. This
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includes the number of possible players, the set of possible outcomes, a set of possible
preference profiles over outcomes and finally a class of mechanisms from which the planner
will choose one. Note that the description of a context and especially the description of
a mechanism does not include any specific characteristics of players.

Following basically the notation in Osborne & Rubinstein (1996) we formally describe a
context by the tuple (N, A, P,G), where
N = {1, 2} denotes the set of player positions (for two players),

A denotes the outcome space,

P denotes a set of preference profiles over A,

G denotes a set of (strategic) mechanisms with outcomes in A (see formal definition
below).

Bach preference profile represents a set of “real” players.* And whenever “real” players
enter the scene they have a certain set of socially desired outcomes in mind. This is
formalized by a social choice rule.

A social chioce rule is a correspondence o : P =—> A, assigning a set of outcomes to
each preference profile. |

Implementing a social choice rule means that we have to construct rules for a non-—
cooperative game without taking players’ preferences into account. This leads us to.the
definition of a mechanism.

A strategic mechanism (or strategic game form) is a tuple G = (N, X, g) consisting of
the set N of player positions, a set of strategy profiles £ := ¥, X ¥» and an outcome
function g : & — A.

‘Note that a strategic mechanism together with a representable preference profile == (=1,
>3) € P defines a non—cooperative game by composing the outcome function g with (car-
dinal) utility functions u; representing =;!. So when “real” players enter the scene, then
a mechanism suggests to play a non—cooperative game depending on these players’ pref-
erences over A. Hence the notion of a solution concept for a context should refer to these
induced games. Formally a solution concept for the context (N, A,P,G) is a corre-
spondence @ : G x P = ¥, assigning each induced gaine a set of strategy profiles in
2. For example the Nash equilibrium concept would consider the game induced by a pair
(G,*) € G x P and assign the set of Nash equilibria of this game to (G, =).

I'The term “strategic” refers to the fact that the derived games are games in strategic form. Although
implementation does not only deal with games in strategic form, we only want to formalize this direction.
irnpl ion d ly deal with g¢ i gic form, ly want to formalize this directi
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Now let ® be a solution concept for the context (N, A,P,G). We say that the strategic
mechanism G = (N, S, g) € G P~implements the social choice rule o : P = A4, if for
each preference profile >= (>;);ey € P the implementation condition

9(®(G. %)) € a(x)

is satisfied. In this case we call o P—implementable.

We can think of an “implementation procedure” as follows: First a social planner has one
social choice rule in mind, i.e. a rule that determines a set of (socially desired) outcomes
for each possible preference profile. Then he designs a mechanism G € §G. This mechanism
together with any specific preference profile in P defines a (non-cooperative) game. For
these induced games the planner thinks of a specific solution concept. This solution
concept yields strategies for any of the induced games, i.e. for any preférence profile that
is combined with G. So for a specific preference profile, we get a set of strategies (in the
induced game). Now applying the outcome function g of the mechanism to any of these
strategies gives us an outcome that belongs to the set of outcomes determined by the
social choice rule for this preference profile.

So actually a mechanism is a collection of rules for a game and again does not depend on
any characteristics of “real” players.

2 TImplementation in Dominant Strategies

After a short introduction to axiomatic bargaining and the implementation problem, we
now want to link both fields by setting up the so-called bargaining contezt. For this con-
text we then define the Kalai-Smorodinsky choice rule (or KS choice rule), which will of
course be strongly related to the referring bargaining solution. After that we just state
what is meant by implementation in dominant strategies (DSE-implementation).

The second part of this section contains some ‘preliminary work for the construction of a
mechanism that DSE-implements the KS choice rule. And finally the third part provides
the construction of the mechanism and proves the implementation conditions.

As we have seen in the first section, a mechanism together with “real players”, who
are represented by their preference profile, induces a non—cooperative one—shot game in
strategic form. So, to give a first intuition how the mechanism works, we briefly describe
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these induced games. As we will see, a preference profile will be identified with a specific
bargaining problem, say S € B. How does the game that is induced by S look like? Both
players are asked to announce a number in the unit interval. The payoff function now
makes use of the underlying bargaining problem. Let z; € [0,1] be the announcement
from player 1 and consider all points in S that give player 2 a utility of at least z, mul-
tiplyed with his blisslevel 35(S). Among all these points in S, we determine the largest
possible utility for player 1. And, roughly speaking, the minimum of this and z; 5,(S)
(1’s announced fraction) will be player 1’s payoff in the game?. _
The idea behind this is to punish “bold behaviour”. That means, for a “high announce-
ment ;" the set of allocations giving this fraction to player 2 will be small and as a
consequence player 1's final payoff will be low. So player 1 may improve by choosing a
lower announcement. Conversely for a “low announcement z;” this fraction will essen-
tially be his payoff. So he may improve by increasing z;. And this will exactly be the
point that leads us to the Kalai-Smorodinsky bargaining solution.

The incentive for choosing “KS strategies” is that they constitute an equ111br1um in dom- "
inant strategies in every induced game. '

2.1 The bargaining context

Again we only consider the two-player case but the extension to an n-player context is
straightforward. This is briefly discussed in section 3. '

Let N := {1,2} be the set of player positions and let the outcome space A be the set of
all mappings on B with values in [0, 1] x [0,1],1.e. A := ([0,1] x[0,1])®. Fora given L € A
and z = (x1,72) = L(S) we think of z; as the fraction of player i’s blisslevel Bi(S) that
he will receive. Then for a given bargaining problem S, the outcome L € A will assign a
total utility of (L(S)): B:(S) to player i.

To avoid some impossibility result (cf. Gibbard-Satterthwaite theorem) we want to restrict
the set of all preference profiles over A to those that are appropriate for this situation.
Since we assume that the bargaining problem two “real” players face is common know-
ledge, only those preferences that are defined exclusively via this bargaining problem seem

%In the formal description we will rather deal with fractions of blisslevels than with absolute utilities.
- So his payoff will be the referring fraction of 5;(S)
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to matter. Let us therefore define for S € B a preference >% on A for player i by .
LU = (LOE2L©S) (LLeA i=12)

and set P := {ts: (=7,>5)|S € B}. .

Note that we can (and will) represent a preference =7 by the utility function u? : A — IR
satisfying u7 (L) := (L(S));. So each player is only interested in his own coordinate.
Because of the special structure of P, we can identify 7 with the set of bargaining problems
B itself.

The set of strategic mechanisms in this context is the set of tuples (N, X; x s, g) with
strategy set ¥; x Ly and outcome function g : £; x &y — A. Here we take the unit
interval as strategy set for both players, i.e. &; := [0,1] (i = 1,2). Again combining
a mechanism G with a prefernce profile (u7,u3) (i.e. choosing an element of G x B) we
get a non—cooperative game in strategic form s = (£, Eg,vf ,Ug } with strategy sets
%; = {0, 1] and payoff functions v; := uy o g.

Hence a solution concept for this context is a mapping ® : G x B — [0,1] % [0,1].

The social choice rule that we want to implement is the Kalai-Smorodinsky choice
rule. It says that whenever two players face a bargaining problem it is (socially) desired
to solve the conflict applying the KS bargaining solution « to this problem. Note that we
do not want to say what is desired in bargaining problems that do not occur. Hence, we
define a correspondence

XK : B=P - A=(0,1]x[0,1))5,
K(S) = {LeA|L(S)=#(S)=US),19))},

called KS choice rule. Remember that [(S) denotes the “KS fraction” occuring in the
definition of the KS bargaining solution.

2.2 The concession function

We can describe .a mechanism by describing all games that occur when players appear.
Since players are characterized by their preferences and preference profiles are given by
bargaining problems, we consider the game that is induced by the mechanism and a spe-
cific bargaining problem. Actually this will result in a pointwise definition of the outcome
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function. ' ‘

Now, given a bargaining problem S € B, both agents are asked to announce simultane-
- ously a number in the unit interval. Facing the announcement z; € [0, 1] by player 1,
there are two possible cases, depending on whether the point (z)51(5), £:5:(S)) is feasible
or not, i.e. if there is a utility allocation in S that gives to both players a fraction of xz;
of their blisslevels. If the announcement is “humble enough” and this is possible, then
player 1’s payoff should be his announced fraction z, of his blisslevel. In the other case
the payoff function will assign player 1 the largest possible utility considering all utility
allocations in § that give player 2 at least a utility of z,8.(S)-

Of course the same should hold for the payoffs for player 2.

We will say that in the case, where an announcement z; is “too bold”, player ¢ has to
make a concession, although it is in fact the payoff function that enforces a lower payoff
than x.iBi(S).

Formally we describe this idea by introducing functions z +[0,1] = [0,1] called minimal
concession functions. If the announcement z; is “humble enough” (in the sense described
above) then 27 returns this fraction but otherwise it returns the largest possible fraction
while ensuring x; to player 2. In that case player 1 has to make the lowest possible con-
cession, which is given by z; — 25 (;).

Figure 1 illustrates the construction of player 1’s minimal concession function in the case
B1(S) = Ba(S) = 1. Here we can identify fractions of blisslevels with absolute utility.

This leads us to the formal definition of the minimal concession functions. For given
S € B we define functions 27 : [0,1] = [0,1] (¢ = 1,2) by

=1 @A) AS) €S
Siy ma.x{y € 10,1]| (£ Bi(S),y B2(9)) € 5} ) (tal(s),tl?z(S)) ¢85
%) =1 o . (£BS),tBa(S)) € 5.

Observe that a fixed fraction x; € [0,1] induces a mapping 2(z;) - B = [0,1].

Figure 2 shows an example of a concession function. But since utility allocation sets are
supposed to be convex every concession function has a similar shape, i.e. it is concave,
there exists a unique maximizer Z and it coincides with the identity on the interval {0, Z].
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t=2t)  #) ot

L o

concession of player 1, announcing ¢

Figure 1: Constructiuon of z°¥ in the two player case
2.3 The mechanism for two players

With the aid of minimal concession functions we are now able to construct a strategic
mechanism G* = (N, I; x Iy, ¢*).€ G with outcome function ¢* : £y x £y — A.

We take T; := [0,1] as the strategy set for player i. Note that the strategy sets are
independent of an underlying preference profile, i.e. a specific bargaining problem.

Define the outcome function ¢*: [0,1] x [0,1] — A by
(561, Eg) — g*(a:l, .’l?g) = A
9" (z1,22)(0) = (35') (z1) 25 (ﬂ?z)) ‘

- Because of the construction of the concession functions g*(z1, z») is a function on B that
vields feasible utility allocations for any bargaining problem S € B.
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Figure 2: The concession function for player 1

Since we can identify preference profiles with bargaining problems (see definition of the
bargaining context above), each S € B together with the mechanism G* induces a non-
cooperative game in strategic form I'* := ([0, 1],[0,1], %7, v5) with payoff functions

Uf(mhmz) = uf(g*(ffl:xz)): (g% (z1, 22)(S)); -

In the sequel we will analyze the structure of these induced games and show that each
game has a unique equilibrium in dominant sirategies. To prove this theorem we have to
analyze the structure of the concession function.

Lemma 2.1 For any bargaining problem S € B there e:msts a unigque mazimizer of the
minimal concession functions zP (1 =1,2).

Proof: We show that for any S € B there exists £° € [0,1] such that 2¥(25) > 2§ (z)
holds for all z € [0,1],  # 2°.
Let 5 € B be given. Define

1) 5 = max{z € [0,1]| (z A(S), 2 fa(S)) € S} -

Since S is closed the maximum in (1) is attained and by definition of z¥ we have 25 (35) =
#5. For z € [0, 1] consider two cases: '
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Case 1: z < 3° :
By comprehensiveness of S we have (z £1(5),z 5:(S)) € S, which implies 25(z) = z
hence

H

7 (z) =z < 2° = 27 (2°).

Case 2: x > #° : '
By definition of £° we have (x 51(S),z 52(S)) € S, implying

2 (z) = max {y € [0,1]| (¥ B1(S), 3 B(S)) € S} =: §°(x).

Note that 7°(z) < z (S 1s closed). _
- Assume 2§ (z) > 27 (2°), which is equivalent to ¥°(z) > #°. Since S is convex and of
course (3(S5),0) € S, we have that

A3 (2) Bu(S), 2 BoS)) + (1— A) (Bu(S5),0) € S

holds for all 0 < A < 1. For X := _S'W we obtain

T

m B2(5)) € S.

( A(S),

z
z—7%(z)+1
which contradicts the maximality of 5, because ——_—s‘”'—()ﬁ is obtained as a convex com-
bination of 4°(z) and 1 and therefore is certainly larger than £°

Hence we also get 27 (z) < 25 = 27 (), which completes the proof of the lemma. O

Note that by construction of the maximizer £° of a concession function zJ it comc1des
with the referring KS fraction 1(S).

The next theorem shows that these maximizers constitute an equlhbrmm in dommant
strategies of the induced game.

Theorem 2.2 For any bargaining problem S € B the induced game I'° has a unigue
equilibrium in dominant strategies.

Proof: Let S € B be given. Define #f = 2§ := #5 as in the proof of lemma 2.1. We
show that (&5, #5) € [0,1] x {0,1] is a dominant strategy equilibrium of the induced game
TS = ([0,1],[0, 1}, v5,v§). Let z; # £5 and z, € [0,1] be arbitrary. Then we have

'U1S($1,$2) = Uf(g*(xlaxz))y
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s

= (@), 5 (22)),

= 2z (z1)
(2) (by Lemma 2.1) < Zig (.’Ef)

= (@) 5 (22)),

= w(g"(#], 23))

= ’UIS(J’:"?,:EQ).
Therefore % is a dominant strategy in I'S for player 1. An analogue computation shows
that £5 is a dominant strategy for player 2. Since we have strict inequality in (2) the

strategy profile (27,25} is the unique equilibrium of I'’ in dominant strategies. This
completes the proof of the theorem. _ O

For S € B let DSE(I®) := {(i‘f 25 )} denote the set consisting of the unique dominant
strategy equilibrium of I'. We now show that the mechanism G* DSE-implements the
KS choice rule. Therefore we have to show that for any bargaining problem S € B the
outcome function ¢* applied to the dominant strategy equilibrium of I'® yields the KS
bargaining solution of S. '

Theorem 2.3 (Implementation) For each S € B the “implementation conditions”
| g"(DSE(IS) € K(5)
w(¢"(DSE(®))) = u®(K(S)) = w/(S)
are satisfied®.

Proof: Let S € B be given. To show that applying the outcome function g* to the

dominant strategy equilibrium (Z5,%5) of I'° yields a socially desired outcome (in the

sense of the KS choice rule), we have to check the equation
(3) (9°(51,39)) (S) = K/(S).

Then ¢*(£7,%3) is a bargaining solution (an element of A) that yields KS utilities for the
bargaining problem S and therefore belongs to X(S). Equation (3) holds, since

® £~ ~ ~ Ssa
(¢°(#.,29) (5) = (F(a5), 5
3There is a slight abuse in formal correctness in the second condition. The expression on the left side

is in fact a set that consists of just one element. This element, representing the utility from playing the
dominant strategy equilibrium, is equal to the utility arising from the KS bargaining solution.
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= (5,35
= (US),US)) = KT(S).

Hence g*(DSE(I)) € K(S). The second part of the theorem follows easily, since
¥ (g*(DSE(I%))) = (g*(z‘:f,i:g)) (8) = kf(S).* This completes the proof of the theo-
rem. : ]

To close this section, note that for the pointwise definition® of the outcome function we
make use of knowledge about the bargaining problem but we do not have to know how
our problem S looks like to describe the general procedure of the mechanism.

3 Extension to the n—Player Case

This section is devoted to an extension of the mechanism for two players. Extending the
framework to an n—player context will be straightforward. This is done in the first part.
The mechanism for two players crucially bases on considerations of minimal concessions,
which leads to the definition of two referring functions. The extended mechanism will
again make use of such functions, but since there is more than one opponent involved,
these functions have to be slightly modified, without changing the whole story behind
it. This modification is discussed in part two. The last part presents the extended
mechanism and proves that it really works and again yields the same outcomes as the
Kalai—-Smorodinsky bargaining solution.

3.1 The n—player framework

Here we do not have to do a lot of work, because all definitions from bargaining and
implementation theory in general easily carry over to an n-player setup. Thereby we
adjust the notations from the last section, e.g. B now denotes the set of all n—person
bargaining problems with disagreement point 0. We just want to describe briefly the
bargaining context for n players.

A context is described by a tuple (N, 4, P, G) (cf. section 2). Here we take N = {1,...,n}
as the set of player positions. The outcome space A consists of all mappings on B with

‘Remember that the utility function u5 applied to some element of X.(S) yields «f(S), since u5 only

considers what happens at S and there all solutions in K(S) coincide with the fractional KS solution.
%j.e. pointwise definition of the function g*(z;,z,) : B — A for fixed (z;,z2) € [0,1] x {0,1].



'3 EXTENSION TO THE N-PLAYER CASE 17

values in {0,1]", ie. A := {L:B —[0,1]*}. The set of possible preference profiles is
again described by means of preference relations >7 (cf. section 2.1). Therefore we get
P = {(ﬁ‘f, )| S e B}. So again we can identify P with the set B of n—person
bargaining problems itself. To complete the description of the context the set of strategic
mechanisms G consists of triplets (N, X, g), where ¥ := &) x...x 5, is the set of strategy
profiles and g : ¥ — A denotes the outcome function.

To close this subsection we define the KS choice rule for n players. What is socially desired
depends on an underlying preference profile (i.e. “real players”), hence on the underlying
bargaining problem. So we just claim that players should agree on the KS outcome in the
underlying problem and put no further restrictions on what happens in other situations.
This leads us to the definition of the KS choice rule for n players

K(S) :={L € A|L(S) = #/(S) = (I(S), .., I{S)) }.

I(S) denotes the {common) fraction of blisslevels that each player gets at the KS solution.
(cf. definition of th fractional KS solution at the end of section 1.)

3.2 Minimal concessions

The idea of the mechanism when two players are involved is to guarantee a certain amount
of utility to the opponent. This amount is determined by one’s own announcement and
guaranteeing this amount eventually leads to concessions one has to make®. To let this
idea work, we exploited the special structure of two person bargaining problems. For any
announcement z, of player 1 it is possible to find a point in S that ensures a fraction of
z; of 2's blisslevel to player 2. Consider now a three person bargaining problem. If player
1’s announcement z; is too bold there might be no possibility to assure this to players 2
and 3 simultaneously. In this case we will set the value of his concession function to 0.
Otherwise we can define concession functions 2 in the usual way. Figure 3 illustrates the
construction of the minimal concession function for player 1 when 3 players are involved.

Let S € B be a given bargaining problem. For i € N define the minimal concession

6 Again we use the term ”having to make a concession” although actually not players “have to concede”
but the payoff function returns a smaller value. '
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(0,6:(5),5:(5)); B(s)
5 i5(5) |
i#l .
- rtﬁ ( S)_
’ #(S)

27 (t) t U

Figure 3: Concession function for player 1 with three players involved

function 2f : [0,1} — [0,1] by

oy max{(),max{ye [O,I]Iyﬁi(S)ei+Z_tﬁj(S)ejES}} , t8(8) ¢S
Z; (t) = A .
¢ , tB(S)e S

1

with the convention max # = —oo. Remember that 3(S) € IR" denotes the blisspoint.

Due to convexity of utility possibility sets, each concession function has a specific shape
that is depicted in figure 4. Roughly speaking we can partition player ¢’s strategy set
[0,1] into three intervals I, .., Iz as shown.

On the interval I; #’s concession function coincides with the identity. In this interval his
announcements are humble enough in the sense that guaranteeing his announcement to
all players simultaneously is no problem. An announcement in the intervall I, cannot
be guaranteed to all players but to all opponents of player i by means of an appropriate
concession of player ¢. To determine the shape of the concession function in this area
we have to connect the diagonal (connecting blisspoint and disagreement point) with the
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Figure 4: Shape of concession functions in the n—player case

diagonal in the n» — 1 dimensional bargaining problem where 4 is left out {cf. figure 3).
And so convexity of S gives a concave shape of the concession function. In the interval I3
there are those announcements that are so bold that they even cannot be guaranteed to
all opponents simultaneously. But since we want each pldyer to have an incentive to take
part in the mechanism, we have to save individual rationality and so z should return 0
in this case.

Again we want to remark that a fixed fraction z; € [0,1] yields a mapping z.g') : B —[0,1].

We close this part with a lemma analogous to Lemma 2.1. It shows that even in the
n-player world concession functions have a unique maximizer. '

Lemma 3.1 In the n—player setup there exists for any bargaining problem S € B a unique
mazimizer of the concession functions z°  (1=1,..,n).

 The proof can easily be carried over from the proof of lemma 2.1.
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3.3 The mechanism for n—players

The strategic mechanism that implements the Kalai-Smorodinsky choice rule for n players
does not deviate in general from that for two players. Again we are going to construet a
mechanism such that the derived (non-cooperative) games have a unique equilibrium in
dominant strategies. Furthermore the outcome function applied to this equilibrium yields
an outcome suggested by the KS choice rule, i.e. for any bargaining problem the referring
DSE strategies lead to the (fractional) Kalai-Smorodinsky bargaining solution.

The exact definition of the mechanism is as follows:

As we have seen in the brief discussion of the n—player context a mechanism G~ is a tuple

(N,Z) x ... X X,,g") where X; is player i's strategy set and ¢* : £ — A denotes the

outcome function of the mechanism. ‘As in section 2 we will again use the unit interval as
the strategy set for each player, ie. &; := [0,1] (i € N). Define the outcome function

g*:[0,1]" = A by |

(Z1,...,Zn) — g (z1,...,2,) € A
g (@1 ) = () (315, 20 (30).

The mechanism G* together with a bargaining problem S € B (i.e. a preference profile)
induces an n—person game ' in strategic form. We have

s = (o, 1],...,[0, 1],1}‘19,.. vs),

s Un

g

where the payoffs are compositions of the cutcome function g* and utility functions u?,

representing the “preference profile” S, ie. vy = uf o g*.

Theorem 3.2 For each bargaining problem S € B the induced game T'® has a unique

equilibrium (£7,...,23) € [0,1]" in dominant strategies. This is given by &f = x7(S); =

st

I(S) forallie N.

Considering Lemma 3.1 and the proof of the related theorem 2.2 the proof of this theorem
is straightforward. '

Finally we want to state that the mechanism really works. That means we want to show
the implementation conditions.
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Theorem 3.3
In the n—player contezt the “implementation conditions”

g"(DSE(T®)) < K(S)

u’(¢"(DSE(®)) = «/(S)

are satisfied for each S € B.

The proof is immediate from the proof of the analogous theorem 3.3.

4 Subgame—Perfect Implementation

This section constitutes the second part of this paper. Here we want to take the mecha-
nisms constructed in the previous sections and derive a game in extensive form rather
than a non-cooperative one—shot game. Here players do not act simultaneously but one
after another. The result we will get from the analysis will be that the Kalai-Smorodinsky
solution is implemented by a subgame perfect equilibrium. And this equilibrium will
be (quasi-)unique’.

4.1 The induced two stage game

Implementation in dominant strategies means that we have to construct a strategic mech-
anism such that the induced games are one-shot games. Now we want to derive games
in extensive form, so the “rules of the game” say that players choose their strategies
one after another. Again we first concentrate on the two player case. This will lead to
some form of a Divide and Choose mechanism®, where the first player is the divider, who
suggests two possible utility allocations, and the second player chooses among these al-
ternatives. Which points does the divider propose? Let us remind of the procedure in the
last two sections. Player 1 announces a number z; € [0,1]. Depending on whether the

"The term “quasi-unique” will be discussed and formalized later.
8For an extensive discussion of such mechanisms see Brams & Taylor {1996).
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point x; 3(S) is feasible, he eventually has to make concessions to ensure a feasible utility
allocation. Suppose we have a fixed bargaining problem S € B and an announcement
z: € 10,1). Sta.fting from the point z; 3(S) there are two possible cases. First, this point -
is not feasible. Then there are two canonical ways to achieve a Pareto—efficient point
in 5, namely either player 1 or player 2 has to make a concession. So one player gets a
fraction of z; of his blisslevel and the other gets less than that. In the other case, where
1 B(S) belongs to S this can be done the other way round. There are also two “natural”
efficient points, because we can. either increase player 1's or player 2’s utility until the
Pareto frontier is reached. So again, one player gets a fraction of z; of his blisslevel and
the other gets more than that. Figure 5 illustrates this idea.

suggested from
announcement ?

suggested from |
announcement t'

bS (t’)

0 T f 7 Uy

Figure 5: “Divide and Choose” for two players
So for a..ba.rgaining problem S € B we derive the following two—stage game:

First stage: Player 1 annonunces a number ¢ in the unit interval. This announcement
defines two points 4°(t) and w5(t) on the Pareto frontier (cf. figure 5).

Second stage: Player 2 chooses one of these points.
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Final outcome: The point that player 2 has chosen.

Player 1 has a continuum of strategies whereas player 2 has to decide among two alter-
natives. This is depicted in Figure 6.

b°(t) w(t)
Strategy set for player 2 has
b w
: two elements for each ¢
0 ] Strategy set for
£ player 1 is [0,1]

Figure 6: The two-stage-game

4.2 Implementation

Since the derived game is a game with finite horizon we know from Kuhn's theorem that
1t posesses a subgame-perfect equilibrium. This equilibrium can be easily described. Any
announcement ¢ from player 1 suggests one point where player 1 gets a fraction that is at
least as large as his opponent’s one. The other point gives him a fraction that is at most
as large as his opponent’s one. Let us denote the former by 5°(t) and the latter by w’(t)
(5°(¢) is the best point for player 1 and w5(t) is the worst point for him). From player
2’s point of view the notion of “good” and “bad” is just the other way round. This is due
to convexity of utility possibility sets. Let us determine the subgame-perfect equilibrium
by backwards induction: .

Let S € B be given and let ¢ be a fixed announcement from player 1. Facing ¢ player 2
has to choose in stage 2 either 5°(t) or w¥(t). Since w5(t) is always at least as good for
him as 5°(¢t) he always chooses w¥(t). .

'Having this in mind it’s up to player 1 to choose a strategy ¢ from the unit interval. If
he chooses a fraction that is higher than the “KS-fraction” I(S), then by nature of the
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construction of 4 and w® and convexity of S the point w¥(¢) (that player 2 will choose)
gives him a fraction less than {(S). If player 1 announces t < I(S), then he can do better
by increasing his announcement, because in this case he will end up with exactly his
announcement. So player 1 will choose the number I(S). In that case b°(¢) and w®(t)
coincide (with the KS bargaining solution).

Therefore we get a (quasi—)unique subgame-perfect equilibrium, claiming that player 1
chooses the KS fraction and player 2 always chooses the point wS(t). The term “quasi”
refers to a slight abuse in uniqueness, because player 2 can also choose b°(I(S)) when
player 1 announces I(S) since in this case, and only in this case, player 2 has to decide
between identical points. So to be precise, we have in fact two subgame-perfect equilibria
but both yield the same outcome for both players, namely the KS bargaining solution.
Moreover there is no coordination problem arising from the existence of two equilibria,
because player 1 has a unique equilibrium strategy and equality of outcomes in equilibrium
makes it unimportant, which of the equilibria player 2 chooses.

4.3 Extension to the n—player case

In the last part-of this section we want to look at the n—player case and also derive an
n—stage game, similar to that for two players.

In the two-player case player 1 makes an announcement in the unit intervall that gives
player 2 a'i)roblem of choosing between 2 points. How did we get these two points? In the
case where player 1’s announcement is too bold, we can either let player 1 or player 2 make
a concession to obtain two points on the Pareto boundary. If his announcement yields a
feasible point, we can increase either 1’s or 2’s utility until the Pareto frontier is reached.
In the n—player case we can apply a similar method. Here we have to distinguish between
three types of announcement of player 1. First consider an announcement ¢ € [0, 1} such
that ¢ 3(S) belongs to S. Here we can increase one of the n player’s utility and therefore
get n points on the Pareto frontier. In the second case the point t B(S) is not feasible,
but all “projections”, i.e. all ponts Y2t Bi(S) €l (i € N) belong to 5. Here we again
get n efficient points by forcing one player to make a concession. The remaining case is
somewhat difficult. In this case at least one “projection” is not feasible and we want the
disagreement point, namely 0. to be the only point selected as a form of punishment.
The n-stage game that we want to derive from this is as follows:
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First stage: Player 1 makes an announcement in the unit interval. As described above

this anoncement yields n (not necessarily different) points in the utility allocation
set S.

Second stage: Player 2 “sees” these 7 points and identifies those that give him the same
utility. Then he chooses one of the resulting utility levels and therefore he chooses
the referring set of points. '

i-th stage: Player i now faces a set of points that player ¢ — 1 has chosen. Again he sorts
them by his utility and chooses one of these utilities resulting in a subset of points.

Final outcome: Player n has chosen among those points that player n — 1 has selected.
So we will end up with a subset of those points that player 1 originally snggested
by his announcement ¢. But this subset does not contain two different points (see
argument below). Then this unique point player n has chosen yields the outcome
of the game.

We have to clarify why there is exactly. one point that player n chooses by choosing a
utility level. Suppose there are still two points in S chosen by player n, say v and w.
From the choice procedure above we know that all players 2,...n are indifferent between v
and w. So they can at most differ in their first coordinate. But since all points suggested
by player 1’s announcement are efficient (or all are equal to the disagreement point) v
and w have to coincide. '

Let us see how the mechanism works for three players. Figure 7 depicts the construction
of the three points suggested by an announcement of player 1 and figure 8 illustrates the
derived 3-stage game. ‘

Consider the announcement #'. This gives us three points /,II, III € S. Points I and I[
assign the same utility to player 2. He does not have to distinguish between them. Point
IIT gives him a different utility level. So in stage 2 of the game he has to choose between
the utility level given by points I and I7 and the utility level given by point 711. If he
decides to take the first one, he actually chooses two out of the original three points. In
the third stage player 3 faces these two points. The two (different) points I and I give
him different utilities (cf. figure 7). Now he decides between these two utility levels and
we end up with one point.

If player 2 chooses the utility level arising from point 777 then things are quite easy for
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BS), (0,52, ) B(S)
S t5(S) /
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.::'-'-".'-:I:
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Figure 7: Divide and choose for n players

player 3, because he has no choice problem at all and we end up with point I71.

What about optimal strategies in this game? Again we refer to the example depicted in
figures 7 and 8. The first thing to remark is that we can partition player 1’s strategy
set [0,1] into three intervals Iy, I, I;. For announcements ¢ in the first interval the point
t B(S) lies in S. Here we get the three points by increasing one player’s utility. So in
the second stage player 2 faces two different utility levels. One gives him a fraction of
t and the other gives him at least this fraction®. So it is optimal for him to choose the
point where his utility is increased. But then all players entering the scene in later stages
have no choice problem at all and we will finally end up with the point that player 2
determined.

The situation is more complex for an announcement ¢ in the interval I,. Here the three
points for stage two are determined by individual concessions. Again player 2 faces (at
most) two different utilities, depending on whether his utility is reduced or not. Optimal

9Tn fact player 2 only faces one level, if ¢ = I(S), since in this case, and only in this case, the three

points coincide.
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I IT  III IV V VI 0 +— Final outcome

{I} {11} III}.- (v {(vi\ fivny | {6} Player 3 chooses between

different utility levels

{I,II} {IIT} {1V} w,vn {0} Player 2 chooses between

different utility levels

Strategy set for
player 1 is [0, 1]

| ' | | 1 partition of player 1’s
! strategy set
1, Iz I;

Figure 8: The n—stage game

behaviour claims that he chooses all points where someone else has to make a concession
and he gets a fraction of ¢. In our example he chooses points V' and VI. These points are
delivered to the third stage, where player 3, playing optimal, chooses the one, where he
does not have to make the concession. So we always end up with the point where player
1 has to concede. (In the example we end up with point V)

The situation for “high announcements” t” € I3 is trivial, since only the disagreement
point is delivered to the second stage and so no real choice takes place and we end up
with the disagreement point. Note that the frontier between I; and I is given by I(S).

But which behaviour is optimal for player 1, knowing what his opponents will choose?
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The answer is “playing Kalai-Smorodinsky”, i.e. announcing {(S). First of all he will not
announce someting in J3, because he can assure himself more than 0 by announcing ¢t € I;
and getting this fraction ¢'°. For any announcement ¢ < [(S) he gets exactly this fraction.
So he can assure himself a fraction of /(S) by announcing this. If he announces ¢t > I(S)
he will be the one who concedes in the end and by the analysis in the whole paper!! we
know that this means getting less than I(.5).

We conclude that the following strategies constitute a subgame—perfect equilibrium of the
n—stage game:

Player 1: He announces the KS fraction {(5).

Players 2 to n: They choose the highest possible utility level and therefore deliver the
referring point(s) to the next stage. '

Final outcome: The Kalai-Smorodinsky bargaining solution, because all points delivered
to stage two coincide with the KS solution and therefore we have no choice problems
at all.

Again we see that there can be only one subgame—perfect equilibrium. In contrast to thé
two-player case we get “real” uniqueness because we slightly modified the game by letting
the agents choose between utilities rather than between the referring points.

We close this section with an interesting observation. The SPE-implementation shows

that like in zero—sum games there is a “max-min” problem behind the solution!?. In fact,

if we consider the induced one-shot games for two players (cf. section two), we can describe

player 1’s problem to choose the “optimal strategy” by the “maximization problem”
38 5

(4) z?é?{icl} min {bl {t), wy (t)}

(with b7 (¢), w7 () as in this section). So, knowing the min in (4) for all ¢, player 1 faces

an ordinary maximization problem. And this problem has a unique solution, namely the
Kalai-Smorodinsky fraction /(S).

°He can get more than 0, because we have assumed that the set of feasible utility allocations includes
one strictly positive point. Then he can choose ¢ > 0 small enough and end up with ¢.

Uespecially in the proof of lemma 2.1

12The author owes this viewpoint to Prof. Trockel.



5 CONCLUDING REMARKS 29

5 Concluding Remarks

In the implementation literature our notion of implementation is often referred to as
weak implementation, because we do not claim that every socially desired outcome can
be achieved by application of the outcome function to an appropriate equilibrium of the
induced game. What we have is therefore a subset condition rather than equallty in the
implementation condition (see theorems 2.3 and 3.3).

But having the whole story in mind, this actually means no weakening of our results. To
see this, remember that the KS choice rule assigns a sef of “bargaining solutions” {which
need not be feasible in every bargaining problem) to a preference profile (represented by -
a bargaining problem S € B). But all mappings in K(S) coincide at S with the KS
bargaining solution «/(S). So, once “real” players face the bargaining problem S that is
determined by their preference profile, this situation is common knowledge and only this
situation really matters. And here the dominant strategy equilibrium yields exactly the
only utility allocation for this situation that is given by the KS choice rule, namely the
KS bargaining solution of S.%3

Considering the one shot games induced by the mechanisms of sections two and three,
one may complain about two things. First the Kalai-Smorodinsky outcome is the only
efficient point that can be achieved by playing the game and second payoffs do not depend
on strategies of other players, so that there is no real interaction in the game. Both facts
are true so far. But let us briefly discuss a slight modification of the mechanism. We take
the payoff of the game (a point in the utility allocation set) and make a “proportional
adjustment”, i.e. we increase both players utility according to the ratio of their blisslevels
until the pareto frontier is reached'*. So we equally distribute additional percentages of
blisslevels. This intersection point is defined to be the payoff of the new game. In this
modified game each outcome is an efficient point and payoffs do depend on the other
players’ strategies. But even in this case “playing Kalai-Smorodinsky” is still the unique
equilibrium in dominant strategies. Roughly speaking, this is true, because the “max—

13Mathematically every bargaining problem S induces an equivalence relation on the outcome space
A, zﬁeaning that two elements L,L' € A are S-equivalent, if they yield the same outcome in S,
ie. L(S) = L'(S). Taking this into account we can get full implementation by assigning the equiva-
lence class which is represented by the KS bargaining solution to K(S). Then the S—equivalence class
generated by g*(DSE(I'®)) equals K(S). _

Formally we consider the ray starting at the original payoff and lying parallel to the diagonal [0, 3(S)]
and determine its intersection with the set of efficient points in S.
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min” structure!® behind the solution in the simple setup is preserved in its essence. But
since the analysis of these games or the referring mechanism is more complicated and does
not give new insights, we decided to concentrate on the “simpler” mechanism presented
in the second and third section.

It is obvious that the analysis of the games in extensive form (cf. section 4) does not
depend on a special ordering of the players. We can even construct a game where random
chooses one divider and an ordefing of the choosers. Even in this game there is only one
subgame—perfect equilibrium, which is mainly given by the equilibrium described above.
And in this SPE we end up with the KS solution.

To summarize, we have shown that the strategic mechanisms of sections two and three
with derived one-shot games also give an idea to construct an extensive mechanism with
derived n-stage games. Whereas the strategic mechanism implements the KS bargaining
solution in dominant strategies, the extensive one implements it by a Subgame—perfect
equilibrium which is (quasi-)unique. '

Thinking of bargaining problems with a specific underlying structure (e.g. cake—cutting
problems), one could imagine that the mechanisms described above lead to some division
rule. Since any choice rule that is implementable in dominant strategies is also truthfully
DSE-implentable (cf. Mas-Colell, Whinston & Green (1995, Proposition 23.C.1)), we may
hope to get a mechanism in a setup, where preferences are common knowledge among the
players but are not observable by a court that registers contracts, and no player can take
an advantage from cheating in his own preferences. This will be an interesting line for
future research.

155ee last remark in section four.
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