INSTITUTE OF MATHEMATICAL ECONOMICS

- WORKING PAPERS

No. 295

Adjusted Winner: An Algorithm for Implementing
Bargaining Solutions in Multi-Issue Negotiations

by

 Matthias G. Raith and Andreas Welzel

February 1998

University of Bielefeld

33501 Bielefeld, Germany




Adjusted Winner: An Algorithm for Implementing

Bargaining Solutions in Multi-Issue Negotiations

February 1998

Matthias G. Raith Andreas Welzel
Institute of Interdisciplinary Center for Research
Mathematical Economics and Development in Higher Education
University of Bielefeld University of Bielefeld
P.O. Box 100131 P.O. Bex 100131
D-33501 Bielefeld - D-33501 Bielefeld

- Germany : Germany
MRaith@wiwi.uni-bielefeld.de Andreas.Welzel@post.uni-bielefeld.de

Abstract

In this paper, we show that the procedure “Adjusted Winner,” introduced by BRAMS
AND TAYLOR (1996), implements the Kalai-Smorodinsky bargaining solution for a
specific class of fair-division problems. By acknowledging this relationship, we gen-
eralize the algorithm in order to address a wider spectrum of bargaining problems.
We are not only able to loosen the restriction on parties’ preferences, but can also
consider the effect of outside options on fair distributions. Moreover, we show that
Adjusted Winner can easily be modified to implement alternative solutions, such
as the Nash bargaining solution. Our approach combines formal reasoning with
plausible argumentation, which is essential for the acceptance of theoretical solution
concepts in real-life negotiations. '

Keywords: Fair Division, Adjusted Winner, Kalai—Srﬁorodinsky Solution

We are grateful to Steven Brams and Walter Trockel for critical comments and discussions.



1. Introduction

Research in negotiation analysis typically addresses practical questions of negotia-
tion that mathematical bargaining theory has either deliberately excluded or has
not been able to cope with. The main difficulty lies in the reconciliation of ga.me.
theorists” formal modes of reasoning on the one side and negotiators’ real-life prob-
lems on the other side. Major developments in the field of negotiation analysis over
the past two decades are documented by the work of RAIFFA (1982, 1997).

Since bargaining always involves the distribution of benefits or costs, aspects of
fair division are closely related, as is pointed out by YOUNG (1991, 1994). Although
many methods of fair division have a very long tradition, a formal anélysis of pro-
cedures is much more recent. BRAMS AND TAYLOR (1996) provide an assessment
of fair division procedures, ranging from extremely simple practical approaches to
quite sophisticated cake-cutting techniques with a more ‘theoretical appeal. In their
book, they introduce a new procedure labelled “Adjusted Winner” which has the
remarkable property of offering two parties a division of rﬁultiple issues that is effi-
cient, envy-free, and equitable (or egalitarian). Moreover, the procedure is practical
since it requires only minor computational effort.

Adjusted Winner in ité basic form is designed for a specific type of bargaining
problem between two players over multiple issues. It assumes that players have
linear, additively separable preferences over all issues. Additivity of preferences is
a restrictive, but quite standard assumption that can be dealt with in various ways
(cf. KEENEY AND RAIFFA (1991)). Linearity, however, is more difficult to justify, in
particular when the issues in a negotiation involve several options. If preferences are
not linear, efficiency, in general, will not hold under Adjusted Winner. In addition,
the implied distribution rule for individual issues is based on a winner-take-all as-
sumption, which suggests that the negotiated issues are viewed as individual goods:
If a good is given to one party, the other party receives nothing.

Our objective in this paper is to generalize Adjusted Winner in order to address
a wider spectrum of practically relevant bargaining problems. We not only loosen

the restriction on parties’ preferences, but also consider the effect of outside op-



tions on fair distributions. By explicitly formulating the underlying algorithm as a
substitution process along the efficiency frontier, we reveal that the outcome of Ad-
justevd Winner shares the same properties as the axiomatic solution of KALAI AND
SMORODINSKY (1975), which was derived for more general bargaining problems.?
We shéw,vhowever, how Adjusted Winner can easily be modified to implerﬁent al-

ternative axiomatic solutions for bilateral bargaining problems.

Despite all extensions, the computational steps involved are plausible and well
manageable. Indeed, the individual steps contain all the components that are nec-
essary for a cooperative negotiation process: First, there is the joint effort by both
parties to attain efficiency without haggling over issues; secoﬂd, there i1s a com-
pensation between players, which is achieved at minimal cost in order to maintain
efficiency; and third, there is the mutually accepted norm which legitimizes the final
outcome. Instead of simply implementing a cooperative solution, Adjusted Winner
thus encompasses the arguments which are crucial for the acceptance of a formal

procedure in an actual negotiation process.

Our approach utilizes an additive scoring procedure for calculdting utilities by
weighting issues and valuing options, which is quite common in negotiation analysis.
According to RAIFFA (1982), it was first introduced in the Panama Canal negotia-
tions in 1974. For practical negotiators the issue-option characterization is of great
relevance, since this is the form in which most complex negotiations are structured.
The fact that this ﬁtility representation is often used for descriptive analyses of
actual negotiations"indicates that it can also be regarded as a legitimate approxima-
tion of parties’ preferences for many multi-issue negotiations. Players are assumed
to have piecewise linear, additively separable preferences. The scoring procedure is,
thus, well suited for applying formal models of bargaining, which are typically based

on more general assumptions concerning players’ utilities.

We begin in Section 2 by characterizing Adjusted Winner as it was introduced

'In condensed form, MOULIN (1984) states that the Kalai-Smorodinsky solution amounts to
normalizing players’ utilities to a range between 0 for the worst and 100 for the best outcome, and

then selecting an efficient allocation that equalizes the relative gains of cooperation.



by BRAMS AND TAYLOR (1996). We divide the underlying algorithm into three
fundamental steps. Step 1 locates an initial outcome on the efficiency frontier. Step
2 then characterizes the substitution process along the efficiency frontier. Here we

deviate from the characterization of BRAMS AND TAYLOR (1996) by decomposing
issues into individual options in order to explicitly calculate substitution rates be-
tween options. Finally, step 3 imposes the equilibrium (equitability) condition for
the final outcome. This stopping condition for the adjustment process is shown to

correspond to the Kalai-Smorodinsky solution.

In Section 3, we consider a more general class of bargaining problems consisting
of multiple issues with more than two efficient options, over which players have
piecewise linear preferences. We modify step 2 of Adjusted Winner to take non-
linear preferences of this type into account, so that the adjusted form of Adjusted

Winner, again, implements the Kalai-Smorodinsky solution.

In Section 4, we consider the possibility that players may have valuable alterna-
tives (i.e. non-zero outside options) to negotiation. This is considered to be a major
source of bargaining power, since it shifts the status quo of negotiation away from
the origin and, thus, affects the bargaining problem. By reformulating the equitabil-
ity condition of Adjusted Winner (step 3), we show how outside options influence
the structural bargaining power of players and, thereby, the equitable outcome. We
modify Adjusted Winner in order to implement the Kalai-Smorodinsky solution, _but

we also offer a computationally simpler alternative that approximates this solution.

In Section 5, we demonstrate that the equilibrium condition for the adjustment
process can also be adapted to the geometric properties of the NasH (1950) bargain-
ing solution. Again, this requires a modification of step 3 only. Although debatable
as a fair-division allocation, we find that the Nash bargaining solution does have
practical advantages over the Kalai-Smorodinsky solution: As a stopping condition
for the adjustment process along the efficiency curve, the Nash solution requires less
computational effort when players have outside options. Moreover, it oftén induces
a discrete outcome and does not require a convex combination of efficient options,

which may be difficult to implement. For practitioners with time restrictions, these



cofnputational and interpretational aspects are highly relevant, since the most in-
triguing theoretical solution concept loses its appeal if it is difficult to implement.
We conclude in Section 6 with some procedural implications of our extended

version of Adjusted Winner.

2. Adjusted Winner

We begin by describing the procedure “Adjusted Winner,” introduced by BRAMS
AND TAYLOR (1996). Our exposition, however, is somewhat different. The algo-
rithm is designed for a bargaining problem between two parties, a and b, over the
division of n divisible goods.

Players’ preferenqes over the n required divisions are characterized by utility
functions v® : [0,1]" — R, = = a,b, where u® is assumed to be linear on the n-
tuple of divisions. In particular, this implies that players’ utilities are additively.
~ separable across issues. Suppose that the standard of value for both players is the

aggregate over all negotiated issues. Players’ valuation of individual issues can then
be expressed in relation to the standard of value which we normalize to 100 (utility)
_points.

For illustrative purposes, we characterize Adjusted Winner for the case n = 3.
Consider a bargaining problem composed of three goods or, more generally, three
issues A, B, and C, with players’ utilities over all issues given by u® = uj +uf +
ug, = a,b. Assume that Player a distributes his 100 utility points across all three
issues, such that his maximum utility levels are given by u§ = 30, ug = 20, and
u¢ = 50. Player b’s values for the same three issues are ubA = 60, ulé = 20, and
ubc = 21L

Underlying the algorithm of Adjusted Winner is a winner-take-all assumption.
Hence, if Player a wins on an issue, then Player b will receive nothing, and vice versa.
We make this explicit by introducing two distinct options for each issue. Option 1
makes Player a the winner of the issue, and option 2 Player b. Players’ assessments,
uy and ug( (X =A,B,C) of the two discrete options for each issue are given in the

~ three panels of Table 1.



1 2 1,2 12
ug 30 0 ug |20 0 ug || 50 0
uh | 0 60 ug | 0 20 us | 020

Table 1: Additively separable preferences over three issues

Since there are two distinct agreements to each issue, there are 2° = 8 possible
discrete agreements over all three issues together. Their values to both players,
T =

u® = uj + up 4 ug, T = a,b, are given in Table 2. In Figure 1, the 8 hollow points

characterize the agreements of Table 2 in utility space.

ua

100 50 80 30 70 20 50 0
ub} 0 20 20 40 60 80 80 100

Table 2: Players’ valuations of 2% = 8 possible agreements

Due to the assumption that both players have linear preferences over ;che three
divisible issues, their marginal utilities between individual options are constant. In
Figure 1, the solid line then denotes the efficiency frontier of the bargaining set,
which is necessarily cohvek.

We now apply “Adjusted Winner” in order to obtain an efﬁcie‘nt, envy-free,
and equitable solution to this bargaining problem. The algorithm consists of three
fundamental steps. Step 1 is a distribution scheme, which locates an initial outcome
on the efficiency frontier. Step? is a substitution procedure, which determines the
movementralong the efficiency frontier. And Step 3 imposes a stopping rule as an
equilibrium condition, which characterizes the final efficient distribution. (

The first step assigns each issue that is valued differently by the two players to
the player who values it most. Consequently, issue A goes to player b and issue C

to player a. Issue B is valued the same by both players. In this case, the algorithm
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Figure 1: Adjusted Winner for of a three-issue negotiation

of Adjusted Winner prescribes to assign issue B to the player who already has the
most points, in order to preserve his Ieé,d.2 Thus, issue B goes to player b, since he
has more points than player a. This results in the outcome A2, B2, and C1, denoted
by point W in Figure 1. Since the assignment procedure ensures that there are no
mutually beneficial trades, outcome W is guaranteed to be efficient. At this point,
the temporary winner is Player b with 80 points versus Player a’s 50 points.>

Step 1 can be accomplished byA having players submit their point allocations as

sealed bids, which are opened by either a mediator or by both players together. We

2Technically, any division of issue B would do just as well. This does not apply, however, to
more general bargaining problems, as we will see in the next section. If both players have the same
number of points, then issue B can be allocated by simply tossing a coin.

3In our example, the outcome of step 1 is envy-free, since each player receives what he perceives
to be at least 50% of the pie and neither player would, therefore, want to switch packages. Envy-

freeness is, however, not necéssarily implied by step 1.



assume that players’ point allocations are truthful, but we discuss the possibility of
strategic misrepresentation of preferences in Section 6.

The second step is the adjustment phase, where some of player b’s gain 1s shifted
to player a until the divisién 1s equitable, i.e. until both players enjoy equal gains.
The transfer is achieved by dividing one of the issues on which Player b wins. Since
step 1 has already produced an efficient outcome, the adjustment process of step 2
is designed to preserve this feature.

With our modification in Table 1 that décomposes 1ssues into options, the trans-
fer is efficient, i.e. on the efficiency curve, if the rate of substitution between both
players’ gains is minimal. This minimizes player b’s cost of transferring gains to

player a. For issue A, the rate of substitution is

b b
Uho —u
. . A2 Al __
RSppari= ——oo——n =2,
A2 Al
while for issue B it is .
‘ b b
_ Yy Uy _ 1
Wy == s o
B2 B1
where u{. denotes the points that player = a,b receives for option i=1,2 of issue

RSgo g1 :=

Y=A,B,C. Since RSgy g1 < RSpp a1, an efficient transfer is accomplished if issue B
is divided before issue A. Passing issue B completely to player a implies a switch
from option B2 to B1. This leaves Player b with only 60 points compared to Player
a’s 70.

Step 3 imposes the stopping condition for the adjustment process of step 2.
Under Adjusted Winner, the objective of transferring gaiﬁs 1s to induce equitability
A between players. The adjustment is finished as soon as players receive equal gains.

It is possible to view the equitability condition of step 3 from a somewhat different
perspective. Formally, the stopping condition requires the ratio of piayers’ gains,

. ub . ubA—{—ulé-}-u%
to be equal to unity, i.e. v = 1. However, as BRAMS AND TAYLOR (1996) note

“Adjusted Winner can be modified to reflect unequal shares to which the parties

might be entitled.”* The question then is: What determines players’ entitlements?

“cf. BRAMS AND TaYLOR (1996), p. 70, footnote 8.



In their characterization of Adjusted Winner, BRAMS AND TAYLOR (1996) refer
to players’ percentage gains. Therefore, if equitability implies that players enjoy
equal gains relative to their standards of value, i.e. u®/100 = u%/100, then the
condition for stopping the adjustment is when players’ gain ratio ~ is equal to the

ratio of their standards of value,

100
(=
100

Of course, the condition v = ¢ leads to the same allocation as the condition
v = 1, if players share the same standard of value. However, as we will see later,
this need not be the case. For differing standards of value, the more general stop-
ping condition, ¥ = ¢, then endogenously accounts for players’ entitlements. We,
therefore, refer to ¢ as the ‘entitlement ratiov.’

In Figure 1, the equitable outcome under Adjusted Winner is indicated by point
AW. Tt denotes the intersection of the Paréto frontier with the dotted 45°-line. Con-
vexity of the efficiency frontier implies that the efficient and equitable outcome is
envy-free as well.

In our example, equitability requires a convex combination of the alternative B1
and the (in step 1) temporarily chosen option B2; we denote their weights by « and
1 — a, respectively. The equitable value of o must then equate Player a’s share of
the complete pie with that of Player b. This is determined by

_ 60+ [a0+ (1 ~0)20]+0 100-

T 0+ ]e20+ (L—a)0]+50 100 °

which implies a value of
ey
Adjusted Winner. thus leads to an agreement coﬁsis‘cing of A2, C1, and a com-
promise containing 75% of Bl and 25% of B2. This implies that players receive
equitable shares of u® = u® = 65. A characteristic feature of the procedure is that
-1t requires a division between the two options of one single issue only. This aspect
becomes increasingly valuable as the number of issues rises.

It is important to note thHat the winner-take-all assumption, introduced above,

implies that both players are not only supposed to value issues differently, but also
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to have diametrically opposed interests. However, due to our specific approach,
none of the three steps of Adjusted Winner makes use of this assumption. Our
decomposition of issues into options and the introduction of substitution rates show
that it is only the difference .between a player’s utilities and not the level of his utility
which is relevant for the efficient transfer in step 2. So, in general, it is not necessary
that players’ less valued options are given 0 points. What matters are players’ gains.
Consequently, players do not need to have diametrically opposed interests, e.g. as
in our example in Table 1. This generalization becomes crucial when players are
negotiating over issues instead of goods. The options are then possible realizations
over which players have differing, but not necessarily completely OpPOSINg views.
Since Adjusted Winner indﬁces an efﬁcienf, equitable outcome for a convex bar-
gaining set, where all issués together form the standard of value, the solution fea-
tures the same characteristics as the axiomatic bargaining solution of KALAI AND
SMORODINSKY (1975). Adjusted Winner, thus, provides an algorithmic implemen-
tation of the Kalai-Smorodinsky solution for bargaining problems based on issues,

over which players have linear, additively separable preferences.

3. Adjusted Winner for Non-linear Preferences

We now extend our analysis to a class of bargaining situations, where players have
non-linear, additively separable preferences over n divisible issues. This is char-
acteristic for negotiations over issues (rather than goods) that c,;onsist of a \;ariety
of discrete options. With only a finite number of discrete options to each 1ssue,
each player’s utility can be characterized by an additive scoring system: issues are
weighted by distributing 100 points, and then the options of each issue are valued By
giving the worst option 0 points and the best option the number of points assigned
to the issue. Intermediate options are valued accordingly. Formally, we assume that
players’ preferences over the n required divisions are, again, characterized by utility
functions w* : [0,1]* — R, z = a,b, with u* = uf + u§ + - 4+ uf;, but where the
subutility functioﬁs uf, 1=1,...,n, are now assumed to be piecewise linear and

concave.



Adhering strictly to the basic algorithm of Adjusted Winner is now likely to lead
to inefficiency. In order to illustrate this argument, consider again a ﬁegotiation
over three issues A, B, and C. Both players assign to each issue the same share of
100 points as before, but their preferences over options are now characterized by the

points in Table 3. The only difference to Table 1 is the modification of panel A.

A B C
12 3 12 12
wh |30 20 0 ug |20 0 ut 50 0
ujp || 0 .45 60 ug | 0 20 ub || 0 20

Table 3: Additively separable preferences over three issues

With issue A consisting of 3 and issues B and C each still having 2 discrete
options, there are now 12 possible (discrete) agreements over issues A, B, and C,
together. Their values to both players are given in Table 4. In Figure 2, the 12
possible agreements of Table 4 are plotted (as hollow points) in utility space. The

solid line, again, characterizes the efficiency frontier.

ua

100 50 80 30 90 40 70 20 70 20 50 0
ubi 0 20 20 40 45 65 65 85 60 80 80 100

Table 4: Players’ valuations of 3 x 2 x 2 = 12 possible agreements

If parties were to strictly apply Adjusted Winner to this negotiation pfoblem,
they would focus exclusively on the weights attached to the issues. 1n Table 3, the
implicit winner-take-all assumption simply blends out option A2, thus reducing the
whole negotiation problem to that of Table 1. The inefficiency of this procedure is
shown in Figure 2, where the outcome is denoted by AW. Due to the assumption of

linear preferences, the basic form of Adjusted Winner does not exploit the values of

10



efficient intermediate agreements. In our example, this is the intermediate option

A2.
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Figure 2: Adjusted Winner for a three-issue negotiation between

players with nonlinear preferences

As Figure 2 shows, the efficient, equitable outcome is where the dotted 45°-line
intersects the Pareto frontier. This point, denoted by KS, characterizes the Kalai-
Smorodinsky solution. In order to implement this outcome with Adjusted Winner,
one needs to modify the substitution process of step 2, which involves the following

technical argument proved in the Appendix.

Theorem: Let A be an issue with n > 2 efficient divisible options, over which play-
ers have preferences characterized by piecewise linear and concave subutility func-
tions uf}, ¢ = a,b. Issde A can then be decomposed into n — 1 subissues (with two
options §ach), over which players have linear, additively separable preferences, such
that there are n efficient agreements over the n — 1 subissues, which yield the same

utilities as the n efficient options of issue A.
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If issue A in our example is decomposed according to the Theorem, then Adjusted
Winner will recognize all efficient options, because the negotiatioﬁ problem over
issues B, C, and the two subissues of A has the same structure as that of the previous
section. However, the Theorem implies that the decomposition of issue A is not
necessary. Since the adjustment process of Adjusted Winner considers only the
substitution rates between efficient options, the substitution rates can be calculated
direcﬂy from the efficient options of issue A.

We illustrate fhe implication of the Theorem by applying the modified algorithm
to our example. At the end of this section, we then collect the individual steps of
Adjusted Winner in vthe form of a general recipe.

Step 1 of Adjusted Winner selects options A3, B2, and Cl, again allocating 50
points to player a and 80 points to player b. The outcome is point W in Figure 2.
Since Player b is the temporary winner of issues A and B, only these are considered
for division, leaving issue C completely to player a.

In step 2, issue B still allows the substitution from B2 to Bl, with a substitution

rate of
_ubBQ — ug; =
Ug2 T UB1
Since issue A now has three options, there are two alternatives to A3 to consider.

RSgog1 =

Substitution to Al again implies

b b
YA3 T YAL _ o
UA3 ~ UA1

?

RSz a1 = —

but there is now also the substitution between A3 and A2, yielding

RSa3.A2 = B ek MR

A upz —Upp, 20 4
Alth.ough the substitution rate over complete issues is stﬂl lower for issue B than
for A, i.e. RSy g1 < RSa3 a1, the substitution rate over options is the lowest be-
tween options A3 and A2. We, therefore, leave issue B completely for player b and
concentrate on the division between A3 and A2.

In order to equalize (relative) gains between players in step 3, we must determine

the convex combination between 6ptions A2 and A3, such that players’ gain ratio v

12 -



is equal to the entitlement ratio e

[045 + (1 —a)60] +20+0 100

(@20 + (1 —)0]+0+50 100
6
& = = = (8.
v T

The equitable share for both playersvis then u® = u? = 67.14. This is illustrated by
point KS in Figure 2. Players thus reach an efficient and equitable allocation giving

issue B to player b and issue C to player a, together with a compromise consisting
of 86% of A2 and 14% of A3.

The following instructions completely characterize our generalization of the al-

gorithm Adjusted Winner:

1. For each issue that 1s Weighted differently by the two players, choose as the

temporary option the one that is best for the player who values this issue most.
The summation of points determines the temporary winner and the temporary
loser. If both players have the same number of points, let a referee (or simply -
the toss of a coin) determine the temporary winner. For each issue that is

welighted the same by both players, now choose as the temporary option the

one that is best for the temporary winner.

2. Consider all issues for which the temporary option is not the best option for
the temporary loser. Calculate the substitution rates with respect to all
alternative options that benefit the temporary loser. Select as the alternative
option the one which yields the lowest substitution rate. If, under the alter-
native option, the temporary winner still has more points than the temporary
loser, then make the alternative option the new temporary option and repeat

step 2; otherwise proceed with step 3.

3. Determine the convex combination between the temporary dption and the

alternative option that satisfies the stopping condition.

The individual steps embedded in the structure of the algorithm contain the ‘

necessary components of a cooperative negotiation process: The joint effort to attain

13



efficiency, the efficient compensation between players, and the mutually accepted
allocative norm.

For negotiations Wifh many issues that have several options, the most tedious
part of the algorithm appears to be step 2. Note, however, that the number of
" issues to consider is already reduced in step 1. The more this step equalizes players’
utilities the less adjustment is needed in step 2. In step 2, the substitution rates only
have to be ranked. This requires less computational effort than a precise calculation.
Moreover, with every iteration of step 2, there are only a few additional substitution
rates to consider, since only one option is changed. Indeed, only step 3 requires a
bit of algel;ra for the stopping condition. V

In the following sections, we consider modifications of the stopping condition in

step 3. The general algorithm, therefore, remains the same.

4. Adjusted Winner for Outside Alternatives

Fairness of a distribution depends on the status quo of fhe parties involved. It is
well-known in bargaining theory that parties’ alternativés to negotiation can have a
significant influence on the outcome of bargaining.” Indeed, the outside alternatives
are considered to be a major determinant of structural bargaining power, i.e. the
power which is determined by the bargaining problem and not the players’ bargaining
abilities. Consequently, any concept of fair division should take these structural
aspects 1nto accouﬁt.

Assume, for example, that players negotiate over the three issues given in the
previous section, but that player a now has an alternative to negotiating with player
b, e.g. an opportunity provided by a third party. Compared with the standard of
value, this outside optio\n' is worth a total of 50 points for player a. Player b,
however, has no alternative and, therefore, can only achieve 0 points outside of

this negotiation. The effect is that the players’ status quo point shifts away from

5Depending on the specific literature, the status quo is referred to under various names, such
as the disagreement point, the outside option, or the best alternative to a negotiated agreement

(BATNA). As a compromise, we often use the label outside alternative.

14



the origin. This is illustrated in Figure 3, where uo = (50,0) denotes the new

disagreement point.

100

90_. .. B . .‘ . ... 4
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0 10 20 30 <40 S0 8O 70 80 SO0 100

Figure 3: The Kalai-Smorodinsky Solution for a three-issue negotia-

tion between players with outside alternatives

Of course, the outside alternatives will affect the bargaining problem, since the
players’ standards of value have changed: For player b, the pie to be divided is still
worth 100 points, but for player a the size of the maximal achievable pie has shrunk
to a total of 50 points.

In the previous section, the application of Adjusted Winner in the modified form
led to a gain of 67.14 points for each player. This is illustrated by point AW in
Figure 3. Compared with the standards of value for the new bargaining problem,
player a now receives 17.14/50 or approximately 34% of his standard of value, in
contrast to player b, who still receives approximately 67% of his standard of value.
~ Surely, 1t would be surprising if player a considered this to be a fair distribution.

The necessary modification of Adjusted Winner now requires an adjustment of

15



step 3, the stopping condition for the substitution process. The determination of
the temporary winner in step 1 is unaffected, so that, as in our pre{/ious example,
the initial allocation is at point W in Figure 3. The adjustment process (step 2) of
moving along the efficiency frontier by determining the minimal substitution rates
also remains the same. What must be modified in step 3 is not the criterion for
stopping the adjustment, v = ¢, but rather the definitions of + and e.

In order to achieve equity, the solution must equalize the relative gains of both

players,

a a b b
u —ug U —ug

100 —uwg 100 —ud ’

or, equivalently, equalize the gain ratio of both players with the ratio of their stan-

dards of values, i.e. their entitlement ratio:

ub — uf - 100 —uf

ut —ug 100 — ug

(1) | ¥ =

With the left-hand side of equation (1) defined as 4 and the right-hand side defined
as €, the stopping condition for step 3 is still ¥ = ¢. Our modifications of the gain
and entitlement ratios, however, now explicitly acknowledge the influence of outside
alternatives, which affect the size of the pie to be divided. For the ‘gain’ ratio to
deserve its label, it must adapt players’ outcomes to their reservation values. And
if parties differ in their status quo (i.e. u§ # uf), it is consistent to require that they
are entitled to different shares of the negotiated pie.® |
Consider, for éxample, a rise in ug. This reduces the denominétors on both sides
of equation (1). With u® — u§ < 100 — ug, though, the increase in the gain rétio ~
1s greater than the increase in the entitlement ratio €. As a consequence, u® must
rise and u® must fall in order to maintain equity along the efficiency frontier. This
adjustment has nothing to do with a’s bargaining ability. It is only his stru‘ctural

bargaining power which has risen.

®Instead of equalizing relative gains, the equity condition could also be modified to equalize
players’ absolute gains. In equation (1), outside alternatives then only affect the gain ratio ~, while
the entitlement ratio maintains its value of € = 1. This simplification, however, is not in the spirit

of Adjusted Winner as it is described by BRAMS AND TAYLOR (1996).
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With condition (1), the algorithm of Adjusted Winner remains as simple as
before. In our example, up = (50,0) implies an entitlement ratio of ¢ = 2, while at
point AW, in Figure 3, the gain ratio is v = 67.14/17.14 = 3.9. Consequently, the
adjustment process described in the previous section must be continued.

Instead of considering only a convex combination between options A3 and A2,
we switch to option A2 completely. Player b now has only 65 points compared with

player a’s 70, so that the gain ratio now is

65-0 65
booeed = — = 3.925
7050 ~ 20 " o

v

which is still too large, since 3.25 > 2 = ¢. Comparing the substitution rates between
A2 and Al (RSpp A1 = 4.5) and between B2 and B1 (RSgy g1 = 1), we find the latter
to be smaller. By moving to option B1, player b is then down to 45 points and player

a now has 90, which yields a gain ratio of

- A :ﬁ:u%.
90 — 50 40

f)/

Since 1.125 < 2 = ¢, an adjustment to this point would be too strong. Equity,
therefore, requires a convex combination between options B1 and B2.

We denote again by o the weight given to the chosen alternative, B1. The
equitable allocation is then determined by equation (1), i.e. ¥ = ¢, which implies

{45+ a0+ (1 -a)20] +0} -0
{20 + [a20 + (1 — @)0] + 50} — 50

This yields an equitable weight of

Hence players agree on options A2, Cl, and a compromise consisting of approxi-
mately 42% of B1 and 58% of B2. Player a receives a total of u® = 78.33 and Player
b a total of u* = 56.67 points. In Figure 3, this agreemenf is denoted by point KS'.
The prime indicates that the solution is only an approximate implementation of
Kalai-Smorodinsky. An exact implementation requires the following, more detailed

analysis of how outside-options affect the entitlement ratio.
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According to equation (1), a player’s standard of value is given by the difference
between his outside option and the value of the complete pie, which is Wortﬁ 100
points. For the previous example, Figure 3 illustrates that this appears to be a
reasonable approach for player a, but it is not necessarily plausible for player b. This
is because player b has no chance of achieving 100 points if player a is committed to
realizing his outside option should the negotiation yield a worse outcome. Indeed,
under the restriction u® > u§ = 50, the highest utility that player b can achieveis 80.
Since this value depends on the outside option of player a, we denote the maximum

feasible outcome of player b by 4°(ug), where 4°

1s monotonically non-increasing in
ug. Accordingly, for player a we define the maximum achievable outcome by 4% (uh),
with 4 monotonically non-increasing in u}. In our specific example 2*(0) = 100.7

A player’s standard of value is then given by the difference between his maximum
feasible outcome and the value of his outs1de option. This only affects the deﬁmtlon
of €, the equity ratio between players. The equity condition (1) must, therefore, be
modified to

wh b ab(ug) — uh

: 2 = = =:€.
A, T T T (e —w

Equation (2) reveals an additional effect of structural power: As player a’s out-
side option improves, this leads to a decrease in player b’s standard of value by
lowering his aspiration level and, thus, his range of possible outcomes. As a result,
player b’s outcome must fall relative to a’s in order to maintain equity.’

In our example, € = (2°(ud) — ud) /(2% (ub) — ul) = 80/50 = 1.6. For an equitable

allocation, i.e. where v = ¢, this implies

{45 4+ [a0 + (1 — @)20] + 0} — 0
{20 + [a20 + (1 — )0] + 50} — 50

=16,

7It is a fortunate feature of our example that the maximum feasible outcomes for both players
happen to be actual options of the negotiation, i.e. (4%, %) = (100,0) and (ug, @°) = (50, 80) are
both entries in Table 4. When this is not the case, one can alternatively define the maximum
outcome as the highest feasible allocation, or the lowest non-feasible allocation among actual

options, or a convex combination of both.
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which yields an equitable weight of

33
o o (B
)

This leaves player a with a total of 82.7 points and player b with 52.3 points. In Fig-
ure 4, we denote this outcome, which characterizes the Kalai-Smorodinsky solution,

by KS, in contrast to point KS' from before.

100 ; ; —
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Figure 4: Bargaining solutions for a three-issue negotiation

between players with outside alternatives

The importance of letting Adjusted Winner take outside alternatives into account
is evident from the effect that it has on the outcome. In our example, illustrated
in Figure 4, the acknowledgement of player a’s outside alternative improves his
outcome by approximately 23% (point KS as compared to AW). Clearly, this is not
an aspect that can simply be neglected if an allocation is to be considered as fair by
both players.

One must not forget that, without graphical éupport to determine 4% and #®,
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the algorithm of Adjusted Winner involves additional computational effort, as one
must trace out the efficiency frontier with the help of the substitution process. It'
is, however, not necessary to begin with point W; any other efficient outcome can
serve as a starting point as well. It may, in fact, be more convenient to begin
the substitution process at a point which is closer in value to one of the outside
alternatives u? or uf. The required modification of step 1 of Adjusted Winner is
easily aécomplished, e.g. by assigning all issues to Player a or to Player 5. Of
course, as a practical alternative, one may simply consider equation (1) instead of

(2). This implements a solution that one might refer to as a satisficing version of

Kalai-Smorodinsky.

5. Implementing the Nash Bargaining Solution

The criterion of fairness enters Adjusted Winner via the equitability condition (2)
as a stopping rule for the adjustment process along the efficiency frontier. Hence,
it is only this condition which needs to be changed if one is interested in using the
algorithm to implement alternative bargaining solutions.

The criterion of fairness behind the Kalai-Smorodinsky Solution is egalitarian,
since both players receive the same fraction of their sfandard of value. As an alter-
native, YOUNG (1991) also considers the problem of fair diviéion using a utilitarian
criterion, where the objective is first to find a distribution that- maximizes joint
utility. The distribution of gains may then be considered as fair if there is no re-
distribution that would cause one player’s utility to increase by a larger percentage
than the other player’s utility decreases. This type of parity between players, as
measured by their percentage gains in utility, is induced by the Nash bargaining
solution. As NASH (1950) proved, there exists a unique efficient outcome with this
property. | |

Consider a negotiation over n issues Xy, .. ., X,, each with its own given number of
options. For each issue X; (I =1,...,n), let uy, and u&l denote the achieved utility
points of player a and b, respectively, and let Uy | and ué’(li denote their utilities

from a specific option i of issue X;. As we have seen in the preceding sections, the

20



substitution process along the efficiency frontier requires the convex combination
of at most two options of a single issue. Consider, therefore, a combination of
two options X;i and X;j. With the utilitiés of aH other issues Xy, k # [, given by
uy, (z = a,b), the utility of player z can be written as
u® = Zu“f(k -+ [au% + (1 - cz)”u,izi] , a€]l0,1], z=a,b.
k#l

ansequently, the percentage changé in utility from moving to another convex com-
~ bination of the same two options is

Ave o [Bu 4 (L= Bug ] — loug; + (1 = a)uf ]
o 8 2ra Uy, + [OZU?U' + (1 = a)ug ] —uf

’ a,ﬁe[()?l],x:a,b.

In order for parity to hold at this point, the percentage increase in one player’s

utility must be equal to the percentage decrease in the other’s:

Ayt Ayl

a b _ .0
u® — ug U Ug

By rearranging terms, one then obtains

| (3) _ , ub—ug:_Aub

u® — uf e *

which is a common characterization of the Nash bargaining solution. The left-hand
side of equation (3) is the ratio of players’ utility gains,
ub — ud [Zk;ﬁl u§, 4o+ (1 - O‘)“%@J — ug

a G = a a a g’
u” — Uf[) [Zk#l uXk + aquJ + (]. =R CY)UXZI} 2 uo

while the right-hand side of (3) denotes the slvope of the efficiency curve at this point

or the rate of substitution between options X;i and X;j:

b b
Aub _ UXG T X,
a a g0
AU/ quJ le‘

il

RSxjxi = —

Hence, parity in the above form implies that the gain ratio between players is equal
to the rate of substitution, i.e. v = RS.
If the efficiency curve is piecewise linear, as in our example above, then there may

not be an outcome for which condition (3) holds. On the one hand, v > RS implies
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that parity can be achieved only by redistributing gains from player b to player a.
On the other hand, v < RS indicates that parity requires a redistribution from a to
b. With a finite number n of substitution rates (given by the flat segments of the
efficiency curve), there may be a unique outcome at a kink in the efficiency curve, i.e.
a unique value of v between two substitution rates, where both inequalities are valid.
In this case, there is no further redistribution that can increase parity. With the n
substitution rates ranked in ascending order, the stopping condition, thus, requires

that ~ lies in the closed interval given by two neighboring substitution rates:
(4) ~v €[RS;,RS;41], t=1,...,n—1.

Note that condition (3) is a special case of (4), where a unique value of  simulta-
neously satisfies both v € [RS;_;,RS;] and v € [RS;, RS;+1].

In order to implement the Nash bargaining sohition, we follow step 1 of Adjusted
Winner in order to obtain an efficient initial distribution. In step 2, we calculate
substitutiof_l rates for the adjustment process along the efficiency frontier. For the
modification of step 3, we note that the Nash bargaining solution induces an efficient
distribution which satisfies condition (3) or, more generally, condition (4).

Consider again our example from the previous section. The Kalai-Smorodinsky
solution, dﬂenote'd by point KS in Figure 4, induces an outcome based on a compro-
mise between options Bl and B2 which feature a substitution rate of RSgp g1 = 1.
The gain ratio v at this outcofne, however, is equal to the entitlement ratio e. Since
y= 16> 1=RE, furfher adjustment from b to a is necessary in order to implement |
the Nash solution. By substituting all the way to option B1, we found the gain ratio
to be v = 1.125 > 1, which is still too large. The next highest substitution rate is
then between options A2 and Al, where RSap A1 = 4.5. Sinceat A2, v = 1.125 < 4.5,
further éubstitution now should be from a to b. The two inequalities 1 < v < 4.5 at
a single point imply that. there is no outcome that satisfies condition (3); the Nash
outcome is, therefore, at the kink in the efficiency curve where v = 1.125 € [1,4.5].
In Figure 4, this is denoted by point NBS. The Nash agreement consists of options
A2, B1, and C1, giving player a a total of 90 points.and player b 45 points.
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Although the criterion of fairness behind the Nash bargaining solution is de-
batable, it has some practical advantages over the Kalai-Smorodinsky solution as
a stopping condition for the substitution process of Adjusted Winner. First, the
Nash solution is generally easier to calculate, since the equilibrium condition, (3)
or (4), is simpler than (2). Analytically, the Nash bérgai’ning solution merely re-
quires maximizing the product of players’ gains. This is easier than determining the
intersection of a non-linear efficiency curve and an equity line, the slope of which
is given by the standards of value, which, again, are determined by the efficiency
curve. This feature has surely contributed to the popularity of the Nash bargaining
solution in theoretical research. Second, with piecewise linear preferences, the Nash
solution is often easier to implement than the Kalai-Smorodinsky solution. With
only a ﬁﬁite number of substitution rates, there are only finitely many values of v
that can satisfy the Nash criterion (3). Hence, with an arbitrary disagreement point,
chances are high that only condition (4) applies. This is quite fortunate, however, -
since an allocation that is located at a kink in the efficiency curve does not require

a convex combination of individual options, which may be difficult to implement.

6. Generalized Adjusted Winner: Procedural Implications

A characteristic feature of an axiomatic approach to bargaining is that it is based
~ on a list of desirable properties that one might expect of a reasonable solution to a
bargaining problem. However, even if one focuses on the criterion of fairness, the
appropriate solution depends'on the precise definition of what is to be considered
as fair. From an egalitarian perspective, the Kalai-Smorodinsky solution appears to
offer an appropriate distribution of gains. With a variety of alternatives at hand,
though, it is very well likely that a negotiating party may prefer, for example, to
“play Nash” instead.

As we have shown, the standard algorithm underlying Adjusted Winner can be
combined with the general equitability condition of the Kalai-Smorodinsky solution,
given by (2), as well as with the parity condition of the Nash bargaining solution,

given by (3). The implementation of other bargaining solutions only requires a
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modification of the stopping condition for the adjustment process.

The main drawback of Adjusted Winner is its strategic manipulability. In our
example, if player b knows player a’s preferences, then he can strategically rearrange
his own points in order to improve his payoff. Indeed, if player b allocates his points
such that they are only slightly above or just below player a’s, then he can still be
the temporary winner in the first step of Adjusted Winner. In the adjustment phase,
however, player b does not have to offer as much compensation as before, since his
(false) preferences indicate that he has only a minor advanté,ge over player a. -

BrAMS AND TAYLOR (1996) argue that, in practice, such strategic behavior is
quite likely to backfire as soon as players are only slightly uncertain about each oth-
ers preferences. This is because the procedure underlying Adjusted Winner requireé
a distribution of 100 points across all issues. Increasing the points on one issue is
thus only possible if the points on other issues are decreased. In order to take advan-
tage of the other player one must, therefore, consider several issues simultaneously.
Consequently, Adjusted Winner is de facto more robust against manipulation than
similar procedures such as the Knaster/Steinhaus procedure of sealed bids, where -
players can bid strategically for single issues.®

With the .indusion of outside alternétives, however, misrepresentation becomes
a serious problem, because, as equations (2) and (3) both reveal, an increase of a
player’s disagreement point has an unambiguously positive effect on his own out-
come. Our analysis and, in particular, the allocations in Figure.4 lustrate that it
is not legitimate to simply neglect outside options, since the fair outcome depends
on the structure of the bargaining problem, which includes the status quo before
negotiation begins. Assessing the alternatives to negotiation thus becomes a major
aspect of the negotiation process. When negotiations are of longer duration or part
of an ongoing relationship, bluffing with respect to outside options becomes more
difficult. But if outside alternatives are difficult to verify, then parties may require

the help of a mediator, who has at least some chance of assessing players’ reservation

8A description of the Knaster/Steinhaus procedure as well as-a comparison with Adjusted

Winner is given by BRAMS AND TAYLOR (1996).
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values.

Nevertheless, a fair-division procedure works best when strategic misrepresen-
tation of preferences or alternatives is not a problem. This is the case in conflicts
where parties have an interest to play cooperatively, but simply do not trust each
other. A formal procedure then serves as a commitment device. Of coﬁrse, binding
oneself to a mechanism that induces a cooperative outcome is equivalent to agree-
ing directly to a cooperative solution. A comprehensible procedure~ consisting of
plausible steps, however, has a high acceptability, since it reproduces and manages
a cooperative negotiation process, which both parties desire but are not capable of
without support.

Adjusted Winner can be applied to a wide spectrum of complex negotiations over
multiple issues with several options. Despite all extensions, the procedure remains
a back-of-the-envelope exercise. Moreover, all of our modifications showed that a
fair division involves at most one convex combination between two options of only
one single issue. And if a linear corﬁbina’cion of options 1s difficult to implement,
Adjusted Winner even offers creative support by shoWing parties precisely what
agreement they must improve on through negotiation. Creativity is undeniably an
important characteristic of successful negotiators, but if innovations are not directed
towards a specific goal, they are not of much use. Combined with the appropriate
bargaining solution, Adjusted Winner can lead negotiating parties in the direction

of joint problem solving.
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Appendix

Proof of the Theorem:

Consider an issue A with n distinct efficient options, Players’ utilities from these
n options are given in Table Al. The options in Table Al are ordered such that

Al® > A2° > .- > An® > 0and 0 < Al® < A2® < --- < An’. Moreover, the

concavity of utility functions implies that RSaj 1 A1 < RSaipiz1, 1= 2,...,n = L.

A

1 2 - 2 +1 -+ n-1 n
ug | A1T A% - AT AHL® - A1t And
b ALY A2Y o AR ALY oo An-1P AR’

Table A1: Non-linear preferences over n options

Consider now n—1 issues X1, ..., X,—1, over which players have linear, additively
separable preferences. Each issue has two options. Players’ utilities over the options

are given in the three panels of Table A2, where the second panel is only relevant

for n > 3.
X1 Xi:Z,...,n—? , Xn—l
1 2 1 2 1 2
ug | Al*—A2* 0 ug, || Ai—AHL® 0 ©oug | An-1® An®
uh | AL A W | 0 ARI-AP Wk | 0 An’—An-T’

Table A2: Additively separable preferences over n — 1 issues

The issues of Table A2 can be viewed as a decomposition of issue A in Table AL

First, the options of Table 1 can be reproduced from those of Table A2 according to

7—1 n—1
(A1) A=Y %24 J XKy =150
J=1 J=t
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where X;1 and X;2 denote the first and second options of issue X;, respectively.
Second, the substitution rates over individual issues X; are equal to the n — 1 sub-

stitution rates between neighboring options of issue A:

X, 28 %1k B = AT

RSxox1=—c7vo——=—-——F"—7r—"7 = : : =1,....n—1.
X:2,X;1 X2~2a Ty Xila AHLE — AP RSAH—LAI P 2 5 , 1 1

And third, although the negotiation over the n — 1 issues of Table A2 has 2n—1
possible agreements, only the n agreements given by equation (Al) are efficient,
where n < 27!, for n > 3.

In order to see the third aspect, consider the four options of two joint issues X;
and X;41. For 7 = 2,...,n — 3, the utilities of the four options are given in Table

A3; the analysis for 2 = 1 and i = n — 2 is analogous.

Xi’XZ-_H, 7;:2,...771—3

11 12 . 2 22
g +ug, | AP—ART  AP-AHL® ARI-AH2® . 0
Woul |0 AH-ARLY AHL-AP AR2-AT

Table A3: Additive preferences over issues X; and Xi_+1‘

For the given utilities of options Ai in Table Al, Table A3 implies that the
substitution rate between options 22 and 21 is the same as between options 12 and
11, and the substitution rate between 22 and 12 is the same as between options 21
and 11. Since the substitution rate between 21 and 11 is greater than between 22
and 21, option 12 must be inefficient. This is illustrated in Figure A1.°

We characterize an agreement over all n — 1 issues by the vector of options
0 := (01,03,...,0,-1), where o; € {1,2} denotes the chosen option of issue X;, ‘i ==
- 1,...,n—1. We denote by o, | := (01, ,0i-1,K,l,0i42,- - ,0,_1) a given vector o,

for which k,1 € {1,2} are the chosen options of issues X; and X;41 (¢ =1,...,n—2),

SWith A1® > 0 (An® > 0) the illustration of Figure Al would be shifted upwards (rightwards)
fori=1(i=n-—2).
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Figure A1: Utilities of the four options of issues X; and X;4;.

respectively. From the analysis of Table A3 and Figure Al we know that any
agreement o;1 9 is inefficient, because it is dominated by some convex combination
of 0;27 and o;91 or some convex combination of 0,71 and o;11. With an efficient
agreement, 0,9 implies 0,199 or 0,412 1, and 0,91 or 0;11 implies 0;;;1 1. Hence,

an agreement o is efficient if, and only if, it satisfies equation (Al).
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