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0. Introduction

The purpose of this paper is to present a description of the current
"Pareto border” in my search for conditions under which a strategic game
with decreasiﬁg best replies has a purestrategy Nash equilibrium. It may .
thus be regarded' as a revised and updated version of Section 4 of Kukushkin
(1995).

‘The search has been mbtivated by resentment againét this unfair asym-
- metry: iI a strategic game has increasing best replies, then, provided‘
certain regulérity, of strategy sets, the existence of an equilibrium; its
stability and niée comparativé statics are ensured (Topkis, 1979; Vives,
1990; Milgrom and Roberts, | 1990, 1994; Milgrom and Shannon, 1994); if the -
" best replies are decreasing, almost nothing godd about t_he- game c_an' be found
in the lite.rature. Meanwhile, both kinds of monotonicity emerge in economic
models with more or less the same frequency (Fudenberg and Tirole, 1984;
Bulow et al, 1985), and typical sufficient conditions for either of them
only differ in the sign of an inequality.

To some extent, the asy}mmetry in the literature reflects that in
reality and this cannot be helped. In particular, no‘ attempt to address the
stability or comparative statics of equilibria is made here. Stillr, if we
concentrate on equilibrium existence problem, décreasing ‘best replies appear
to have a potential exceeding what was revealed in the early papers onl the
subject: Novshek (1985) on the Cournot model and Vives (1990) and Milgrom
.and Roberts (1990) on two-person games. The fact that the stra1ghtforward
analogue . of - Tarski’s (1955) fixed pomt theorem for decreasing mappings is
not true makes the situation only more interesting.

Actually, wé will work in a bit more abstract framework than stfategic
games, hence the "systems of decreasing reactions” in the title of this

paper. From the 'game-theoretiéal viewpoint, each theorem below specifies



conditions under which for any choice of decreasing single-valued selections
.from the best reply correspondences there exists a Nash equilibriu;‘n where
each playér. uses this pre-specified selection; no assumption like upper
hemi-con{inuity on the best reply correspondences is needed. This feature
ensures a wider area of possible applications.

| First, for V.the existence of the best reply correspondence we only need
the upper semi-continuity of the- utility function in own strategy, while for
its upper hemi-continuity, we, generally speaking, ~need the continuity of
the utility in the product topolbgy. This is a big difference. |

Second, Vthis form of the resulis is useful for studyihg' the set of all
equilibria of a game: eg. it .rnay be important to know that there exists an -
equilibrium where each player chooses the greatest of his best replies.
Apparently, some non-uniqueness theorems can be derived from them.

Third, our reactions -need not be Nash best replies. For instance, when
the existence of the best replies is nbt ‘guaranteed, we may hope to find
g-optimal decreasing reactions and obtain the existence of an eg-equilibrium.
(I am. not prepared to formuléte exécf conditions for the existence of such
~ reactions: the question seems rather complicated.) |

The. paper is drganized -as follows.

In Section 1, necessary definitions are introduced. The standard frame-
work for a fixed point theorem, a mapping from a ‘set into itself, is re-
placed with a bit more structured notion ‘of a system of reactions. A rhapping
decreasing with respect to a preorder is .defined, a crucial assumption in
each theorem to follow being that reactions should be decreasing w.r.t.
_certain preorders. |

In Section 2, we consider restrictions on "who may inﬂuenée whom”;
such restrictions can be represented by an oriented graph, the absence of an
arc from i to j (i#]) -meaning- that j cannot react to the choice made by i

(in the strategic game interpretation, this means that the strategy X, does
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not enter the utility function uj). Theorem l.showg that such a systérn of
restrictions  ensures, by itself, the  existence of a fixed point for any
collection of decreasing reactions if and only if the corresponding 'graph
has no cycle with an odd number of arcs. The theorem- includes_r the
Vives-Milgrom-Roberts result on duopoly as a particular case and the proof
is based on Milgrom and Roberts’s reversing trick.

In Section 3, we add a restriction on the functional form of the reac-
tion _functioné: each player is supposed to react only to the maximum of
scalar characteristics of the relevant partners’ choices. Theorem 2 shows
that -the mutuality condition - if / may influence j, then j may influence {
- is sufficient for the existence of a fixed point under the restrictions.
The condition is not necessary, but an example shows that .it cannot simply
be dropped. -

In Section 4, the reactions are decreasing w.r.t. additive orderings; -
more precisely, reach pI'ayer reacts to the sum of scalar characteristics of
all the partners’ - strategies (restrictions on dependencies are not allowed
here). Theorem 3 establishes' the existence of a fixed point under rather
mild topological assumptions. An example shows that, generally speaking, the
multi-dimensional addition would not do. o

The story behind Theorem 3 goes back to the seminal paper of Novshek
(1985), who discovered, in the context of the Cournot model, that  decreasing
best replies guarantee the existence of an equilibrium. In Kukushkin (1994),
the result was reformulated as a fixed point theorem hinging on three essen-
tial assumptions: each player chooses a real number, - éach player reacts to
the sum. of the choices of the partners, and all reactions are decreasing.
The theorem was given a short and rigorous proof, while Novshek's argument
rel.ied heavily on naive geometric intuition inapplicable to the truly
general case {e.g. if one of the reactions jumps at every rational number,

there cannot . be any continuous branch at all). Unfortunately, a purely
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technical assumption - the .uppér hemi-continuity of all the reaction cor—l
respondences - had -to be made. Now the assumption is, at last, dispensed
with. Some éould argue that the enhanced generality is not worth the price
paid in the 'complexity of the proof, but,' as stated above, 1 believe it
important to have a result for single-valu_ed. reactions. |

Theorems 4 and .5 of Section 5 just show that the previous results do
not ' exhaust all the' possibilities. Either of them can easily be extended,
but it is not quite clear to what extent. - |

Section 6 contains a brief discussion of remaining open questions.

1. General Definitions

A mappmg [ from a partially ordered set to another will be called

mcreasmg if x=y implies f(x)=f(y) and decreasmg if x=zy implies f(y)= f(x)

A system of decreasing reactions X is given by a finite set N, and, for
each {€N, a partially ordered set X_ and a decreasing mapping ~ X, > 'X,,
where X =IT. ieN\ {z}X A flxed point for such a system is a collection

xi°EXi, i€ N, such that

xi° = ri(x ), : for all iEN. (1.1)
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Obviously, the .definition has been _inépired by the concept of Nash
equilibrium. However, it is reIeva'nt for other ‘game-theoretic concepts
(8-e(iui1ibrilim, for one) and looks nice enough by itself." ., ‘

Remark. The model is meaningful only for n=#N=2; however, for induction
processes to follow, it is convenient to consider n=1 admissible too, in
which case the unique “reaction” is just an element of X so (1.1) is
satisfied automatically. _ |

Naturally, a system of r, induces a mapping 71 X » X (with X=IT, c AKX,
and x°€X satisfies (1.1) if and only if x°=r(x®), ie. x° is a fixed point.

of r. However; we cannot go this way because the straightiorward analogue of



Tarski's (1955) _ fixed poiﬁt' theorem for decreasing mappings is not true.
Moreover, essential additional assumptions are n.ecessar.y. _

Example 1. Let N={123}, X={0,1} (:€N) and rle )=l 1 x )=
1-x,, rs(xl,xz)ﬁl-xl. It is easy to see that no x° satisfies (1.1): we
should have x1°=1-x2°=x3°=1-x1°. | | |

Remark. We could not provide so simple an example’ for n=2. When this
paper was virtually 'ﬁnished, I learned, from Davey and Priestly (1990,
Exercise 4.12), that Banach's proof of the Schrsder-Bernstein theorem is
based on the f{ixed point theorem for two decreasing reactions later redis-
covered by Vives (1990). For Davey and Priestly, this is just an application
of Tarski’s theorem and they do not emphasize that it is actually applied to
- decreasing —mappings_. | |

A opreorder # is a reflexive and transitive binary relatiop; a complete
preorder is called an ordering. |

Let there be a mapping = X » Y, where X and Y are partially ordered
sets, and a preorder ¢ on X r is called decreasing w.rt & if x”dx’
implies r{x")=r(x”). We will only apply the definition in the case ‘when ¢ is
an extension of the order (=) on X; then a mapping decreasing w.rt. & is
also decreasing in the sense of the previous definition.

When the preorder & is defined by a real-valued function F, ie. x"8x’
iff F(x”)=F(x’) (in which case it is an ofdering).; this property is equi-
valent to the existence of a representation r=goF with a decreasing mapping
g: F(X) » Y; such mappings r aré_ also called decreasing w.rt. F. For the |
consistency, it is natural to restrict ourselves to increasing functions F.

In Sections 2 and 3, an important part is played by ’partial product”
preorders. Suppose, for each /€N, a subset /(i) € N\{i} is given. Then we
say that a system X satisfies restrictions on dependencies <](i)> ieN if each
o is decreasing w.r.t. preorder z?i: xdy iff xjayj for all jei(i). When
l(i) is not empty, we may regard r.as a decreasing mapping I7 f

ery; > %
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otherwise (the exclusion of which ‘case would be technically inconvenient),
7, is just a constant. | _
Restrictions on dependencies,  </(i)> jeNe can  be described by an
oriented graph. More formally, we say- that an oriented graph G describes the |
system <[(i)>, ey if its set of vertices is N and j€l(i) is equivalent to the

existence of an arc from j to i in G (for all i,jEN).

2. Restrictions on Dependencies

We call a graph G stable if every X haViﬁg complete lattices as X,
€N, and satisfying the restrictions on dependencies described by G ﬁas a
- fixed point in the sense of (1.1).

Remark. The' restriction that each )fi should be a complete lattice is,
naturally, motivated by the similar assumption m Tarski's theorem. In prin-
ciple, other fixed point theorems for increasing mappings can also do. For
instance, Theorem 1 remains true if, in the definition of a stable graph, we
demand that each X be a partially .orde.red; finite set having the fixed
point property ‘(Roddy,r- 1994; I thank Sergei Tarasov, who brought this paper-
to my attention). | |

Theorem 1. An oriented graph G is stable if and only if every cycle in
G includes an even number of arcs. | | |

For the simplicity of -notétions,' we assume that each’ r. is a decreasing
mapping Hj c I(i)Xj > )«_’i (remembering the .reservation about the case bf
empty I(i}). (1 1) then transforms into |

z = ri(zl(i)),' B , (2.1)
for all iEN, where 2 denotes the vector‘of zj for jel(i).

1. Necessity. Let G have an odd cycle i, i, ... i (i EN, there is .

an arc from . i to [ as weH as fro.rn - to ao). Without restricting

~ generality, we may assume ijaﬁik for j#k. Now we can define a system' X with-

out a fixed point: X={0,1} for i€{i i, ..}, Xj={0} for all other jEN;
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r. (x . )=lx for  £=0,1,.2m-1, r{(x J)=1x , r(x )=0 for
heer TGP p" 0 16y Y 11O '
- all other jEN. Supposing the existence of a fixed point 2, denote s=

{;{i'&‘zik. Summing up (2.1) for i=i0, ...,igm, we obtain 25=2m+1; on the other

hand, s must be an integer.

2. Suificiency. The proof goes by induction in the cardinality of N.
- For #N=1, the theorem is trivially true. |
~ Let us consider a ‘gr_aph G without any odd cycle and a system of
reactions X with complete lattices as X, and satisfying the restrictions on
dependencies described by G. Introduce a relation R on N: iRj if and only if
i=j or _therel exists a path in | G from i to j, ie i i €N such  that

0

L= i =j and there exists an arc from L to i k=0,1,.,m-1. R is

0 k+1’

reflexive and transitive; roughly speaking, it is the transitive closure of
the basic relation "be connected with an arc in G”. We call i and j
equivalent if (Rjf andl jRi; thus N is paftitioned into equivalence classes
and R defines a partial order on the set of the classes. Now let us take a
maximal, w.r.t. R, equivalence class. In other words, we take a subset N°cN
such that iRj for all ij&N° and iRj for no i€N\N", JEN® (ie. there is no
arc leading from .a vertex outside N° to a vertex in N°). The following
procedur;z defines 2, satisfying (2.1) for all i€N".

If N°={i}, then r. must be a consfant; we take it as z. Suppoéing
#N°>1, we fix an ieN°® for any j€N°,'fhere exists a path from i to j and a
path from j to i. Since G has no odd cycle, there cannot be a path from i to
j with én even number of arcs and another path with an odd number of arcs.
Therefore, we have a partitioning N°=E UO, where jEE if there exists an' even
path from { to j (so i€E), ]EO if there exists an odd path from { to j, and
E NO is empty. Obv10usly, no arc can connect vertlces belonging to the same
element . of the partitioning.

Now we retain the existing order on Xi for i€E, while reversing it on



Xi for i€0 (similarly to Milgrom and -Roberts, 1990); all thé mappings T
i€EN°®, become increasing and Tarski's theorem - (applied to the Cartesian
product of Xi, i‘eN") implies the existence of a ”partial” fixed point
<z?ieN° satisfying (2.1). .

If, by chance, N°=N, the theorem is proved. Otherwise, we define a new
system X’ with N'=N\N°, I'()=1()\N°, X ‘=X (i€N"),
| o). | | (2.2)

’ =
r.'(x, (i)) 7 r(x

1’ (i)'zl(i) Ny
We also define a new graph G’ with N’ as the set of vertices and the old
arcs between ijeEN’. Obviously, G’ describes </ ’(i)>£- cN- and still has no.
odd cycle; by the induction hypothesis,_ there exists a fixed point <z>, eN’
Cofnbining z for {€EN" and i€N’, we obtain the fixed point needed as (2.1)
for 7. and (2.2) -imply (2.1) for 7, for all iEN". | '

As a kind of application of Theorem I, let us.'consider a game where the
players are arranged in a .circle and each player only interacts with his
neighbours. Assume that the strategy sets are nice enough and the best

replies are decreasing. Can we be sure of the existence of an equilibrium?

Theorem 1 gives a positive answer for an even number of players.

3. Maximum (Minimum) A.ggreghtion

A systeh of restrictions <I(i)>, e Nr is called mutual if jE(i) implies
iel(j) fér all i{jeN. Under this condition, poséible dependencies can be
described by an unoriented graph. '

Theorem 2. Suppose we have a system of decreasing reactions with mutual
restrictions /(;)SN\{i}, and, for each iEN, an incfeasing function fi: XI 3
R such that fi(Xi) is compact in its intrinsic_ topology, see Birkhoff
(1967), p.241-242. Effectively, this means that every subset has "the least
.upper ‘bound in fi(Xi). Suppose  also that each r, is decreasing w.r.t.
Fi(x_i)#rpaxj K i)fj (xj) (if 1(i) is empty, F, .is a constant). Then there

exists a fixed point x° satisfying (1.1).



The key role is played by the folfoﬁring particular case.

Fundamental Lemma on Maximum Aggregation. Cbnsider a system 2 defined
by & finite set N, a closed interval [a,b]SR, and, for each /€N, a subset
f(i)'gN \{i} and a2 decreasing function . [a,6] > l[a.b]l. Suppose also that
the system of <I(i)>i ey 18 mutual. Then there exists a vector z€[a,blV sat-
isfying

. z = ri(maxjef(i)‘zj), ' - (3.1)
~for all i€N (here and in the. proof, we, .quite naturally, assume that the
maximum of an empty set is a).

lProof of the Fundamental Lemma
For each i€ N, since r s decreasing, thefe exists xi'E[a,b] such that
ri(x)axi* for x<xi* and ri(x)sxi' for x>x;. | (3.2)
Denqte r_i(x)=maxje‘1(i)rj(x), v(x)=ror (x), L=lx&lat]| r{x)=x},
L=N; yL; note that v_is increasing and Lia]xi',,b] for each iEN.

Lemma 2.1. There exist i€EN and xeL such that vi(x)?_x.

Choose €N with the maximal xi*; in the case of non-uniqueness, choose
the maximal ri(xi*) ‘among them. Suppose that

v (x)<x for all x>xi* : (3.3)
* (otherwise, the lemma is already true). For each x>xi' and jEN, we have
rj(x)sx_i* (by (3.2) because xi* is maximal), hence r_i(x)Sxi'. Now if
ri(xi*)>xi', then for any xe]xi*,ri(xi*)[ we have vi(x)=ri(r_i(x))2ri(xi')>
X, contradicting (3.3); therefore, ri(xi')sxi*. |

The choice of i implies that rj(xi*)'sxi* for every jEN, S0 xi*GL and
r_i(xi*);sxi*. If r_i(xi')*(xi*, then vi(xi')zxi' by (3.2); if r_i(xi*)=xi',
then ri(xi‘)zxi" by the choice of i S0 ri(xi*)=xi* and Ui(xi')=x:.‘ In
either case, Lemma 2.1 is proved.

For each i€N, we deﬁne

y, = sup {x€lab] | vi(x)zx} . | (3.4)
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and éhoose i" maximizing Y for simplicity, we assume i=1. Now  we define
z =y  and zj=rj(zl) for jel(1). Reasoning as in the standard proof - of
Tarski's theorem, we can see . that v 1(21)=21’ ie. (3.1) is satisfied for
i=1. Lemma 2.1 impli.es - |
| z =z for all jel(1). ' ' (3.5)
Thus, if /(1)U{1}=N, (3.1} is satisfied for-aill iEN.
Otherwise, Wé define a new system X! by the set N'=N\{1}\/1), the same
interval [a,6] and, for all /€N, sets I"(i)=I{i)NN" and functions
r, ()=r (max{z, maxje](i)n](l)zj})'

All the previous constructions, when applied to the system X! will be dis-
tinguished by the superscript ! Now we take the largest of yil, ieN,
(defined by (3.4) w'ith‘ v, replaced ~ with Uil), ‘assume it to be yzl, and
define zz=y21, zj=rj1(z2) for j€l'(2). ~Inequality (3.5) for Z‘ll takes the
form 2=z, for all- j€I'(2)=H2)\/(1).

Lemma 2.2, z =<z .

Suppose the contrary. 1i /(1)N/(2) is empty, then for each je[1(2)-¥1(2)
we have rj1(22)=rj(z2) because zz>'zla‘zi for any ie](l)h](j). Therefore,
22=021(22)=vz(22), contradicting the choice of z as .the maximum  of 'yj
defined by (3.4).

i /(1)N/2) is not empty, we still have rji(22)=rj(zz) for all
Jjel@)\I(1). For jel(1)Ni(2), we have zj=rj(zl)2rj(zz). Combining both
relations, ‘we have z=0'(z)=r'(r 'z ))=r(r (2))=v(2). This again
contradicts the choice of z.

Lémma 2.2 is proved.

Now we define a new system X2 by N2=N1\{2}\](2),_. the same [a,6], P(i)=
I(HNN* and |

ri2(x)=ré(max{x, maX; & 1) A (1(1) UI(2))zj})

for all i€N?, and repeat the same procedure for it, finding 2, =max; . \2 yi2
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and defining zj=rj2(23) for jeA(3). Eventually, we have z defined for all
{€EN and only have to show that they form a fixed point for X.

On each step of the process, we have just one element i€N for which a
fixed point of v, (to be more precise, of v;) was chosen; let us call such
elements basic. By our - simplifying assumption, the basic elements form the
subset {1,2,...m}eN, where m is the total number of steps. It is easy to
see that (3.1) is automatically satisfied " for ‘each basic element i To
establish (3.1) for non-basic i, we have to look at them a bit closer.

So let ieN be. non-basic; then zi=rik'1(zk), where 1<k<m and igI(s) for

any s<k. By definition,

. (z)=r(max(z,, max, e NI U... UK 1))
on the other hand, repeatedly applying (3.5) and Lemma 2.2 along the process
of defining z, we obtain z=z for any FEIONUQ)U ... UIE-1)U{E}). Thus
z=r ltl(z) r(max e[(z)z) ie. exactly (3.1).

The Fundamental Lemma is proved.

Remark. The observation that the superposition of two decreasing func-
tions is increasing, used ‘by Vives (1990), could also be used to prove
Theorem 1 while there seems to be no way to prove Theorem 2 with Milgrom and
Roberts’s reversing trick. On the other hand, where the ftrick works, it
certainly provides the most elegant proof. |

Let us now derive Theorem 2 from the Fundamental Lemma. |

Denote, for each .ieN, 'Yi=fi(Xi)§[R ‘and -Si=Fih(X_i). All 'Y, are compact in
their  intrinsic  topologies by our assumption;  therefore, there exist
a=min, J,VrninYi and b=max; eNma;ch. It is easy to check that all S are also
compact in-their intrinsic topologies.

A Indeed, for any iEN, ACS,, and jel(i), we denote o °=supA, A ={acA | =2
a=F(x_ )—f (x )}C Y, and o'= =sup, Aj, where sup, means the ‘least upper bound

in YJ existing because of the compactness of li"J in "its intrinsic topology
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(a° is the "genuine” ;upremum). Then we have A'—_'Uj = I(E)Aj’ S0 a°5maxf- e’f(i)aj;
let a*=min{a'| a'=a°. Since a*=4° it is an upper bound for A; since it is
minimal, it is the least upper bound.

By our other assumption, ri(x_i)_=qi(max]. cl() f, (xj)) with ¢ defined
and decreasing on S. Now for each d&la,b] we define ni(d)=supi{sESi| s=d},
where sup, means the least upper bound in S’i, and finally, defirié. a mapping
p; [a,6] - [ab] by pi(d)‘=fioqioni(d). Each p  is decreasing, so the
Fundamental Lemma is applicable implying the existence of a fixed point
tc€la,b]¥ such that ¢'i=,¢r1i(rr1axje ](i)ﬁj)_. Denoting 0, =max; o I(i)‘fj and x°=
qioni(ai), we have Ei=fioqi01ci(cri)=fi(xi°), hence ¢ €S, hence ni(ai)=ai;
therefore, xi°=qi(maxj e X i)fj(xj°))=ri(x_i°). Theorem' 2is proved.

Remark. If we reverse the order on all Xi and replace each fi with_ -fi,
then the maximum aggregation will be transformed into the minimum one. Thus
the éxact analogue of Theorem 2 is valid for the latter too. | '

Naturally, the mutuality condition is not necessary in any sense: if
the restrictions <I(i)>i eN are described by a graph without odd cycles, a
fixed point exists by Theorem 1. At the.moment I can only demonstrate that
‘the condition cannot simply be dropped. |

Example 2. Let ~N={1,2,3}, [(1)={2,3}, H2)={1,3}, I(3)={2},
[a,6)=[0,3], |

9. x29, 0, x=3, 1, x=1,
r(x) = { r(x) = { r(x) = {

3, x<2, 1, x<3, 2 2, x<1.

It is easy to see that the system has no fixed. 'poir_lt in the sense of (3.1):‘
if 2,=0, then 23=r3(g2)=2, _z.1=r1(max{zz,z3})=2, S0 zz=r2(max{zl-,23})=1¢zz;
if z,=1, then z3=r3(zz)=1, zl=rl(max{22,zs})=3, S0 zz=r2(max{zl,zs})=0¢zz.
Returning to the example with players in a circle at the end of the
previous section, we see that if, additionally, each player’s utility is

only affected by the maximal (or minimal) of the choices of the neighbours,
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an equilibrium exists for odd 7 too.

4. Additive Aggregation

Theorem 3. Suppose we have a system of decreasing reactions wﬁere, for
each i€N, thére is an increasing function fi: Xi » R such that fi(Xi) is
compact in the Euclidean topology and r, is decreasing w.rt. - Fi(x_i) =
Ej - ifj(xj). Then there exists a fixed point x° satisfying (1.1).

Just as in Theorem 2, the key role is played by a particular case.

Fundamental Lemma on Additive Aggregation. Assume given a finite set N,
a real number ¢>0, and, for each {EN, a.decreasing function r: [0,(n-De] >
[0,c]. Then there exists a vector x° & [0,c]¥ such that
x° = AN for all ieN. (4.1)
Proof of the Fundamental Léemma
Let " us introduce necessary - notations first. Throughout the proof, the
variable x denotes a vector. from [O,CJN wifh- coordinates X the inequality
-x”zx’,' is understood coordinate-wise, x”>x’ means Pareto dominance (=
everywhere with > somewhere); ¢ is a real from [0,nc] (a total); z is a pair
<tx>, we always assume =z’'=<¢’x’> 2”=<{”x">, etc. unless eXplicitly
defined .otherwise. We extend each function 7, to the whole [0,nc] by ri(s)=0
for (n-1)c<s=nc, and define 'Bi(t)={xi | _xi=ri(t-xi)}, B_(t)=HiEN Bi(t), B={z |
x€B(1)}. |
Obviously, x forms a fixed point, ie. satisfies (4.1), if and only if
<Z;. e N X €B. Following Novshek (1985), we start with a relaxed version of
the condition:
EieN x = t ' (4.2)
Now denote’ C the set of z&€B satisfying (4.2), C contains the poinf
<nc,0,...,0> and so is not empty, and denote D the closure of C in the

Euclidean "topology of R**! (which may be defined by the norm |z | =max{]¢],
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maxieleil}). |

Loosely épeaking, we will search - for ze€C satisfying (4.2) as an
equality by trying to minimize ¢ and maximize (in the Pareto sense) x. The
implementation of the idea is by no means straightforward. It makes no sense
to compare x-components of z€C with different t-components directly; we have
‘to learn how to “translate” x from ¢ to ¢’ first. Then a (strict) partial
order P on D is defined, consisting of three components, one of them ‘upper
semi-continuous, two others. without aﬁy’ good topological properties but
simple enough by themselves. This combination of properties allows us to
prove the existence of a maximizer of P over D; this maximizer turns out to
be a maximizer of P over C. Finally, every such maximizer must satisfy the
equality needed. | |

r{s’) = lim inf

in i i +0) = i :
Since each r, is monotonic, ri(s 0) Mg s 57 >5" 5’38

ri(s’) and similarly 7(s-0) are well defined for every s€lOnc[. Denote
Bi'(i‘)-‘-{xi | ri(t-xi-IfO)sxi}QBi(t); ‘ze€D implies xiGBi'(t) for each i€N.

Let i€N, x€B (), t'>t; for any y=x, we define gly)=r(t"-y);
g(yi)sxi because xiEBi'(t). Thus g maps [O,xi] “into itself and is increas-
ing. By Tarski’s theorem, there “exists the greatest fixed point of g we
‘denote it ri(t,xi;t')eBi(t’). It cduld also be defined as the maximum of the
set Bi(t’)n[O,Jéi]. or as the ordinate of the first, after <t—xi,ri(t-xi)>,-
point of the graph of 7, where the “cumulative reaction” is ¢’; without a
reference to Tarski's theorem, however, its véry existence could be unclear.
For t'=t, we can use the same definjtion . if r(tx)=<x, again obtaining
ti(t,xi;t)eBi(t); if xi<.ri(t-x;), we have ‘-td‘ define ti(t,xi;t)=xi,ﬁ in which
case it does not belong to Bi(t). Thus ':i(z‘,xi;t)=xi unless ri(t-x'i)<xi-

The vecfor form of the translation, t(z,x;2’) (or (z¢’) ), is defined
coordinate-wise. -We will 'ﬁse it for z€D; since f increases and x decreases,
each translation still belongs to D (even to € if f<t’ or xzr(tx) for

all iEN). The following properties of 7 are easy to verify:
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tzt’)=<x for any z=(¢{x)eD, t<t': -

izt )=1t(zt") whenever t<t' <t”;
tx’ ;1) =<7(tx”:t") whenever x’ <x”, t<t":
(z;t")=1(t" ,7(z;t");t") whenever <t’'=<t”.

Now we can define the following bihary relations-on D:
2"P’ iff 3" such that £>t7, £2t”, and t(z”;t")>1(z";t");
z"Pzz’ iff £7<¢’ and 7(z”;t") 2 1(2":1");
2"Pz’ iff t"=t’ aﬁd wz”;t)>1(z";t");
2Pz’ iff 2"Pz’ or 2"Pz’ or z"Pz’ (i.e. P=P1UP2UP3).

The anti-reflexivity of P is obvious. It is also transitive, but we
only need the transitivity of PI. |

Lemma 3.1. For any z,2’,z” €D, z"Pz’ and z’Pz imply 2"Pz.

The delinition of P1 associates with each pair <z’,z> and <z”,z’> an
appropriate . Let f~ be the greatest of the two t"s. We -obviously have
‘r(z”;t")ar(z’;t")zr(z;t"), and one of the inequalities is strict (i.e.
7 Pareto dominance). Thus z.”Plz and the lemﬁla is proved.

Lemma 3.2. 'P; is upper serﬁi—co.ntinuous, ie. z”Plz’ implies the exist-
ence of an open neighbourhood U of z* in D such that z”Plz for all ze U.

Let us assume 7(z’;t")=x"<z(27") (with ¢’'<¢, t7<f) and define
5=(l‘*-t’)/2,. U={zeD | |zz’']| <8}. Let z€U, iEN; from t<t’+6 and 'xi>x,1’—5, we
easily obtain t-xi<t’-xi’+255t*-x; (since xi*sxi'), hence

| x, = rtx+0) = r(t'x’) = x". {4.3)
On the other hand, for any 'yis}ci,' we have t'—yi>t*—xi’—6>t’-xi', hence
ri(t'-yi)sri(t’-xi’+0)sxi’; therefore, Bi(t*)n[O,xi];Bi(t')ﬂ[O,xi’]. . The
maximum of the latter set is, by definition, r—i(t’,xi';t')=x;. Combining
this fact with (4.3}, we 'obtain‘r(z;t*)=x*,> hence z”P z. |

Remark. P is lowef semi-continuous, but this is of no help to us.

A maximizer of P over D is z&€D such that z‘Pz is impossible fof any

z’€D. The upper semi-continuity of P1 implies the existence of a maximizer
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of P1 over any compact set, but we need more than that.

Lemma 3.3. For every z’ €D, one of the three statements is true:

(i) 2’ is a maximizer of }-"1 over D;
(ii) there exists a maximizer z” of P over D such that z”Plz’;
(iii) there exists a sequence 2z™32° such  that z“)Plz’,

z(”l)Plz(“) for n=1,2,.. and 2° is a maximizer of P over D.

Remark. For a 'general upper semi-continuous relation, nothing mére can
be asserted. In our case, .it seems likely that (iii) irhplies z°Plz’,' ie.
- (ii), but I have not checked this carefully. .

Suppose none of the statements holds and denote Z={z€D | zPz'}. For
each ze€Z, let Uf{z"eD | ‘zPlz"}; by Lemma 3.2, each U _is open; by the nega-
tion of (ii), they cover Z because a maximizer of P over Z is also a maxi-
mizer of Pl o\}er D. Since D, being a subset of R**!, has a countable base of
open sets, a countable family of Uz also covers Z (the Lindelsf theorem, see
e.g. Kuratowski, 1966, p. 54). Denote X the set of corresponding z€Z.

Now we apply Zorn’s Lemma (Kuratowski, 1966, p. 27) to show the exist-
ence of a maximizer of P1 - ovér X. Consider a Pl—chain Y<X; if it has the
greatest element, it is bounded; otherwise, it must be infin_ite. Since Y is
countable, we may pick a sequence 2™€&Y such that z(““)Plz(“) for
n=1,2,.. and. for every z€Y there exists n such that z(“)Plz (Birkho‘ff,
1967, Theorem VIIL.22, p.200). Since D is compact, we may assume 2®sz°€D
without restricting generality. Since (iii) does not hold, there exists 2'eD

® for all n big

such that z*Pl'z°; since P is upper semi-continuous, z*Plz
enough. Therefore, 2° is an upper bound for Y. |

By Zorn’s Lemma, thefe- exists a maximizer 2”7 of P1 dver X, but .Uz for
z€X cover ‘élf Z QX," so there must exist z€X such that zPlz”; This contra--
diction proves the lemma.

Lemma 3.4. There exists a maximizer of P over D.

Denote Z° the set of all maximizers of P over D. By Lemma 3.3, Z° is
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not empty; by Lemma 3.2, it is closed. Denote t°=minz e zoh D(t°)={yeﬁN|
<t®y>ED} - a compact subset of R", and DV(©)={yeD(*)| (£ y:°)=y).
D¥(#°) need not be compact, but it contains limits of all increasing se-
quences: indeed, if ye€D{f’) and 'ri(t",yi;t");&yi, then r(y)<y by the
definition of 7, and ri(i,‘°-yi-0)=_r,/i because y€D(t°); therefore, the open
interval (" ).y has no intersection "with the range of . and g,
cannot be approximated from below. Now we pick x€D(#°) such that <{°x>eZ°
and x*e€D* () which is Pareto maximal on D*(t°) and satisfies xt= (£, x;t°)
(e.g. a2 maximizer of LNy, over D+(t:°) ~under the constraint y=7(°x;f°)),
and denote z*=<£ x*>€D. |
It is easy to see that z© is a maximizer of both P and P over D: If
z’P3z+, ~then  w(z/;°)>(°xF%)=x"  and (z’;)eD*(*) contradict the
Pareto maximality of x*. If 2’Pz", then ‘2'P <f’x> because )=
7(t°,x;t) for every £>1°, contradicting the choice of x.
Let ‘us show z¥ to be a maximizer of P2 too. Suppose. the contrary: there
exists z’ €D such that ¢/ <{° and
(2% = ©2%°) = x*, | (4.4)
The definition of #° implies z’'€Z° If z"Pz’, then £'>t° (where ¢° comes
from the _definition of Pl)‘ would imply- _z”Plz"' while =t would imply
z”P32:+; therefore, ¢'<7°, hence: 2" ¢Z°. We see that neither (i) nor l(ii) from
Lemma 3.3 can hold; therefore, we must have (i) with ®<# and
z"=’<;°,x°>. Without restricting generality, we may assume that /® monotone
increases and each xi(“) either monotone increases or monotone decreases.
As  we havé‘ just s.een,' for 'tn* from the definition of P  for

i
z(“”)Plz(n), there  must  be  ¢°<#,  hence  T(2®*D%)2 ¢(:®.%)
(2% 2x*. Since x* is Pareto optimal, we must have equalities here. On
the other hand, 'r(z(““);tn')>1:(z(“)';'tn') implies a strong inequality for
some coordinates. Without restricting generality, we may assume that

ri(zfn'”);tn') > ti(z(“’;tn*) (4.5)
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for some i€N and all n=1,2,... Then the definition of T implies  that the

(m) n+1)

sequence X, is strictly increasing: otherwise, Jci(")-_-'=:xi would imply
ri(t(“),xi(_“);t)ari(t(n“),xi(““);t) for  any  t=t®*P contradicting  (4.5).
Combining this with xf“’ax? from (4.4), we obtain xi">xi+ even though
ri(z‘°,xi°;t°)=xi+. Therefore, x°@&D™(t) and x° cannot be approximated from
below, see the argument at thg start of the proof of the 'Iemma. This
contradiction shows that z’ satisfying (4.4)_ cannot exist, so z* maximizes P
- over D. | |

Lemma 3.5. There exists a maximizer of P over C.

Let z€D be a maximizer of P over D. Suppose first that xi<ri(t-xi) for
some (€N and pick one such i. Then we défine xi°=ri(t-xi), t°=¢-xi+£i°>t, .
xj°=rj(t,xj;t°) for j%i. We have 'ZfEijo=xi°+Ej#=ixjo < t°-t+zj N therefore,
(4.2) for =z implies (4.2) for z° hence 2°€C. Obviously, x°>7(z;°), so
~z°Plz, contradicting the choice of z. | |

Thus we have to conclude that }cia ri(t—xi) for all iEN. Then we define
- 2°=t(z;t)€C and have w(z¢’)=1(2°t’) for any t’=t Since only these terms
ﬁarticipate in the definition of P, 2’P2° for any z’€D would imply 2z’Pz,
contradicting the choice of z. (If z was taken from the proof of Lemma 3.4,
then 2°=z). | | _

Lemma 3.6. If z is a maximizer of P over C, then (4.2) for z is sat-
isfied as an equality.

Supposing the contrary, L E in=t-A with A>0, we denote si=t-xi (ieN)-.
Now if there exist €N and s'€ls-A,s] such that rs)+s’=% ‘then we
may define 2. xi'=‘ri(si"),' t*=si'+xi*zt, xj*=rj(t,xj;t*) for j#i. We have
xi'-xil=tf-si'—xi=?'-(si+xi)+(si—3i’)<t*—t+A; Therefore, Ej c ij'=xi‘+zj ;eixj*s
xi'-xi+2j c ij<(t'-t+.d)+(r-.4)=t*, hence z'€C. Furthermore, x >7(z;t"), hence
2'Pz or 2'P 2, according as ¢ >t or =i, contradicting the choice of z.

" Thus we have to assume

'ri(si’)+si’<t for all iEN, si'e]si—4,si[. : (4.4)
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We denote 8=4/(n+1), xi*=r,(s_—6), z‘,'=x,*+s,-c5; by (4.4), we have }c_Sxi'<
x40, t-ést;<t. Therefore, EeNx <Fie N +nd=t-6. Let us define ¢ =
ax; N{ti*}<t, xi“=ri(ti',xi*;t“) for all i€N; Cclearly, % e NY *SEie in’<
{7, so 2°€C. On the other hand, by {(4.4), «(2";t)=x, so z“Pzz. This
contradiction proves Lemma 3.6 and, therefore, the Fundamental Lemma.

Remark 1. The proof of Lemma 3.5 and Lemma 3.6 together imply that
every maximizer of P over D actually belongsrto C and is therefore. associ-
ated with a fixed point. The éonverse is not true: there may exist z’,z”e€C
such that both satisf& (4.2) as an equality but z”Plz’ (P2 or P, are im-
possible here).

Remark 2. If 2° i‘s a maximizer of P over C, then g()=7(2%¢) for
telfnc] is a selection from the correspondence B(f) exactly of the type
that  Novshek (1985) constructs for the case of simple configurations. In
this respect the above proof is even closer to Novshek’s original argument
than that of Kukushkin (1994). In the general case, however, there is no way
to "construct” such a selection directly, without knowing 2° Vfirst; SO we
have a pure existence theore_m.

Let us now derive Theorem 3 from the Fundamental Lemma.

Denote, for each (€N, Y=f(X), S, =%,

L

are compact subsets of R), a=min Y, b—max Y, a= % b._i— j:f-—ibj’ and

e=max; o N(bi-ai), by our assumption, ri(x_i)=qi()jj " ifj(xj)) with g, decreas-

.Y {note that each Y],L and S

ing. For each de&[0, (n-1)cl, we define ni(d)=max{sieSi| s,<a_td}, and,
finally, define a mapping p: 10(n-Del 5 [0c] by pi(d)=fi'oqioni(d)-ai_
Each ﬁi is decreasing, so the Fundamental Lemma is applicable implying the
existence of a fixed point £€[0,c]N such that éi-—pi(zj - i?;’j). Denoting
A ;eiéj, and xi°=qi07ri(ai), we have §i+a'i=fioqioni(ai)=fi(xi°), hence
f(x°) =a_+ag, hence n(cr )=E. .f(x°) (by the definition of ni')';

j-‘#t

therefore, X, °=q ()]] #il,

- Remark. If we assume X <R and fi(.:ci)—ﬁci (iEN), we obtain the theorem of

f(x °))= r(x °). Theorem 3 is proved.
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Kukushkin (1994) as a corollary of Theorem 3.

Unfortunately, Theorem 3 provides no information aboﬁt the players in a
circle considered in the two previous sections: the proof relies on the
presence of all x, in the sum in (4.2). '

- To- finish with additivity, let us show that the straigi'ltforward multi-
"dimensional analogue of .Theérem 3 is not wvalid.

Example 3. Let us consider three mappings r R > R* (i=1,2,3):

(1,0), s,=1, - [ ©02), s,=0,
rl(sl’sz) = rz(sr'sz) =
(0!0)! Sz> 17 (0,0)1 sz>0|

(0,1), s, <0,
r(s,s) =
(0,0), S1>0‘

All the three are decreasing, but no vector x°=<x1°,x2°,x3°>,' from the
Cartesian product of their ranges X can satisly (4.1). Actually this
situation is equivalent to that of Examplé I. x reacts to x, x vreacts to
X, and X, to x. The extra dimension makes ~the restriction . imposed by
additivity futile. A small modification of r ~can make them strictly

1

decreasing in each variable without a fixed point emerging.

5. Lexicographic Preorders

Let there be a system of decreasing reactions with N={1,2,3,4}, X cR
(ieN), and each function r X, > Xi. decreasing w.r.t. the 1exic‘:ogra1§hic
preorder z?i described as follows. The i)layers are arranged in a circle, and
if the choices of the neighbours of player i at x_i” Pareto dominate Vthosé
at x;i’, 'tﬁen x"i”t?x_i’; only if the choices of the neighbours are the same,
the 'choicé of the opposite player matters. Thus for /=1 we have:
rl(xz”,23”,x4”)sr1(x2"-,x3’,x4’) if (xl”,x”4)>(x'2’,x4’)', in the Pareto sense,
or if '(xz”,x4”)=(x2’,x4’) and x,">x. And similarly for the others: every

odd player reacts to choices of even players first and only then takes into
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account the choice of the odd fellow, whereaé eveh players react to odd
choices first. Without the "lexicographical additions” we would have a
situation covered by Theorem 1 - a graph without an odd cycle. Wlﬂ’l themn, it
needs a special investigation. |

Theorem 4. Every system of decreasing reactions with N={1,2,3,4}, Xiglk
(ieN) eac.h- compact in its intrinsic topology, and reactions decreasing
w.r.t. preorders“r?i just described has a fixed point satisfying (1.1).

Fix.x2 and X for players 1 and 3, we have a duopoly with decreasing

reactions, which must have a fixed point <q1(x x,), c;3(Jc2 x4)> such that

3724

{ ql(xz,x4)=rl(;t X4 (x.,x ), 1)

q, (x X )—r3(x2 X, (xz,x4)).

Since r. are decreasing w.r.t. :Si, both q, and q, are decreasing on szX4.
Quite similarly, for each N there exist qz(x 1’x3)’ q4(x1,x3) such

that

{qz(xl,xa)=r2(x1,x3;q4(x1,x3) ), (5.2)
2)

q(xx)=r (x x50 (x x))
and both q, and q, are decreasing‘ on X1XX3‘

Now the system <N,Xi,qi> satisfies the assumptions of - Thedr‘em 1;

therefore, there exists a fixed point <z > satisfying |

2=q(z,2,) I - (5.3)
(where j and & are the neighbours of ). Combmmg (5.3) with (5.1) and
(5.2) for z, we obtain (1.1).

Theorem 5. Suppose there are given three sets XiglR (i=1,2,3) compact in
their intrinsic topologles there. is; an increasing function f X3 > R, and
there are three functions T ‘X_i > Xi such that r3(x1,x2) is decreasing in
both arguments (not necessarily  strictly), rl(xz,xs) is  lexicographically

decreasing in the sense that rl(xz”,x3”):=_rl(x2’,x3’) if f(xs”)>f(x3’), or if
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f(xa”)=f(x3’) and xz”?xz’, or if’f(xa”)=f(x3'), x,"=x’ and x ”>x’, while
r(x.x) s decreasing w.rt. a similar ordering: first f(x,) matters, then
x,, and only then x_. Then there exists a fixed point satisfying (1.1).

Let us assume the convention ije{l,2}, i#j; denoting V=f(X3), we

define the following functions for each veV:

E(v) = inf inf r,(x_;xa) = inf, r_(maxX,;xs),
! x.€fv) xex t x.€f(vy * !

3 3 3 3
E(W) = sup suprixx) = sup r (minX ;x ),
i 'x3€f'1(v) x, €X'/ ? x3€f'l(v) ' i3

£, (0) = r,(¢*(0).8,* @), &) = r(£ (0.6 (),

go) = (g, (), g*(0) = f&* (). |
Each function fi”(v); §i+(v), for i=1,2, is decreasing; moreover, v’<v”
implies fi'(v').zfj(v”). because'_ ri(xj’;xs’)zri(xj”;x3”) for any xj’,' J;j_”,
x,', x,” such that f(x ‘)=v’, f(x,”)=0". Therefore, ¢, (v), 53*(0), g (v)
and g*(v) are increasing, and v’<v” implies g*(v*)<g(v”). So the corres-
pondence 1(v)=[g(v).g™(v)] satisfies  the éssufhptions of Theorem 1 from .
d'Orey (1996), hence there exists v°€V such that g () ={o"}=g*(v°). |
~Now for each k=1,2,3, we define Yk=X]'£ﬂ[§k'(v°),£k+(v°)]; by our
definitions, we have f(Y3)={v°} and rk(Y_k)ng for £=1,2,3. Given y €Y, we
have two decreasing rﬁapp_ings, rl(yz,-)‘ and r3('-,y2), betweeﬁ Y and Y.
Therefore, there exists a fixed point y1=q1(y2), y3=q3(2)(y2) such that. ,
ql(y2)=r1(y2,q3(2)(y2)), 4, 2(,)=r(q,(y)y). Now  y’<y”  implies
_rl(yz’,ya’)zrl(yz”,yB”)_'for any y,’.y," because fly,')=f(y,")=0v" therefore,
ql(-) is decreasing. Similarly, there exist, for each y EY, q'z(_yl)GY2 and
q,(y)  such  that 'qz(yl)-=r2(y1,q3“’(y1)) and ¢,y )=r(y,4,(3));
q,(-) is also decreasing. Now we again have two decreasing mappings, q:l(-)

and qz('), between two sets ¥ and Y, and again have a fixed point ylo’ yzo

such  that y°=¢(yS) and y2°=ql(y1°).' Define y3°=q3‘1)(yi°)=r3(y1°,y2°)=
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qsa)(y;). Obviously, v °, 4,°, y,° constitute the fixed point needed.

6. Conclusion: Open Questions

Since Theorem 1 gives a necessary and sufficient condition, there does
not seem to be much room for extensions. Besides, the necessity is estab-
lished with so sirﬁple an example- that really nothing is left. As to the
sufficiency part, if one is prepared to restrict oneself to finite sets,
again everything is clear, due to that wonderful result of Roddy (1994): any
finite sets with the fixed point property will do. For infinite sets,
complete lattices seem to ‘be the most safe solution: for all I know, the
analogue of Roddy’s theorem for this case is not yet established. In any
case, the remaining - prbblem belongs to the theory of fixed points for
increasing mappings, see e.g. Fofanova et al. (1996) and references there.

An obvious open question about Theorem 2 is how to describe graphs of
admissible dependencies for which the theorem remains true. The examples
investigated so far do not inspire much hope for a compact solution. Another
interesrting' question concerns multi-dimensional versions: the maximum aggre-
gation can be defined on a lattice. Finally, the‘ result ”should” be extend-
ible to reactions decreasiﬁg w.rt leximax f{or leximin) - ordering, but I
have no idea how to do this at the moment. |

‘Theorem 3 asks for an extension to reactions decreasing w.r.t. partial
sums under some (mutuality?) conditions on admissible dependencies; however,
a new technique for proofs seems fo be needed. If Theorem 2 is extended to
leximax and Theorem 3 to partial sums, the suspicion t_hat they can be
- derived Ifrom the same general theorem might become oveﬁwhelming. Not every-
thing is clear with possible multi-dimensional versions of' the theorem
Vdespite the counter-example.' An essential achievement would present an
equilibrium existence result for Bayesian games with additive aggregation

~and (cardinal) strategic substitutes.
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The Euclidean combactness of fi(Xi) in Theorem 3 looks like .a serious
obstacle to the unification of Theorems 2 and 3. If we only assumed each
[(X) compact in its intrinsic topology, their sum might not be c'ompactr
(even in its intrinsic topology) and the proof would collapse. On the other
hand, no counter-example disproving such a modification of the theorem is
known at the. moment. This seemingly minor tecﬁnical problem is important for
understanding relations, if any, between. Novshek’s and Tarski’s fixed point
theorems. 7

As to the results of Section 5, the main open question about them‘ is
whether they are doomed forever to remain .queer isolated cases or may. be

eventually incorporated into a more respectable general theorem.
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