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1 Introduction

In this paper we consider a general compeﬁtive market model for trading various com-
modities. Commodities can be either perfectly divisible like water or inherently indivisible
like houses. Money as a medium of exchange is treated as a perfectly divisible commodity
and is always present in the market. There are a finite number of traders. Each trader
is initially endowed with several units of each commodity and some amount of money.
Traders’ prefgrences depend on the bundle of commodities and the quantity of money they
hold. All preferences are assumed to be quasi-linear in money. Using the max-convolution
approach, we demonstrate that the market has a Walrasian equilibrium if and only if the
potential market value function is concave with respect to the total initial endowment of
commodities. Surprisingly, this result holds uniformly true for both the divisible goods
market and the indivisible goods market. We then offer several sufficient conditions on
each individual trader in both markets.

Due to quasilinearity in money, for the divisible goo&s market, the current model is less
general than the standard Arrow-Debru model in case all utility functions are assumed to
be strictly increasing. But the current model being simple does have several advantages.
First, we are able to provide a simple argument free of fixed point theorems for the existence
of a Walrasian equilibrium in a divisible goods market with rich enough structure. Qur
arguments are elementary and accessible to college students. Secondly, this model allows
us to study both the divisible goods market and the indivisible goods market, simultane-
ously, although our attention will be focused on the latter market. In recent years, we have
seen growing interest in studying the indivisible goods market. Several models have been
investigated by Bikhchandani and Mamer (1997), Laan, Talman and Yang (1997,2002),
Ma (1998), Bevia, Quinzii and Silva (1999), Gul and Stacchett (1999), Yang (2000,2001),
Danilov, Koshevoy and Murota (2001), and Murota and Tamura (2002), which extend the
earlier models introduced by Shapley and Scarf (1974), Gale (1984), Quinzii (1984), Svens-
- son (1984), and Kaneko and Yamamoto (1986) in one way or another. We point out that
the quasilinearity in money is a standard assumption in most of the recent literature; see
for example, Bikhchandani and Mamer (1997), Ma (1998), Bevia et a.l.r (1999), Gul and



Stacchett (1999), Yang (2001), and Murota and Tamura (2002). Thirdly, the reservation
value functions of traders over goods can be very general and are not restricted to mono-
tonically increasing functions. In fact, they can be any concave functions. Therefore, the
current model can also apply to the financial market where there are many risky assets
and one riskless asset and the utility function of each investor over risky assets may have
a satiation portfolio. Satiation refers to the situation where there is an optimal portfolio
bevond which the increased return of holding more assets may not be sufficient to offset
the increased risk. Finally, the assumption of quasilinearity in money enables us to use
the max-convolution approach to analysize the model. Given two functions f; and f; de-
fined on R", the new function f defined as f(z) = sup,{fi(z — y) + fa(y)} is called a
max-convolution of f; and f;. This functioﬁal operation is one of the techniques originally
developed in convex analysis. See for example, Rockafellar (1970). Using this approach
leads us to establish a natural connection between equilibrium and concavity.

The rest of the article is organized as follows. In Section 2 we introduce the market
model and basic concepts. In Section 3 we establish two necessary and sufficient conditions
for the existence of an equilibrium in the model. Finally, in Section 4, we provide several

sufficient conditions on the behavior of each individual trader.

2 The Unified Market Model

First, we introduce some notation. The set I; denotes the set of the first k positive integers.
The set R™ denotes the n-dimensional Euclidean space and Z" the set of all lattice points -
in R". We will use W" to denote either R" or Z". The vector 0 denotes the vector of
zeros. The vector e(i), i € I, is the ith unit vector of R". Furthermore, z - y means the
inner product of vectors z and y.

Consider a market for trading various commodities. In the market there are m agents
(or traders), n commeodities, and a perfectly divisible good called money. The set of all
agents will be denoted by T = {1,2,---,m}. Each agent i is initially endowed with a
bundle «* € W of goods and some amount m; of money. Let w stand for the total goods

in the market, i.e., w = ¥;cqw*'. Thus, for each good h = 1, ---, n, there are wy units



available in the market. It is understood that wy > 0 for every h = 1, - -, n. Each agent
i's preferences over goods and money are quasilinear: that is, the utility of agent 1 holding

¢ units of money and the bundle r of goods can be expressed as
w(z,¢) = Vi(z) + ¢

where V;(z) is the reservation value V}(z), the quantity of money that agent i valuates the
bundle T of goods.

For each ¢ € T, the reservation value function V; : W™ — R is assumed to be bounded
from above. This assumption plainly states that no good is infinitely desirable. Finally,
each agent i is assumed to have a sufficient amount m; of money in the sense that m; >
sup,ew~ Vi(z) — Vi(w?). This means that if the prices of a bundle z of goods is no greater
than the reservation value V;(z), then agent i can afford to buy the bundle z. Since V] is
bounded above, m; is finite. This market model will be represented by M = (Vi,m;, w',i €
T, W™), where the commodities space W" is the market indicator. That is, if W" = R",
then the market is a divisible goods market; if W™ = I, then the market is an indivisible
zoods market where goods can be houses, cars, and computers. Note that money is always
present in both markets.

A family (z', 2%, - - -, z™) of bundles z* € W™ is called a (feasible) allocation if ¥_;- 4 x* =
w. An allocation (z',z? ---,2™) is socially efficient if it is an optimal solution of the

following problem:

max X, Vi(y')
St TR g mp ' (2.1)
.yi € I'I]'-'”t:i: 1,2,"‘,?’?’1.

A price vector p € R" indicates a price (units of money) for each good. Suppose that
the goods are exchanged on the market at a price vector p € R". If agent i buys a bundle
z of goods, then he has to pay p- z. When a price vector p € R" is given, then each agent
t will optimally choose bundle of goods under his budget constraints. That is, the demand
of goods by agent i is defined by

Di(p) = {z | (Vi(z) + p(v’ — z)) = max{Vi(y) +p(w' ~y) | p-y <mi+p-o', yeW"}}.



Note that m; = sup,cu« Vi(z) — Vi(w') for every i € T. This implies that the budget

constraint p-y < m; + p-w' is redundant. Thus, the set D;(p) can be simplified as
Di(p) ={z | (Viz) = p-z) =max{Vi(y) —p-y | yeW"}}.

A tuple ((z!, 2%, ---,2™);p) is a Walrasian equilibrium if p is a vector in R™; and i.f Tt e
Dy(p) for every i € T; and if ¥;cr ' = w. The allocation (z!,z2,---,z™) will be called
an equilibrium allocation. Thus, at equilibrium, each agent gets his best bundle of goods
under his budget constraint and moreover market is clear. The following simple lemma
indicates that a free market mechanism will lead to a socially efficient allocation of scarce

resouUIces.

Lemma 2.1 Suppose that the allocation (z', z%,---,z™) is an equilibrium allocation.

Then it must be socially efficient.

Proof: Since (z!,z%,---,z™) is an equilibrium allocation. Then there must exist peR"
such that ({z!,z% ---,z™);p) is a Walrasian equilibrium. Then we have for all i € T and
all y € W™ it holds

Vilz) —p-2' 2 Vi(y) - p-v.
Let (3!, 12, ---,y™) be any allocation such that w = 57, ¢ with y' € Wn. Then we
have
Vi) —p-2* 2 V() —p -,
for all i € T. It follows that =7, Vi(2*'} = ¥, Vi(y'). This implies that (z*,z2,---, ™)
is an optimal solution of problem (2.1) and so it is socially efficient. O

The above lemma shows that an equlibrium allocation is indeed interesting and ap-
pealing. Unfortunately, an equilibrium allocation may not always exist, as the following
example demonstrates. In an indivisible goods market, there are two traders 1 and 2 and
two indivisible goods in the market. Trader 1 initially has one unit of each indivisible good
and five dollars, while trader 2 has only one unit of the indivisible good 1 and ten dollars.

Their reservation value functions are given by Vi((z;,2z2)) = 0if &3 = 0 or z, = 0 for
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all (z1,25) € T2, and Vi(zy,25)) = 10 for all integrs 2; > 0 and z; > 0; 13((0,0)) = 0,
Va((0,z2)) = 10 for all integers z2 = 1, V5((1,0)) = 10, V3((21,0)) = 20 for all integers
r; > 2, and Va((z1,72)) = 20 for all integers 7y > 1 and z» > 1. Clearly, V} and V; are
weakly increasing and bounded and their _marg‘iﬁal utilities are weakly decreasing. Obvi-
ously, the prices of the goods must be nonnegative. We have to consider the following four
possibilities. In case the equilibrium prices p; = 0 and p; = 0, then a paossible equilibrium
allocation must be such that trader 1 gets one unit of each indivisible good and trader 2
gets one unit of the indivisible good 1. But this cannot be an equilibrium since trader 2
would demand one unit of each indivisible good, or two units of the indivisible good 1 In
case the equilibrium prices p; = 0 and p; > 0, then a possible equilibrium allocation must
be such that trader 2 gets two units of the indivisible good 1 and trader 1 gets one unit
of the_indivisible good 2. But this cannot be an equilibrium since trader 1 would demand
one unit of each indivisible good, or nothing. In case the equilibrium prices p; > 0 and
ny = 0, then a possible equilibrium allocation must be such that tradér 2 gets one unit of
each indivisible good and trader 1 gets one unit of the indivisible good 1. But this cannot
be an-equilibrium since trader 1 would demand nothing. In case the equilibrium prices
pr > 0 and py > 0, then one possible equilibrium allocation must be such that trader 1 gets
one unit of each indivisible good and trader 2 gets one unit of the indivisible good 1. But
this cannot be an equilibrium since for trader 2 we would have 10 — p; = 20 — p; — p2 and
10 — p; = 20 — 2p;, which imply p; = 10 and ps > 10. Thus, trader 1 would not demand
one unit of each indivisible good, yielding a contradiction. Ancther possible equilibrium
allocation must be such that trader 2 gets all indivisible goods and trader 1 gets nothing.
But this cannot be an equifibr'mm either since trader 2 would just like to demand one unit
of each indivisible good. In summary, the market has no equilibrium. Other non-existence
examples for indivisible goods markets can be found in Bikhchandani and Mamer (1997),

Ma (1998), and Bevia et al. (1999), Yang (2001).



3 Equilibrium Existence Theorems

In this section we will establish several existence theorems for the market model. Recall
that w is the total initial endowment of goods. We define the following potential market

value function on W™

R(z) = sup{>_Vi(z") | 3 z' =z,2' e W"}.

icTl isT
R(r) is the maximal market value that can be achieved by all the trades with the resource
vector .
Now we are ready to present our first existence theorem which gives a necessary and

sufficient condition for the existence of a Walrasian equilibrium.

Theorem 3.1 Given a market model M = (V;,m;,w*, i € T,W"), there erists a Wal-
rasian eguilibrium if and only if the following system of linear inequalities has a solution

peR"
p-lr—w) = R(z)- R(w), Yz € W™

Proof: Suppose that ((z'*, 2%, ---,z™*); p*) is a Walrasian equilibrium. Then we have for

all i € T and all y € W™ it holds
Vi(z™) = p* - 2™ 2 Vily) - 0" - 1. ; (3.2)

It follows from Lemma 2.1 that 372, Vi(«™) = R(w). For any & € W™, then there must
exist z* € W™ witil ym, @' = z such that 3, Vi(z*) = R(z). It follows from (3.2) that
Vi(z®) —p*- 2" 2 Vi(a) - p* -/, i=1,2,---,n.
Therefore we have
' (z —w) = R(z) — R{w), Yz € W™
On the other hand, suppose that p® € R" is a solution of the following system
p-(z—w) = R(z)— Rlw), Yz € W

Let (z'*, 2%, ---,2™") be any allocation so that w = ¥, z** and R(w) = &7, Vi(z**) with

z** € W™, Note that such allocation alw-a}fs exists by the definition of R{z). We will show
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that ((z*,2*,...,2™); p*) is a Walrasian equilibrium. For any agent i and any y € W",
let = ¥y z'* + y. By assumption we have R(w) — p* - w > R(z) — p* - z. By definition
of R(z), we have R(z) 2 Tz Vi(z") + Vi(y). Therefore, it follows that

i Vi(@™) -p* - TR 2" = Rw)-p*rw
R(z)—p* -z
T Vilz™) + Vily) — p° - (Tii 2 + v)-

IV

IV

The above implies that
Vi) —p - 2" 2 Vi(y) - - v

Since i and y are taken arbitrarily, it is clear that ((z*,z*,-.-,2™),p") is indeed a

Walrasian equilibrium, O

In the above theorem, the equilibrium price of each good may be postive, zero, or even
negative. The following lemma gives a rather weak condition to ensure that all goods have

positive equilibrium prices.

Lemma 3.2 Suppose that the market M = (V;,m;,w',i € T,W") has a Walrasian
equtlibrium. If R(w + e(i)) > R(w) for all i € I, then the equilibrium prices for all goods

are positive.

Clearly, if the reservation value function of each trader is strictly increasing, then all goods
must have positive equilibrium prices.

Now we turn to studylthe behavior of the market potential value function R. In general,
the function R : W™ — R is said to be concave if, for any points z?, 2%, - - -, ' in W™ with
any convex parameters A;, As, ---, Ay, it holds

R[i Az = i AR(z").

h=1 h=1
In particular, the function K : W™ — R is said to be concave with respect to wifwisa
convex combination of points z!, 22, - - -, 2 in W™ with convex parameters A;, Ag, ---, A,

then we have

R(w) > le AR(z™).
h=1



Clearly, if Ris a concave function, then R must be a concave function with respect to w.
The other way around is not true. Note that when W™ = Z", a concave function R will
also be called a discrete concave function.

Our second theorem below establishes a natural connection between Walrasian equi-
librium and local concavity. More precisely, it says that the ‘market has a Walrasian
equilibrium if and only if the market potential value function R is a concave function with

respect to w.

Theorem 3.3 Given a market model M = (V;, m;,w*,t € T,W™), there ezists a Wal-
rasian equilibrium if and only if the market potential value function R : W" — R s a

concave function with respect to w.

Proof: By Theorem 3.1 it is sufficient to show that the market potential value function
R is a concave function with respect to w if and only if the following system of linear

inequalities has a solution p € R .
p-(r—w) = R(z)-— Rlw), ¥z €W

Suppose that p* is a price vector satisfying the above inequalities. Let =*,z%,---,z' € W™

with convex parameters A;, Az, ---, A; such that w = EF&:I Apz". Since

.R{w}—p"-w > Be™ —p*-at, h=1.2,--- ]
and Mg = 0forh=1, 2, [, then we have

M(Rlw) — p*-w) = M(R(z*) = p*-2"), h=1,2,--- ..,I.
Since ;‘_‘_,i=1 Ap=1and w=L_, Anz®, it follows that

Rlw) = i }LhR[:n.h}.

h=1
Thus, the potential market valﬁe function R is a concave function with respect to w.
On the other hand, suppose that the potential market value function K is a concave

function with respect to w. Then, by definition, if w is a convex combination of points z',

z?, ..., ' in W™ with convex parameters A;, Az, - -+, A;, then we have

!
R(w) 2 3 MR(z"). _ (3.3)



Now let G be the graph of the function R, i.e.,
G={(z,R(z)) | ze W"}.

 Let H be the convex hull of the set G, which is a closed convex set. Take an arbitrary
point (w,z) € H. Then there exist x?, z°, - -, 2 in W™ with convex parameters A;, Ag,

««+, Ay, such that w = ¥ _, Apz® and z = T4, AuR(2"). It follows from (3.3) that
(w, R(w)) = (w, 2).

This implies that (w, R(w)) is a boundary point of the set H. The well known separation

theorem implies that there exists a nonzero vector (—p,t) € R" x R such that
—p-w+tRw) = —p-y+iz

for all (y, z) € H. In particular, we have
—p-w+tR(w) > —p-z +iR(z), (3.4)

for all z € W™
Since wy, > 0 for all h =1, 2, ---, n, and w lies in the interior of W7, it is easy to see

that there does not exists any nonzero vector p € R™ such that
—p-w > —p-x, Yo € W™

This means that ¢ £ 0. It follows from (3.3) and (3.4) that ¢ can be made positive.

Without loss of generality, we may assume f = 1. Now the system (3.4) impliés
p-lz —w) > R(z) — R(w), Yo € W".
The proof is complete. O
~ The following corollary is a straightforward result of Theorem 3.3.

Corollary 3.4 Given a market model M = (Vi,m;,«*, i € T,W"), where the parame-
ters m;, w', i € T, are changing, there exists a Walrasian equilibrium for everyw = ¥ o

if and only if the market potential value function R : W™ — R is a concave function.

10



The above two theorems hold uniformly true for both the divisible goods market and
the indivisible goods market. Let us return to the previous non-existence example. For
this example, both reservation value functions V; and V; are discrete concave functions on
Z2. We have R((1,1)) = 20, R((2,1)) = 20, and R((3,1)) = 30. Because R((2,1)) =20 <
(R((1,1)) + R((3,1))/2 = 25, the function R is not concave with respect to w = (2,1) and
thus the market has no equilibrium.

Note that the conditions stated in both theorems above are imposed on the collective
behaviors of all traders. In the next section we will provide several sufficient conditions on

the behaviors of each individual trader.

4 Max-Convolution Preservable Functions

In this section we will identify agents’ reservation value functions for the existence of
Walrasian equilibrium. For this purpose, we will introduce a class of max-convolution
preservable functions. Let f; : W™ — R, i =1, ---, m with m > 2, be any class of
functions bounded from above. Define a new function R: W™ — R as :

= 3o

R(z) =sup{}_ fi(z') | 3 _a' =z.2' e W™}

fm=] im]
The function R will be called a maz-convolution function. Suppose every function f;
exhibits some given property A. Then functions f;, i = 1, ---, m, are said to be maz-
convolution A preservable if the function R preserves property A. We also say that prop-
erty A is max-convolution preservable. In particular, we are intereseted in max-convolution
concave preservable functions. As shown in the previous section, if each reservation value
function V; is max-convolution concave preservable, then the market has a Walrasian equi-
librium.

When the commodities space W™ is R", then we have the following lemma; see e.g.,

Rockafellar (1970).

Lemma 4.1 Let f; : R™ — R be confinuous concave functions feori=1, ---, m. Then

functions f;, i =1, ---, m, are maz-convolution concave preservable.
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As a consequence, we have that every divisible goods market M = (V], m;, w', i € T,R"),
has a Walrasian equilibrium if reservation value functions V; : R® — R, i € T, are
continuous and concave.

In general, it is reasonable to assume that the reservation value function of each trade
over goods is weakly increasing. But for financial goods, this may not be the case. For
example, consider a financial market M = (Vi,m;,w',i € T,R"™) where money is a riskless
asset and all other n goods are risky assets. In this case, the reservation value function of
each trader may not be monotone and could be any concave function with an unconstrained
global maximum at some portfolio. In a mean-variance model, the reservation value func-
tion takes the standard form: Vi(z) = Vi(p,o) = Vi(z - &', 3z - Tiz), where s € R" is the
perceived mean vector of trader 1, and T; € R™™" is the perceived covariance matrix of
trader i. In general, these matrices T; and vectors s' may differ cross traders. It is assumed
that the matrix T} is symmetric positive definite; V; is a strictly concave C! function of =
with

dVi(p, o) dVi(p, o)
dp e do

< 0.

Thus, V;is a mean-variance utility function and is an increasing function of the expected
return p and a decreasing function of the expected variance . It is not difficult to show
that trader i has an unconstrained global maximum at some portfolio z. Such an situation
is called a satiation portfolio. Since V. 1 € T, are continuous, concave and bounded from
above, the financial market clearly has an equilibrium.

When the commodities space W™ is Z%, things become much more complicated. The
non-existence example in Section 2 indicates that not every discrete concave function is
max-convolution preservable. Clearly, both functions V; and V5 are discrete concave func-
tions on Zi. But, the max-convolution function R of V; and V. fails to be discrete concave
as shown at the end of the previous section.

Fortunately, Murota (1998) and Murota and Shioura (1999) have recently introduced
a class of remarkable discrete concave functions which have several fundamental combina-

torial properties similar to those of continous concave functions. A function f: Z" — R is

called an M*-concave if it satisfies the following condition:
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For any z,y € Z" and k € supp™(z — y) with supp¥(z —y) # 0,

fz) + f(y) < max[f(z—e(k))+ f(y + e(k)),
maXiesupp-(z-y) {1 (Z — e(k) + e(l)) + f(y + e(k) — e(l))}]
where supp™(z —y) = {k € I | 2 > y} and supp™(z — y) = {k € I | = < wi}-

The functions f : Z" — R given as f(z) = a -z + c with a € R", and as f(z) =
Y, gi(z;) where g; : Z— R, i € I,, are discrete concave, are all simple examples of M?-
concave function. The reader can easily verify that the reservation value function V] in the
non-existence example at Section 2 is not M*-concave by considering the points = = (2, 1)

and y = (0,0). The following result is due to Murota (1998).

Theorem 4.2 Let f; : " — R be M‘-concave functions for i = 1, , m. Then

functions f;, i=1, ---, m, are maz-convelution concave preservable.

As a consequence, we have that every indivisible goods market M = (V, m;,w', i .E_T, ¢ i
has a Walrasian equilibrium if reservation value functions V; : Z* — R, i € T, are M-
concave.

Finally we will introduce the well-known Kelso and Crawford’s gross substitutes con-
dition. Consider a market with m traders and ﬁ indivisible objects (or goods), denoted by
N =1{1,2,---,n}. Each trader ¢ has a reservation value function over the objects, denoted
by V; : 2% — R, where 2V is the collection of all subsets of N. It is assumed that V;(#) = 0
and V; is weakly increasing. Given a price vector p € R", the demand set D;(p) of trader

i is defined as

Di(p) = {S | (Vi(5) = Thespn) = rhax{‘/;{T} —Yherpn | TENY})

For the existence of an equilibrium, Kelso and Crawford (1982) introduced the following

condition with respect to D;(p). known as gross substitutes.

(1) For any two price vectors p and g such that p < ¢, and any A € D;(p), there exists
B € D;(g) such that {i € A | p(:) = ¢(i)} C B.

Fujishige and Yang (2000) have recently shown that a reservation value function V : 2V
R satisfies the gross substitutes condition if and only if V' is M*-concave.

13



Note that the M-concave function is now specified on a set function. It reads as follows: :
a set function f : 2% — R is an M'-concave function if for each ST C Nand s € S\ T
with S\ T # 0 the function f satisfies

F(8) + F(T) < mox|f(5 —a)+ f(T + ), max{f(S —s+8)+ (T +5-1)}].

In the above formula, we read S — s and T + s as S\ {s} and T U {s}, respectively.
The reader can find more applications of M -concave functions in Danilov et al. (2001)

and Murota and Tamura (2002).
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