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Abstract

The present article presents and discusses the recent controversy about the pos-
sibility and meaning of relating the game theoretic Nash program to mechanism
theory. The non-cooperative foundation of the Nash bargaining solution is used as

an example to shed light on the formal relation between traditional non-cooperative
support of cooperative solutions and mechanism theoretic implementation of social’
choice rules. The technical possibility of regarding the Nash program as a part of
mechanism theory is taken as a starting point for discussing the meaning of im-

plementation, “good” mechanisms and extensions in the spirit of Hurwicz's (1994)

“genuine” implementation. '



Content

1. The Nash Program
2. Mechanism Theory
3. Embedding the Nash Program into Mechanism Theory
4. An example: The Nash Bargainihg Solution
4.1 Impossibility of Nash-implementation

4.2 A support result
4.3 Nash-implementation

5. Conclusions

5.1 Answers to the Questions
5.2 Outlook



1 The Nash Program

The Nash Program is a research agenda whose goal it is to provide a non-cooperative
equilibrium foundation for axiomatically defined solutions of cooperative games. This
program was initiated by John Nash in his seminal papers Non-cooperative Games in
the Annals of Mathematics, 1951, and Two-Person Cooperative Games in Econometrica,
1953. The term Nash Program introduced by Binmore (1987)(see also Binmore, 1997)
had been used according to Reinhard Selten (1999} much earlier in a lecture by Robert
Aumann. The original passages due to Nash that built the basis for this terming are in
fact quite short.

In Nash (1951) one reads:

“A less obvious type of application (of non-cooperative games) is to the study of coop-
erative games. By a cooperative game we mean o situation involving a set of players,
pure strategies, and payoffs as usual; but with the assumption that the players can and
will collaborate as they do in the von Neumann and Morgenstern theory. This means the
players may communicate end form coalitions which will be enforced by an umpire. It is
unnecessarily restrictive, however, to assume any transferability or even comparability of
the pay-offs [which should be in utility units] to different players. Any desired transfer-
ability can be put into the game itself instead of assuming it possible in the extra-game
collaboration.

The writer has developed a “dynamical” approach to the study of cooperotive games based
upon reduction to non-cooperative form. One proceeds by constructing a model of the pre-
play negotiation so that the steps of negotialion become moves in a larger non-cooperative
game [which will have an infinity of pure strategies] describing the total situation. This
larger game is then treated in terms of the theory of this paper [extended to infinite games/
and if values are obtained they are taken as the values of the cooperative game. Thus the
problem of analyzing a cooperative game becomes the problem of obtaining a suitable, and
convineing, non-cooperative model for the negotiation.

The writer has, by such a treatment, obtained values for all finite two-person cooperative
games, and some special n-person games”.

The work Nash is referring to in his last sentence of the above passage is Nash (1953)
where he writes: '

“We give two independent derivations of our solution of the two-person cooperative game.
In the first, the cooperative game is reduced o a non-cooperative game. To do this, one
makes the players’ steps of negotiation in the cooperative game become moves in the non-
cooperative model. Of course, one cannot represent all possible bargaining devices as moves
in the non-cooperative game. The negotiation process must be formalized and restricted,
but in such a way that each participant is still able to utilize oll the essential strengths of
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his position.

The second approach is by the ariomatic method. One states as axioms several properties
that it would seem natural for the solution to have and then one discovers that the azioms
actually determine the solution uniquely. The two epproaches to. the problem, via the
negotiation model or via the aztoms, are complementary; each helps to justify and clarify
the other.”

The Nash program tries to link two different ways of solving games. The first one is
non-cooperative. No agreements on outcomes are enforceable. Hence players are totally
dependent on their own strategic actions. They try to find out what is best given, the
other players are rational and do the same. In this context the Nash equilibrium describes
a stable strategy profile where nobody would have an interest to unilaterally deviate.
Nevertheless there is an implicit institutional context. The strategy sets define implicitly
what choices are not allowed, those outside the strategy sets. The payoff functions reflect
which strategies in the interplay with others’ strategies are better or worse. It is not said
explicitly who grants payoffs and how the physical process of paying them out is organized.
But there is some juridical context with some enforcement power taken for granted. There
is no interpersonal comparison of payoffs involved in the determination of good strategies.
Each player only compares his different strategies contingent on the other players’ different
strategy choices. As applications in oligopoly show, institutional restrictions of social or
economic scenarios are mapped into strategy sets and payoff functions, thereby lending
them an institutional interpretation. Yet, totally different scenarios may considerably be
modelled by the same non-cooperative game, say in strategic form. This demonstrates
clearly the purely payoff based evaluation of games. Payoffs usually are interpreted as
reflecting monetary or utility payments. Associated physical states or allocations orrur
only in applications and may be different in distinct applications of the same game.

The second way to solve a game is the cooperative one via axioms as first advocated by
Nash (1953). Again the legal framework is only implicit. Yet, now not only obidience
to the rules is assumed to be enforceable but even contracts. Mutual gains are in reach
now as it becomes possible by signing a contract to commit himself to certain behavior.
In this context it is the specific payoff configuration which is of interest rather than the
strategy profile that would generate it. In this framework it is reasonable, therefore,
to neglect the strategic options and concentrate on the feasible payoff configurations or
utility allocations on which the players possibly could agree by signing a contract. Again
the formal model does not specify the process by which physical execution of a contract
is performed. Again it is the payoff space rather than some underlying social scenario on
which the interest rests except in applications of game theory.

In contrast to the non-cooperative approach now players are interested in what other
players receive. Although utilities or payoff units for different players are in general
not considered comparable typically there are tradeoffs that count. The axioms that
are fundamental in this context reflect ideas of fairmess, equity, justness that do not
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play a role in the non-cooperative model. But a process of negotiation with the goal to
find an agreement makes it necessary for each player to somehow judge the coplayers’
payoffs. But the axioms are in a purely welfaristic context. If very different underlying
models lead to the same cooperative game in coalitional form it is only the solution in
terms of payoff vectors that is relevant. And this determines in any application what
underlying social or physical state is distinguished. It becomes irrelevant in the axiomatic
cooperative approach which are the institutional details. Important are only the feasible
utility allocations.

Now, why could it be interesting to have a non-cooperative strategic game and a cooper-
ative game in coalitional form distinguishing via its equilibrium or solution, respectively,
the same payoff vector? According to Nash the answer is that each approach “helps to
justify and clarify the other”.

The equality of payofls in both approaches seems to indicate that the institutional specifi-
ties represented by the strategic model are not so restrictive as to prevent the cooperative
solution. Also the payoff function appears then to reflect in an adequate way the different
axioms. On the other hand payoff combinations not adequate under the solution concept
cannot be strategically stable. So the equivalence of both approaches seems to indicate
that the strategic model from the point of view of social desirability is restrictive enough
but not too restrictive. This abstract relation has different consequences if one is in one
of the two different enforceability contexts. If we cannot enforce contracts the equivalence
of two approaches means that this is not a real drawback, as we can reach the same via
rational strategic interaction {at least in situations of games with a unique equilibrium).
If, on the other hand, we are in a world where contracts are enforceable, we may use the
equivalence of a suitable strategic approach as additional arguments for the payoff vectors
distinguished by the solution. Therefore, results in the Nash program give players valu-
able insights into the interrelation between institutionally determined non-cooperative
strategic interaction and social desirability based on welfaristic evaluation. '

There is not, however, any focus on decentralization in the context of the Nash program
simply because there is no entity like a center or planner. There are just players.

Nash’s own first contribution to the Nash Program (1953) consists in his analysis of a
game, the demand game and the so called smoothed demand game where he looked at
the limiting behavior of non-cooperative equilibria of a sequence of smoothed versions
of the demand game. Here the amount of smoothing approaches zero, and, hence the
sequence approximates the demand game. While the original “simple” demand game has
a continuum of equilibria, a fact which makes it useless for a non-cooperative foundation
of the Nash solution, Nash argued that the Nash solution was the only necessary limit of
equilibria of the smoothed games. Rigorous analyses for his procedure have been provided
much later by Binmore (1987), van Damme (1987) and Osborne and Rubinstein (1990).

These passages make it quite clear that Nash changed slightly his stress between 1951



and 1953. While the first quotation lends more support to the interpretation of his
main goal as a non-cooperative solution of cooperative games before and without having
any cooperative solution for which non-cooperative foundation has to be provided, the
second later passage argues that both approaches are equally valuable. In fact here it is
the axiomatic cooperative solution which confirms the earlier non-cooperatively derived
solution. I tend to interpret Nash’s point of view as a dual one where the cooperative and
the non-cooperative approaches mutually support each other.

Unfortunately, the non-cooperative approach of Nash to the bargaining problem failed
to be fully successful. Nash did not provide a “suitable and convincing non-cooperative
model” that supports the Nash solution. In the simple demand game the multiplicity of
equilibria causes the failure of support, in the smoothed game approach there is not one
game the equilibrium of which provides the support rather a sequence of games where
a limit of equilibria provides the support. But the sequence cannot be played. What
is provided is a distinguished role of the Nash solution among the infinity of equilibria
of the simple demand game. In a preplay communication previous to playing the non-
cooperative simple demand game players might be able to agree on the focal point role
of this particular equilibrium. Hence Nash’s analysis might be seen as a coordination
device. Yet, one might argue that the hint to the symmetry property of the symmetric
Nash solution could be at least as effective. Binmore and Dasgupta (1987) argue that
it is a stability property of the symmetric Nash solution that distinguishes it among all
the equilibria of the simple demand game. They even compare the slightly disturbed
smooth versions with small trembles in agents’ information and attribute to Nash that
“he anticipated the essence of Selten’s (1975) notion of a “’trembling-hand’ equilibrium”.
However, there is hardly a sound basis for this interpretation. The focal or salient stability
property of the Nash solution as a Nash equilibrium of the simple demand game is in
van Damme’s (1987) terminology its existence as a unique “H-essential” equilibrium of
the demand game. The “H” refers to the class of perturbations of the demand game
that are considered. A closer look at this class H in van Damme’s analysis or at the
analogous treatments of Binmore (1987) or of Osborne and Rubinstein (1990) reveals
that the symmetry of the (symmetric) Nash solution is put in already into the class H.
If we rename van Damme’s H by Hjjp 1/, it is easy to see that for any a € (0,1) one
can construct a class H,;—, in a perfectly analogous way. The unique H, ;_,-essential
equilibrium of the simple demand game turns out to be the asymmetric Nash solution
that maximizes z2z5™ on the set of feasible payoff allocations.

In this sense either each of the equilibria of Nash's simple demand game is essential (for
some «) or none (for all ). It is not any kind of stability that distinguishes the symmetric
one from all the asymmetric Nash solutions - it is just its symmetry. This observation
shows very clearly the difference of this approach from Selten’s trembling hand perfectness.
The latter one is a property of cerfain equilibria that distinguishes them inherently due
to the structure of the considered game rather than due to distortions taylored to single
out some pre-specified equilibrium.



A second quite different approximate non-cooperative support for the Nash solution is pro-
vided by Rubinstein’s (1982) model of sequential alternate offers bargaining. Binmore,
Rubinstein and Wolinsky (1986) showed in two different models with discounted time that
the weaker the discounting is the more closely approximates the subgame perfect Nash
equilibrium an asymmetric Nash bargaining solution. Only if subjective probabilities of
breakdown of negotiations or the lengths of reaction times to the opponents’ proposals are
" symmetric it is the symmetric Nash solution which is approximately supported. Again, in
the frictionless limit model one does not get support of the Nash solution by a unique equi-
librium. Rather every individually rational payoff vector corresponds to some subgame
perfect equilibrium.

An exact support rather than only an approximate one of the Nash solution is due to
Howard (1992). He proposes a fairly complex 10 stages extensive form game whose unique
subgame perfect equilibrium payoff vector coincides with the bargaining solution.

There are several contributions to the Nash program for other solutions. Of particular
interest in our context are support results for the Kalai-Smorodinsky solution {cf. Craw-
ford (1978), Haake (2000), Moulin (1984), Trockel (1999b)), which is the most popular
alternative for the Nash bargaining solution.

Like in Rubinstein’s model and in contrast to Nash framework Howard’s game is based on
underlying outcome space. Here this is set of lotteries over some finite set on which players
have utility functions. Although the analysis of the game can be performed without
explicit consideration of the outcome space it is this underlying structure that allows
it to look at the outcome associated with a subgame perfect equilibrium and thereby
interpret Howard’s support result as a mechanism theoretic implementation of some Nash
social choice rule in subgame perfect equilibrium. The fact that such an underlying
outcome space is not easily at hand in the purely welfaristic framework of Nash’s axiomatic
bargaining model causes the problem of extending a support result in this framework to
a proper implementation result. -

2 Mechanism Theory

The Nash Program is concerned with providing a justification for a certain payoff vector
simultaneously by a sclution concept for cooperative games and by an equilibrium of some
non-cooperative game. The only actors playing a role are the players of both types.of
games.

In Mechanism Theory the situation is fundamentally different. A planner or designer
thinks about the problem how to induce an arbitrary population of agents in a society
to jointly realize a social state that, given the agents’ preferences, is considered socially
desirable. Lacking information about agents’ preferences and sufficient enforcement power
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he aims to design the rules for strategic interaction, i.e. a game form, in such a way that
any possible population of agents by adopting equilibrium behavior of the game that is
induced by the game form together with agents’ utility functions on social states realizes
a state that is desirable for that specific society.

I want to follow at this point Matthew Jackson (1999) and stress a distinction between
two parts of mechanism theory.

One is mechanism design where the interest in incentive compatibility leads to the ques-
tion whether a certain (desirable) outcome can be induced as an equilibrium of some
game form. It is the stability property inherent in an equilibrium that is looked for. This
property is not lost if other equilibria exist, even if they do not induce desirable outcomes.
In that context it appears acceptable to restrict to direct games and truthful implementa-
tion. The other part is irnplementation theory. Here indirect game forms are used but all
equilibria are of concern. A mechanism is considered acceptable in this framework only
if all equilibria induce desirable outcomes.

It is this second aspect of mechanism theory to which I shall relate the Nash program by
showing how support results that provide a non-cooperative foundation may be extended
to proper implementation results. :

For this purpose we need formal definitions of a social choice rule, of a game form, and
of its implementation in Nash equilibrium.

Let I = {1, ...,n} be the set of players’ positions, A be some non-empty set, called outcome
space and M; sets of possible messages m; among which a player in position ¢ € [ may
choose.

The outcome space represents all possible states for a n-person society. In applications it
may be a set of alloctions in an economy, a set of candidates in a voting context or a set
of lotteries over monetary prizes. The only formal requirement for an outcome space A is
that it is some non-empty set. '

Let U;,i = 1, ..., n be non-empty sets of utility functionsu; : A — R. Let U C Uy x...xU,
be the set of admissible profiles of utility functions. In the case of U = Uy x ... x U, we
speak of an unrestricted domain of utility function profiles. A correpondence F : U = A
is called a social choice rule. If F is singleton-valued with F'(u) = {f(u)} we call f, or by
slight abuse of notation also F', a social choice funciion.

It is the planners task to make sure that any admissible population of rational agents
represented by some u € U that obeys the rules designed by him automatically realizes
some social state in F/(u). To make this idea precise we introduce the concept of a game
form. A mapping g : My X ... x M, — A :m = (m,...,my) — g(m) is called an
outcome function. A tuple (My, ..., M,, g) is called game form or mechanism. Due to the
bijective association between M := I, M; and (M, ..., M) a mechanism is alternatively.
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denoted (M,g). The following observation is fundamental for mechanism theory. For
each admissible profile of utility functions u € U the mechanism (M, g) induces a game
[, in strategic form defined by

Fg,u = (M]_, -"sMn;ul 0g,...,Un O g)

For obvious reasons I'y, is also denoted (M, u o g).

Denote by NE(T',,,), NO(T,,) = g(NE(T',.)) and NP(T'y,) := uog(NE(T,,,)), respec-
tively the sets of Nash equilibria, of Nash equilibrium outcomes and of Nash equilibrium
payoffs of I'g .. '

Note, that in general the sets NO(['y,) and NP(T',.) vary with u € U as does F(u).

The designer tries to find some mechanism (3, g) such that in any game [',,, = (M, uo0g)
with u € U an equilibrium results in a socially desirable outcome. This idea is made
precise by the notion of Nash-implementation of a social choice rule. .

A mechanism (M, g) Nash-implements a social choice rule F' on the domain U if N OT,.) C
F(u)foralueU.

A large part of the literature uses the concept of full implementation requiring equality
rather than inclusion. It is full implementation for which Maskin (1999) gave a complete
characterization via the properties of Maskin-monotonicity and no veto power. A careful
discussion of the pros and cons of both noticns of implementation can be found in Thomson
(1996). Jackson (1999) stresses the fact that our (weak) implementation of a social choice
rule implies full implementation of some subcorrespondence. We favorize the (weak)
implementation, also used by Hurwicz (1994), for the following reasouns:

First (weak) Nash implementability does not require Maskin moriotonicity. However,
the second reason is in fact more important. As long as the social choice rule perfectly
describes desirability there is no reason to discriminate between different socially desirable
states. Each one is an equally good representative of social desirability. Even if each
of the desirable states can be realized by some equilibrium of a game, at most one of
these equilibria will be played and thus only one of the desirable states is realized. So
performance of the social planners’ goal is independent of whether he designs a mechanism
that weakly or fully Nash implements the social choice rule.

In the ideal case of implementation by a unique Nash equilibrium the only case without
a remaining coordination problem for the planner and the players, only weak Nash im-
plementation is possible. The only exception is a framework where the social choice rule
is a social choice function. But then weak and full implementation coincide anyway.
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There remains only one point to be clarified before we can relate the Nash program to
mechanism theory. This is the relation between a solution of a cooperative game say an
NTU-game and a social choice rule. While the former one maps cooperative games to sets
of feasible payoff vectors for that game the latter one maps profiles of utility functions
on outcomes to sets of outcomes. Neither the domains nor the image spaces of these
mappings coincide except in very special cases. We shall come back to this problem in
the next section.

3 Embedding the Nash program into Mechanism The-
ory

The literature does not provide much insight into the exact relation between the Nash
program and mechanism theory. In Serrano (1997) one finds the statement: “The Nash
program and the abstract theory of implementation are often regarded as unrelated re-
search agendas”. And Bergin and Duggan (1999) write: “Nevertheless, because the
implementation-theoretic and traditional approaches both involve the construction of games
or game forms whose equilibria have specific features, considerable confusion surrounds
the relationship between them”.

In fact there are instances in the literature where the term “implementation” is used in
a framework of non-cooperative games where the mechanism theoretic aspect is not ad-
dressed at o.k. Sometimes games forms are simply confused with games. Starting from
this situation Serrano (1997) attempted “fo clarify the role of the mechanisms used in the
Nash program for cooperative games”. Notice, that even this statement contributes to the
confusion by using “mechanisms”, a technical synonym for “game form” in the descrip-
tion of non-cooperative foundations that, prior to and without the intended clarification
of the relation between the two agendas, cannot justifiably be termed that way. An exten-
sion of Serrano’s approach is contained in Dagan and Serrano (1998), where in contrast
to traditional terminology games in characteristic function form are distinguished from
games in coalitional form. The latter are induced by the former ones via adding outcome
. functions admitting it to define solutions as mappings to outcomes rather than to payoft
vectors. These general outcomes extend Serrano’s model, where characteristic forms are
supplemented by physical allocations resulting from some production economy. The most
general model of non-cooperative foundation based on the explicit modelling of physical
environments is due to Bergin and Duggan (1999).

Also here cooperative solutions are alternatively defined as mappings resulting in out-
comes rather than in payoff vectors. An alternative approach not relying on a specific
physical environment is due to Trockel (2000) (see also Naeve (1999)). Here the outcome
space needed for an implementation is derived endogeneously from the data of the classes
of games considered in the traditional non-cooperative foundation of an axiomatic cooper-
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ative solution. We shall illustrate this latter model by the example of the Nash solution in
Section 4. A comparison of the different approaches and an evaluation of their respective
merits will be part of the concluding Section 5.

Before we can possibly relate the Nash program to mechanism theory it is important to
clearly see the differences, the formal ones as well as those in intention and interpretation.
Let me recall the latter ones first.

The Nash program relates two alternative ways to model how rational players with par-
tially conflicting goals interact do determine their payoffs. One is a strategic model in
which due to lack of commitment power every player non-cooperatively acts on its own.
The other one is a coalitional form where for each coalition the feasible payoff vectors are
described and axiomatically determined payoff vectors can be contracted on and enforced.

In both approaches the acting persons are players. There is no explicit notion of a society
or a social planner or designer. In mechanism theory, in contrast, the only acting person
is a designer or social planner. He uses the body of game theory to design general rules
forcing any potential population of players from a given pool, by playing equilibria ac-
cording to those rules, to realize social states he declares “desirable” for that population.
The players are objects of thought of the designer. So the designer, due to lack of infor-
mation, enforcement power, and monitoring options, tries to decentralize social decisions
uniformly for all feasible populations, trusting to the self-enforcing power of equilibrium.

On the formal level, apart from the players versus designer difference, there are two
other crucial differences. One lies on the cooperative side. Following social choice theory
mechanism design is based on social choice rules, and therefore, is interested in social
states rather than in payoff vectors. Clearly, considering payoff vectors as social states
provides one specific degenerate example. The other difference is on the non-cooperative
side. To give a non-cooperative procedure for determining social states one has to replace
the payoff functions in a game in strategic form by an outcome function associating with
any strategy profile some social state.

The link between this outcome based approach and the payoff based Nash program is
provided by any population of individuals via their utility functions on the outcome

space. These utility functions composed with the outcome function create payoff func-
" tions, thereby completing the game form to a game and making the individuals of that
population players of this game.

Our next goal is it to illustrate the Nash program, and the problem of Nash implementa-
tion by some diagrams. They are modifications of diagrams used by Bergin and Duggan
(1999). Furthermore we shall illustrate diagrammatically the difficulties to integrate both
diagrams into one and even make this larger one commute.

But beforehand we need some terminology and notation.
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Let G and GVC be sets of cooperative NTU-games in coalitional (or characteristic) form
and of non-cooperative games in strategic form, respectively.

By T we denote the product of players’ strategy sets assumed to be the same for all
considered non-cooperative games. This appears not to be a strong restriction, however
(cf. Trockel (1999a).

Let. A be some non-empty set, interpreted as an outcome space and h : £ — 4 an
outcome function. U denotes some set of profiles u of utility functions defined on A. L
and £ denote a cooperative solution for G and a social choice rule on A, respectively.
The use of the symbols “L” and “L” indicates that we finally want the social choice rule
L to suitably represent the solution L.

I‘ : -~
equilibrium | r cquilibriom | ”
payoffs outcomes
Y Y
NE NE
Figure 1:

For any set F of real-valued functions defined on some non-empty set X the evaluation
map, denoted ewv, is defined by

ev: X xF —R:(z,f)— flo).

Figure 1 very clearly shows the differences between the Nash program and implementation
theory, despite their obvious structural similarities. A link of the two agendas would
require the definition of £ as a suitable representative of L. This in turn requires the
specification of a suitable outcome space A. Last not least the relation between G and
U needs clarification. '

Figure 2 is a slight modification of Figure 3 in Bergin and Duggan (1999), that represents
both situations, the one where one starts with profiles of utility functions and seeks the
“right” induced game and the other one, where for a given coalitional form game one
looks for profiles of utility functions generating this game. Bergin and Duggan term the
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effectivity

supportability

Y

RY AxU

evaluation map

Figure 2:

two problems “effectivity” and “supportability”. Clearly, starting with a result from the
Nash program and trying to embed this into implementation theory requires to solve the
supportability problem. In a situation where both sets G¢ and U/ may be identified the
supportability and the effectivity problem are solved simultaneously.

The whole problem of embedding the Nash program into mechanism theory is represented
by Figures 3 and 4. The inner boldface parts of these diagrams represent the implemen-
tation problem, while the outer parts represent the Nash program. The diagrams have to
be interpreted as follows:

gC’

(. id) _ (T.id)

? - opry =
T(GC) x g€ =——» T(U)xU EXEZEU @) xUX T

AN

“equilibrium payoffs”

Figure 3:
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In mappings between sets we use the arrow “~—” and do not distinguish between (point-
valued) functions and (set-valued) correspondences. In the corresponding diagrams where
elements are mapped to elements, respectively, subsets we use “—" again. Here the
use of “€” versus “C” indicates whether a point-valued mapping or a correspondence is
considered. In Figures 4 and 5 the question marks and the boxes marking some of the sets
indicate the explananda. The embedding of the Nash program into mechanism theory
is only possible if the explananda can be consistently defined such that the diagrams
commute. '

)
Vv e u=(u,...,y) = (L(u),n)
\
D w(Lw)) = LV)
(B(NE(r.)), v) =
i TN u(h(VE(m)
: ' , T (NE(m))
Y /

effectivity

(FV: V) '-""___.' (ru’ 1.1) (""'u? u, NE(WH))

- = (T, u)
AN

Figure 4:

That this problem can be solved has been proved by Trockel (1999a) His Embedding
Principle for the Nash program may be stated as follows:

Assume for any game V' C G© and its associated game 'V € GNC one knows that =V (%)
is feasible for V and #V(NE(I'Y)) C L(V) # 0. Then a mechanism (T, k) exists that
weakly Nash-implements £. Moreover for every V' € gc one has: ©¥ o L(V) = L(V).

Clearly, to prove this statement definitions of the outcome function - and of the social
choice rule £ are required. Also a specification of how G and If are defined and identified
is needed. While these details may be found in Trockel (1999a) we shall sketch the proof
of the Embedding Principle for the special class of two-person bargaining games and the
Nash solution in Section 4.
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4 An Example: The Nash Bargaining Solution

4.1 Impossibility of Nash-implementation

The claim in the literature that the Nash bargaining solution cannot be Nash implemented
is based on the proof that it is not Maskin monotonic. As Maskin monotonicity is a nec-
essary assumption for full Nash implementability of social choice rules this claim relies on
some implicit assumptions. First, it concerns only full in contrast to weak implementa-
tion. Secondly, it takes the interpretability of the Nash solution as a social choice rule for
granted. The outcome space for which the lack of Maskin monotonicity is demonstrated
is, however, not arbitrary, it is rather a set of lotteries over some finite set. The essence of
the argument can be seen in the following example which is a simplification of an example
due to Howard (1992).

Let A = {a,b,c} an outcome space. Let {u,v} be the set of admissible profiles of utility
functions on A, with u = (uy, ug),v = (v1, v2) defined by:

u1(a) = 0 = up(a), u1(b) = 1/8,ua(d) = 1, u1(c) = 1/2 = us(c)
v1(a) = 0 = vy(a), v, (b) = 1/8,va2(b) = 1,1 (c) = 1/2 = wa{c).
The Nash social choice rule is defined by

N {u,v} = A:wr— Nw = argmaz,cs wi(z)wa(z).

Notice that even in this most simple framework A does not coincide with the Nash
solution N. Rather N is defined by

N : {u(4),v(A4)} = [0,17 : w(A) — N(w(A)) = argmazycu(a) V1%2-

We get M(u) = {c} and N (v) = {b}. Going from u to v does not involve a preference
reversal of any member ot the society. Nevertheless, the socially desired state does change!
So the social choice rule fails to be Maskin monotonic. Hence, in this context the Nash
solution represented by A is not Nash-implementable.

As we shall show the choice of the outcome space is crucial for the problem of Nash
_implementability of the Nash solution.

4.2 A Support Result

Consider a two person bargaining sit_ua,tidn S as illustrated in Figure 6.
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Figure 5:

The compact strictly convex set § C R? represents all feasible utility allocations for two
players. For simplicity assume that the efficient boundary 35S of S is the graph of some
smooth decreasing concave function from [0, 1] to [0,1]. Such a bargaining situation can
be looked at as a two-person NTU-game, where S is the set of payoff vectors feasible for
the grand coalition {1,2}, while {0} represents the payoffs for the one player coalitions.
The normalization to (0;1,1) is standard and reflects the idea that S arose as the image
under the two players’ cardinal utility functions of some underlying set of outcomes or
allocations. Cardinality determines utility functions only up to positive affine transforma- -
tions and therefore justifies our normalization. Now, consider the following modification
of Nash’s simple demand game due to Trockel (2000)

%= (21,2257?15:’”5)-

%1 = X = [0, 1 are the players’ sets of (pure) strategies. The payoff functions are defined
by 77 (21, 22) = z:15(z1, T2) + 27 (z;) 15 (21, 22).

Here S¢ is the complement of S in [0,1]? and 15 is the indicator function for the set S.
Finally z7(x;) is defined as follows:

For each z; € {0,1] the point ¥°(z;) is the unique point on 85 with y?(z;) = z;. B
p(z;) we denote the normal vector to 85 at y°(z;) normalized by p°(z;) - y°(z;) = 1.
Now 25 (x;) is defined by 27 (z;) = min(x;, 2_m$1(z_a))’ i=1,2.

This game has a unique Nash equilibrium (z7, 23} that is strict, has the maxmin-property
and coincides with the Nash solution of S, i.e. {{z},z3)} = N(S). The idea behind the
payoff functions is it to consider for any efficient utility allocation y its value under the
efficiency price vector p(y). If the utility allocation could be sold at p(y) on a hypothetical
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market and the revenue would be split equally among the players there is-only one utility
allocation such that both players could buy back their own utility with their incomes
without the need of any transfer of revenue. This equal split of revenue in the payoff
function corresponds to equity in Shapley’s (1969) cooperative characterization of the
A-transfer value via equity and efficiency. As for our two-person bargaining games the A-
transfer value just singles out the Nash solution this result does not come as a big surprise.
By supplementing efficiency, which characterizes the infinitely many equilibria in Nash’s
demand game, by the additional equity, embodied in the payoff functions #¥,i = 1,2,
one gets the Nash solution as the unique equilibrium of the modified demand game. This
result provides obviously a non-cooperative foundation of the Nash solution in the sense
of the Nash program. If the impossibility of Nash implementation of the Nash solution as
claimed in the literature [Howard(1992), Serrano(1997), Dagan and Serrano (1998)] would
hold generally true, independently of the choice of the outcome space and the resulting
specification of the Nash social choice rule, then it would be impossibie to extend our
above foundation to an implementation result. As we shall see, however, this is not the
case. We shall provide a framework in which the Nash solution can be Nash implemented.

4.3 Nash-implementation

According to the diagrams in Figures 3 and 4 to extend our non-cooperative foundation
to Nash implementation we have to perform the following tasks: .

1. Define the outcome space A.
2. Specify the set U of feasible profiles of utility functions on A.

Represent the Nash solution L := N by a social choice rule £ := N.

Lol

Clarify the relation between G¢ and U.

5. Define the outcome function A.

The set G is in our present context the set of all (0; 1, 1)-normalized two-person bargain-
ing games, V = S, as defined above. Let us now define the outcome space A by

A:={L e ([0,1129°|¥S € G : L(S) € S}.

From now on we look at the singleton-valued correspondences L as functions.
So A is the set of all possible bargaining solutions on G€.

Next, we perform our tasks 2 and 4.
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Every bargaining game S € G€ induces a profile of utility functions «¥ := (u§,u5) on A
as follows:

The interpretation is that player ¢ in the game S has a utility function on the set of
bargaining solutions dependent only on the game S he is involved in. The more a solution
pays him out in that game the higher is his utility of that solution.

For each player 4 e {1,2} different games S define different utility functions uf. Hence,
the map S — u¥ = (uf,uj) is an injection that allows us to identify the set G with a
set of utility profiles. In fact, we define U as the image under that map of G and thereby
solve for our purpose the effectivity and supportability problems illustrated in Figure 3.

The next task left is the third one, i.e. the definition of the Nash social choice rule V.
To accomplish this we define for any S € G an equivalence relation ~g on the set A of
bargaining solutions by

L~ L e L(S) = L(S).

The set [L]g := {L' € A|L' ~g L} is the S-equivalence class generated by the solution L.
Now the Nash social choice rule is the correspondence

N:GE=A:5+—[N]sC A

Notice, that due to the identification of ¢ and G° this correspondence is really a social
choice rule.

Finally, we come to our fifth and last task, which is to define the game form ({0, 1]%, 4).
The outcome function h : [0,1]> — A : z = (r1,72) — h{z) maps every possible
strategy profile to some bargaining solution. Notice, that this, as a mapping from G©
to [0,1]? has to be defined by specifying pointwise, i.e. for every S € G, the element
h(z)(S) € § C [0,1]%

Accordingly, given any strategy profile z € [0, 1%, we define for any § € G an element of
S by h(z)(S) := 75(z). The #5 = (x{,#5) is the profile of payoff functions of our demand
game defined above. So the social state h(z) associated by the outcome function h with
the strategy profile z is the mapping S — 7%(z) defined on G°.

It is very important to notice that a social planner may very well know that mapping
without having any knowledge about the utilities of any two players meeting in a specific
bargaining game S. Put differently, for any = € [0,1)? the outcome h(z) = 7(}(z) is
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defined independently of any specific game S € G€. Clearly, the images of different
games S € G vary depending on S. Now it is not hard to see that ([0, 1]%, h) indeed
Nash-implements the social choice rule A/. For the game I'Y := (T, Zs;uf o h,u§ o h)
, with 3 = &; = [0,1] we just have to insert the point N(S) for z in h(z)(S) to get
R(N(8))(8) = m5(N(8)) = N(S).

This equality asserts that the solution A(N(S)) is S-equivalent to the Nash solution N,
ie. h(N(S)) € [N]s = N(S). As for the unique Nash equilibrium z*° = (2}°, z3°) of
IS we had NE(I'S) = {z*5} = {N(S)} we get A(NE(I'®)) = h{N(S)} = {R(N(S))} C
[N]s = N(5). '

This establishes (weak) Nash implementation of the Nash social choice rule N. Notice,
that A/ and N, though intimately related, are different mathematical objects. Neverthe-
less the term “Nash implementation of the Nash solution” is justified as uniformly for all
games S € G¢ the payoffs to the players according to the unique Nash equilibrium are
identical to the payoffs defined by the Nash solution. This follows immediately from the
following chain of equalities:

uf o M(N(8)) = u; (A(N(5))) = uf (N} = Ni(S),i = 1,2.

So we ended up with weak implementation in unique Nash equilibrium. For practical
- reasons this is as good as would have been a weak implementation of the constant social
choice rule N : U = G€ — A defined by N(u) := N, which in fact would be even full
implementation. Notice, that whatever S from the pool G is going to materialize, the
induced game I'° by its unique equilibrium exactly determines the Nash solution payoffs
N(S). From the point of view of observability it is impossible, hence even meaningless to
tell whether N or N has materialized. In a welfaristic framework, where payoffs rather
than social states are the objects of interest, we just do not care.

After we have established weak Nash implementability of A its Maskin monotonicity is
not really an issue. Nevertheless it is interesting to see the impact the framework, in
particular the choice of the outcome space, has on this matter. In fact it turns out that
our Nash social choice rule A is Maskin monotonic. To see this we have to demonstrate
that any change of preference profiles that results in a socially desired state according
to A not socially desired at the original preference profile must necessarily involve a
preference reversal.

So start with a preference profile (-5, -5) on A represented by {uf,u3) and consider a.

~L A2

second profile (=5, =5") represented by (uf, u3 ).

~1 a2

Now, let I be socially desired for S but not for S, i.e. L'(S") = v* (L') = v¥ (N) = N(§)
but L'(S) = uS(L') # uS(N)} = N(S). So we have u{ (L) > uf (N),i=1,2.

But as uS(N) is Pareto-efficient in S but different from w®(L’), for at least one player
j € {1,2} we get uf(N) > u(L’). This establishes the preference reversal. Hence, N is
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Maskin monotonic.

It is easy to see that in this framework any Pareto efficient social choice rule, as for
instance N is Maskin monotonic, too (cf. Trockel (1999a). An interesting question that
could be asked now is as to full implementation of the social choice correspondence NV.’

Clearly, this can be possibly achieved only if the strategic games employed have multiple
equilibria. In fact, a game doing this job can be easily generated from our game I'S.
It has been used in Trockel (2001) to provide for the class of all bargaining solutions a
meta bargaining result akin to the one of van Damme (1986) and its extension due to
Naeve-Steinweg (1999) who restrict to bargaining solutions satisfying certain plausible
axioms.

The construction is quite simple. Define the game IS, a “meta-bargaining game” by
Ts = (A, A; 75, 75).

As A is the set of all bargaining solutions it remains to define #7,i = 1,2. To do this
consider for any S € G© the mapping Fg := projigoevs : Ax A — [0,1] x [0,1] :
(LY, L?) v (L}(S), L3(5)). Now we define 7f : A — [0,1) by #¥ =¥ 0 Es,i =1, 2.

In this game any pair of solutions (L, L?) € [N]s X [N]s is a Nash equilibrium. The only
pair of bargaining solutions that is an equilibrium for each S € G€ is the pair (N, V).

By a similar procedure as explained above for‘I“S also 'S may be used to derive Nash im-
plementation of A/. But now, this is full implementation. Hence the Maskin monotonicity
of A, which we have already established, is a necessary consequence.

On the first view we seem to be in conflict now with Result 2 in Dagan and Serrano
(1998). According to their result our A should be ordinally invariant. That means
that for any monotonic transformation T : B2 — R2 such that T(S) € G we should
have A'(S) = N(T(S)). But, as is well known for such a transformation and the Nash
solution NV one has in general T(N(S)) 5= N(T(S)). Now consider a solution L such that
L(T(S)) = T(N(S)) and L(S) = N(S). Then L € [N]s = N(S), but L ¢ [Nl =
N(T(S)). Hence N(S) # N(T(S)). ' .

The source for the seeming contradiction lies in the restrictive notion of implementation
used by Dagan and Serrano {1998) which explicitly makes use of a set of probability
distributions as an outcome space. One can read in their Introduction “that if o solution
concept is independent of randomization it must be ordinally tnvariant... This implies that
major solution concepts in coalitional games (eg. the Nash bargaining solution...) can be
derived strategically only by considering the possibility of random ouicomes: either chance
moves, mized strategies, or pure strategy equilibrium refinements based on trembles must
be past of the analysis.”
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Qur approach is a counter example to this general claim. Again this is due to the fact
that their results are derived in a special model with a specific notion of implementation
and a specific outcome space.

5 Conclusions

5.1 Answers to the Questions

What we have demonstrated in Section 4 via the example of the Nash bargaining solution,
namely, how to get an implementation from simple non-cooperative foundation, can be
performed in a very general way for any solution concept on any class of coalitional games.
The trick is that the outcome space has to be the set of singleton-valued solutions (cf.
Trockel (1999a)).

L

- So formally the answer to the first question in the title is “yes”. The Nash program can
be seen as part of mechanism theory. One needs a quite complex outcome space and one
needs a restricted domain of preference profiles on that space. Also the set of preference
profiles is not a product set. The preferences in a profile are dependent on each other.
But this is unavoidable in a welfaristic framework. Take for instance a bargaining garhe
5. What remains of this S if by going from games to game forms information on players
utilities is removed? As all that information is contained in S or, in its efficient boundary
there just remains the set [0, 1]%, the smallest set product containing all $ € G¢ and taken
as strategy space in our approach. The only way ther to speak of say, the Nash solution
is not by locating it for a given S. There is no such given S anymore! Rather we may
speak of the Nash solution as of an abstract concept representing some possible social rule
for how to solve bargaining problems. Our approach makes any solution a social state.

This specific choice of an outcome space is perfectly in accordance with the general frame-
work of implementation theory and mechanism design. Formally, it is as adequate as some
set of lotteries, some space of allocations of commodities, or some set of candidates in a
context of voting. Only, the latter ones reflect special economic or social scenarios that
are modelled in a game theoretic language. Then the respective physical outcome space
becomes the outcome space in the accordingly modelled mechanism.

But, once in the welfaristic purely game theoretic world, notions like candidate or allo-
cations do not have a place. At best they help to clarify the formal model as intuitive
examples for applications.

‘The space of solutions for a considered class of games, in contrast, is endogeneously
determined rather than derived from any specific application. So, formally, we have a
purely game theoretic model by which we may extend non-cooperative foundations of
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cooperative solutions to Nash implementations. This does not say that this is of any use
for applications. So the second question is much harder to answer. Should we see the
Nash program as a part of mechanism theory? The answer clearly depends on the task
one has in mind. I had elaborated already on the Nash program and its supposed value
and intuition. One may wonder what the possibility of Nash implementability might add
to these considerations. What gain does it bring to the Nash program? Alternatively, one
might ask, like Serrano (1997), whether using the Nash program brings any advantage for
mechanism theory.

Let me deal with the first question first. Assume two players are in a concrete bargaining
situation, which they both agreed to be suitably modelled by some bargaining game
S € G°. Among the two there is common knowledge about this 5. Now suppose during
the process of looking for an acceptable point in S somebody offers the two players to
~ solve their problem by committing to play some game in strategic form instead. And
suppose they would agree to do so. Would the fact that this game is constructed from
their specific S and some game form independent of S be of any help for them? Probably
not. They would not care whether their payoff functions could be factorized in such a
way. They just would look at the possible payoff vectors of the game, in equilibrium and
outside. They might reject a game that modifies Nash’s demand game in such a way
that each player receives his coordinate of NV if he chooses it as a strategy and gets 0
otherwise. Accepting this.game would be a tatonnement to finishing their negotiation
process by agreeing on N.

Assume they are offered instead to play I'° as defined above. Now all feasible points in
S still remain accessible via coordinates strategic actions, in particular the Nash solu-
tion. But in case of disagreement by playing the equilibrium they would get N rather
than falling back to 0. So the commitment would be a Pareto improvement in case of
disagreement.

It would be advisable for both players to accept to play that game. But this fact is
independent of the mechanism theoretic implementability. So I do not see that the pos-
sibility of extending a non-cooperative foundation to implementation is of any value for
the players looked at in the Nash program. It is, however, of potential value for the
game theorist. The ways how payoff functions may be possibly factorized into outcome
function and utility functions as explained by implementation may help to distinguish
between more or less “sensible” strategic models for non-cooperative foundation.. What
does mechanism theory gain from the embedding possibility? One might follow Serrano
(1997) by arguing that the Nash program utilized by the embedding principle provides a
useful pool of potential mechanism like. the revelation principle. But this answer is too
general. If a planner or designer is in the situation of looking for the possibility to imple-
ment a social choice rule its outcome space is usually given as are institutional restrictions
on the potential rules for the game form. This would require more “concrete” outcome
spaces and therefore be in conflict with the welfaristic framework of the Nash program.
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Clearly, even a very abstract outcome space like a set of solutions that we used above
is in principle usable. It only puts extreme requirements in terms of observability and
enforcement tools upon the planner. It is not so much the problem that the planner has
to check whether the (an) equilibrium has been played. This is superfluous due to the
self-enforcing power we use to desribe to equilibrium. If this could and would have to
be checked there would be no need-in insisting on equilibrium play. Any play could be
checked and therefore might be prescribed by the planner. It is rather the problem to
make sure that the players really play the game they are supposed to. It might not be in
their interest to play the game. An indirect control would be possible in some cases via
observation of outcomes. Here more concrete physical outcomes may be much easier to be
monitored from outcomes that are abstract principles, norms or solutions. The solution
might be observable via the payoff it prescribes in a game. But this is possible only if the
game is known to the observer, which implies that players’ preferences have to be known.
But then implementation via game forms is an unnecessary complication. '

Hence my conclusion is that mechanism theory does not profit very much, either, from its
formal access to the Nash program. So perhaps, we should not look at the Nash program
from this point of view.

5.2 Outlook

What are the consequences from our considerations? We should proceed beyond present
mechanism theory. We need a theory that tells us which are “good” or “bad” mech-
anisms and this qualification should be dependent on the information and enforcement
possibilities that are available in the scenario under consideration. This leads to genuine
implernentation as advocated by Hurwicz (1994). It requires treatment of institutional
features as part of the implementation problem. One also needs to explicitly address the
problem of voluntary implementation like in Jackson and Palfrey (2001).

Up to now this aspect had been treated only in a stylized rudimentary form as participa-
tion constraint in agency theory.

A further research agenda suggested by our above considerations is a kind of a gener-
alized Nash program consisting of several parts. One part would stress the symmetry
of the cooperative and the non-cooperative approach in foundations of game theory and
accordingly look also for cooperative foundations of non-cooperative equilibria. A second
part would extend the applications from linking just game theoretic cooperative solutions
and non-cooperative equilibria to any kind of social or economic solution concepts, like
Walrasian equilibria, evolutionary stable or imstitutionally distinguished outcomes. Fur-
ther, extensions to non-welfaristic social scenarios should be considered. See for instance,
Sertel and Yildiz (2001) and Sotskov (2001}).
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