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Abstract:  One set of n objects of type I, another set of n ob jects of type 11,
and an amount M of money is to be completely allocated among n agents in
such a way that each agent gets one object of each type with some amount of
.- money. We propose a new solution cohcept to this problem called a perfectly
fair allocation. It is a refinement of the concept of fair allOCétion. An appealing
and interesting property of this concept is that every perfectly fair allocation
is envy free, Pareto optimal, and income fair. It is also shown that a perfectly
fair allocation gives each agent what he likes best, and that a fair allocation
need not be perfectly fair. Furthermore, we give a necessary and su_ﬂicient
condition for the efcistence of a perfectly fair allocation. Precisely, we show
-that there exists a perfectly fair allocation if and only if the valuation matrix
is an optimality preserved matrix. Optimality preserved matrices are a class
of new and interesting matrices. We also derive two fundamental properties of
optimality preserved matrices and identify several easily verifiable conditions
for a valuation matrix to be an optimality preserved matrix. Furthermore, an

extension of the basic model is discussed.
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1 Introduction .

The subject of this paper is the distribution of a collection of objects (sﬁch‘ as houses and
cars) and an amount of money among a group of people. It is concérned with fairness,
equity, justice, and efficiency of such distributions. These problems arise naturally in
many situations, and are both difficult and controversial. Recall that given an allocation,
we say agent i envies agent j if agent ¢ prefers the bundle of agent j to his or her own.
An allocation is envy free or equitable if no agent envies any other. An allocation is fair
if it is both equitable and Pareto optimal. Furthermore, an allocation is income fair if
the potential income of évery agent is the same. As it has been noted, the concept of
fairness may not exactly correspond to the everyday notion of fairness. In .fac’ﬁ7 how we
define equity, fairness, and justice has been, and remains a most provocative question in
the course of mankind’s endless quest for equity, fairness, and justice. The goél of this
paper is to propose a new solution concept to a class of fair allocation problems and to
investigaie what conditions can ensure the existence of such a solution which is envy- free,
Pareto optimal, and income fair. ’

The study of fair division problem can date back at least to Steinhausv(v1948).‘ But most
of the literature has evovled from Foley (1967) in which the concept of envy free allocation
is precisely formulated. A major defect of this concept is that an envy free allocation may ’
not be efficient (i.e., Pareto optimal). Various criteria on equity and justice are discussed
in Rawls (1971), Pazner and Schmeidler (1978). Furthermore, in Varian (1974) a general
formulation of fair division of divisible goods is given. He proved the existence of an envy
free and efficient allocation by imposing certain conditions on the model.

The fair allocation problem of indivisible objects is investigated by Sveﬁsson (1983),

and further studied by Maskin (1987), Alkan, Demange and Gale (1991), Su (1999), and



Yang (2001). Ifl these papers it is shown that in an economy if each agenf consumes
only one indivisible object and there is a divisible good (say money), then the set of envy
free and efficient allocations is not empty under certain mild conditions. In these models
a fundamental assumption in common is that each agent has no use for more than ohe
indivisible object. As noted by Svensson (1983) this assumption leads to a nice conclusion
that an envy free allocation must also be efficient. Unfortﬁnately, this property does not
automatically carry into more general situations where agents are allowed to consume more
than oné indivisible object. Sun and Yang (2000) have recently developed a more géneral
model in which there are no restrictions on the agents’ consumption of indivisible objects.
A sufficient condition is introduced for the existence of an envy free and efficient allocation.
On the other hand, algorithmic procedures have been proposed by Aragones (1995), Klijn
(2000), and Haake, Raith and Su (2002) to find an efficient and envy free allocation in a
setting where agents have quasi-linear utilities in money. Furthermore, Alkan et al. (1991)
and Tadenuma and Thomsoﬁ (1991) have given two different sets of criteria for selecting
desirable envy free allocations when there -exist multiple envy free allocations.

In this paper we consider the following problem: One set of n objects of type I, another '
set of n objects of type I, and an amount M of money, are to be completely allocated ainong
n agents in such a way that each agent gets one object of each type with some amount of
monej We propose a new solution concept to this problem called a ‘pérfectly fair allocation.
It is a refinement of the concept of fair allocation. An appealing and interesting property
of this concept is that every perfectly fair allocation is Pareto optimal. It is also shown
that a perfectly fair allocation is envy free, income fair and gives each agent what he likes
best, and that a fair allocation need not be perfectly fair. Furthermore, we give a necessary
~ and sufficient condition for the existence of a perfectly fair allocation. To be more precise,
we show that there exists a perfectly fair allocation if and only if the valuation matrix is
- an optimality preserved matrix. We also derive two fundamental properties of optimality
preserved matrices and introduce several easily verifiable conditions for a matrix to be an
optimality preserved matrix. We stress that optimality preserved matrices are a class of
‘new and interesting matrices and might be worth being studied in their own right. An

extension of the model is also discussed.



The rest of the paper is organized as follows. In Section 2 basic concepts are introduced,
"and the formal model is defined. In Section 3 we introduce the concept of optimality pre—v
served ﬁatrix and establish the existence theorem of perfectly fair allocations. In Section 4
we dérive two fundamental properties of optimality preserved matrices and introduce sev-
“eral easily verifiable conditions for a matrix to be an optimality preserved matrix. Finally

in Section 5 an extension of the basic model is discussed and existence results are derived.

2 The model of perfectly fair allocation

We first introduce some notation. Let Ij, be the set of first &k positive integers and R the
~ k-dimensional Euclidean space. v

Our model consists of a finite number (n) of agents, denoted by I, the same number
of indivisible.objects’ of type I, denoted by O;, the same number of indivisible objects of
type II, denoted by O, and a fixed amount of money, denoted by M. One might think
of Oy and O, as the collections of houses and cars, respectively. For ease of notation, let
Oy = Oy = I,,. Here M can be any real number. If M is. negative, this will be the case
in cost sharing problems. Here money will be treated as a perfectly divisible good. It is
assumed that each agent demands or consumes exactly one of the indivisible objects of
each type and a certain amount of money. The preference relation of each agent ¢ € I, can
be répresented by a utility function u; : O; X O3 X R +— R. Throughtout the paper it will
be assumed that u;(h,c,m) is a nondecreasing and continuous function in moigey (i.e., in

A feasible allocation is a 3-tuple of vectors (7, p, z = (z,y)) where 7 = (7(1),---,7(n))
and p = (p(1),---,p(n)) are the permutations ;)f thé elements in O; and O, respectively,
and where Y7 ;(z; +y;) = M. Thus, at a feasible allocation, all objects and money will be
completely distributed tb thé agents in‘a way that every agent gets exactly one in‘divi_sible
object of each type and a certain amount of money. More precisely, each agent 7 receives a
bundle of goods ((4), p(2), Tx(i) + Yp(j)) consisting of object 7(4) of type I and object p(4) of
type II and the amount T¢) + yp) of mo‘ney. If Tr(s) + Yos) < 0, then agent ¢ pays others

the amount |Zx() + Yp@s)| of money.



Let T = {z = (z,9) € R | T%,(z; + y;) = M} be the (2n — 1)-dimensional
hyperplane and let © = {7 | 7 = (n(1),---,7(n)) is a permutation of I,}. Thus a
feasible allocation (7, p, z) is merely an element of © x © x T.

We can now introduce the major solution concept of the paper.

Definition 2.1 A feasible allocation (m, p, z) is a perfectly fair allocation if it holds

u’i(77<i)a p(i)7 Tr(i) =+ yp(i)) > uz<7r(])7 p(k)7$7r(j) + yp(k))y \7,7:7ja ke I,.

Recall that a feasiable allocation is envy free or equitable if no agent prefers any other '
agent’s bundle to his own. Clearly a perfectly fair allocation must be an equitable allocation
but the reverse is not true in general. Furthermore, a perfectly fair allocation gives each
agent what he likes best. The concept of perfectly fair allocation can be also explained
as follows. An auctioneer chooses a compensation scheme vector z -~ (z, y)’ € T for the
pairs of objects in 07 x Oy in such a way that every agent can pick up a pair bf house and
car with their compensation which he likes best Withdut conflicting his interest with any

other’s. The following concept is a familiar one.

Definition 2.2 A feasible allocation is efficient or Pareto optimal if there is no other
feasible allocation which makes everyone at least as well as before and at least one agent

strictly better off.

The problem of the concept of equitable allocation lies in the fact that it is not necessarily
efficient. The following example indicates that an equitable allocation indeed need not be
efficient. ‘

Example 1. Consider the case in which there are two agents 1, 2 and there are two houses
hl, h2, _and two cars cl, ¢2, and total money (say, dbllar) M is equal to zero. Both agents
have quasi-linear utilities in money (i-e., ui(h,c,m) = a(i, h,c) + m, i = 1, 2) and the
values of the agents for the different pairs of house and car are given in Table 1.

In this example when agent 1 gets house hl and car ¢2 with 18 and agent 2 gets house
h2 and car cl by paying 18, this allocation is equitable but not Pareto optimal, because
another allocation in which agent 1 gets house h2 and car ¢2 by paying 0.58 and agent 2
gets house Al and car ¢l with 0.5% rﬁakes both agents strictly better off.



Table 1: The values of objects for both agents

a(1,hc) | C1 | C2| a(2,hye) | el |2
23| cm |32
h2 | 45| h2 |44

One of the most appealing and interesting properties of perfectly fair allocation is that

it is also efficient as shown below.
Theorem 2.3 ~ . Every perfectly fair allocation is Pareto optimal.
Proof:  Let (7, p, z) be a perfectly fair allocation. Then it follows that
Ui(W(i),P(i); Tr(i) + yp(i)) & Ui(”(f):ﬂ(@ﬂn(i) + yp(k)),\ﬁ,j, k€ In; (2-1)'

Now suppose to the contrary that (, p,2) is not efficient. Then there would exist a feasible
allocation (7, 5, Z) weakly preferred by all agents and strictly preferred by at least one agent.

That is, it holds

wi(7 (1), B(8); Z2(i) + Tatay) 2 wi(7 (1), p(2), Ta(e) + y'p(i)),W‘ € In; (2:2)
and there is some j € I, satisfying

u; (7 (4), ) Zr() + Upi)) > ui(m(5), P(), Trh) + Yot))- | (23)
- Inequalities (2.1), (2.2) and (2.3) imply that for all i € I, .

ui(7(4), ﬁ(%)y Ty + o)) = wi(T(2), p(4), 337‘1'(2") + Ypa))s
and "

ui(7(7), P(3) Z(5) + Unts) > wi(7(7), 0] Tz () + Ya())-
Since u;(4, k, ), 1,5,k € I, are nondecreasing in money, we have that for all < € I,

| () + Yps) = xﬁ(%) + Ya(i)

and

Ex(i) + Ust) > T + Y-



This implies that
n n
M’:’Z(jj‘*'yj >ny+yj M,
=1 =1

yielding a contradiction. Therefore, (7, p, z) must be efficient as well. O

In addition, we will shOW that the concept of perfectly fair allocation has yet another
remarkable property, namely, it is consistent with income-fairness. The concept of income-
fair allocation is suggested by Pazner and Schmeidler (1978). This concept can be refor-
mulated in the present model as follows. Given an allocation (m, p, (z, y)), we construct a |
pure exchange economy E(r, p, (,)) in which the bundle (7(3), p(), Tx(s) + Yp()) is viewed
as agent ’s initial endowment. We say that an allocation (, p, (z,y)) is an income fair
allocation if there exists a vector (p!,p?,7°) € R™ x R™ x R such that (7, p, (z,)) is a
competitive equilibrium allocation, (p*, p?, p®) is a competitive equilibrium pricé vector for _

the economy E(m, p, (z,v)), and the potential income is the same for every agent.
Lemma 2.4 Every perfectly fair allocation is an income fair allocation.

Proof: Let (m,p,(z,y)) be a perfectly fair allocation. Now define an economy in which
agent 7 initially owns the bundle (W(i), p(3), xw(ij+yp(i)). Let pt = —z, p* = —v, and pd =1
Then the vector (p', p?,p%) is a competitive equilibrium price vector for the economy since |

for every agent i, perfect-fairness implies that

u(m ( ) p(i), Tr(i) T yp(l)) 4 uz( ( ), P (Z) T (3) + Yo (z)) V', p' € ©.

In the economy, the potential income (i) = a:,,(z) + Yp(iy + p,r(,) e pp(z) =0 for all i € I,.

Thus, (7, p, (z,y)) is an income fair allocation. O

The following example shows that an efficient and eﬁvy free (i.e. fair) allocation may not
be income fair. Thus, the concept of perfectly fair allocation is indeed a proper refinement
of the concept of fair allocation.

Example 2. Consider the case in which there are two égents 1, 2 and there are two houses
hl, h2, andrtwo cars cl, ¢2, and total mohey (say; dollar) M is equal fo zero. The values of
the agents for the different pairs Of‘house and car are given in Table 2, and utility functions '

are given by u;(k,c,m) = a(i, k, &)+ m,1=1; 2.

7



In this example there is only one envy free and efficient allocation, namely, agent 1 gets
house Al and car cl and z$ with 2 < z < 2.5, and agent 2 gets house h2 and car c2 by
paying z$. Suppose that this allocation is income fair. Then for agent 2, the following

system of inequalities must have a solution.

T1 + 11

5+ T2+ Yo s
O+ Ty + Y2 > 45+ + Y2
S5+Tat+ys =2 4S5+z2+ur
Tt o= —(z2+42)
Ti+yr = T
2 < I.S 2.5

It follows from the second and third inequalities that z < 0.5, yielding a contradiction
to the sixth inequality. Thus this fair allocation is not income fair and therefore is not a

perfectly fair allocation, cither.

Table 2: The values of objects for both agents

a(l,h,c) | el | 2 | a(2,h,c) | cl | c2
hl1 | 5 |45 hl 0 |45
h2 45 9 h2 45| 5

In the following two sections we will establish several existence theorems for perfectly
fair allocations in the case that agents have quasi-linear utilities in money. Relaxing the

assumption of quasi-linearity in money still poses a difficult challenge to us.

3 Existence theorems

Given an n x n x n trimatrix A = (a(i, h,c)), an assignment (7,p) € © x © is an 'op—b
) > Sier, o(i,7(3),7(4)) for every (r,7) € © x ©.

Similarly, given an n x n matrix B = (B(i,0)), we call an assignment T € © an optimal
B,

assignment if 3 icr B4, (1)) > Tier,

timal assignment if Y ;c; a(i, 7(i), p(2)

7(4)) for every T € ©.



When we restrict to the case where every agent has quasi-linear utilities in money, then
the model described in Section 2 can be simply represented as £ = ((a(¢, h, ¢)),n, M) where
(ae(3, h, c)) is an n X n x n trimatrix, n is the number of agents, and M is the total amount
of money. Recall that a(i, h, c) is the value of a pair of house h and car c to agent <. We
bcall (a(i, h,c)) the valuation matriz. Furthermore, for a specific model where objects are
only houses or cars, we will simply represent such a model by £ = ((8 (z’v, 0)),n, M), where
(B(i,0)) isan n x n matrix, n is the number of agents, and M is the total amount of money:
(1, 0) is the value of object 0 to agent 1. |

Recall the following duality theorem from linear programming, which has been used by

Shapley and Shubik (1972), and Alkan et al. (1991) for related models.

Lemma 3.1 Let B = (8(i,0)) be an n x n matriz. If m € © is an optimal assignment,

thére exist two n-vectors v and w such that
v; +w, > B(3,0), Vi € I,0€ Oy

and |
v; —{—'w,r@ = B(¢,7 (%)), Vi € I,.

Lemma 3.2 Given a model £ = ((6(i,0)),n, M)', then there erists at least one optimal
assignment with respect to the matriz (B(4,0)). For each optimal assignment T, there
exists a distribution n-vector  of money M such that (7, ) is an efficient and envy free

allocation.

Proof: The first statement is dbvious, since there are only a finite number of assignments.
The second statement can be seen as follows. Since 7 is an optimal assignment, it follows

from Lemma 3.1 that there exists v and w such that
v; + w, > B(i,0), Vi€ In,0€ Or
and

Vi + Wrgy = B4, 7(4)), Vi € In.



From the above inequalities we obtain
803, 7(0)) — waey 2 B(i,0) — wy, Vi € Ip,0 € O,

Let y; = —w;, 6 = (M —Yier, ¥i)/n, and z; - y;+0 for each ¢ € I,,. Definez = (z1,- -, Zy)-

Then we have

B(i, m(2)) + Try) = B(2,0) + %o, Vi € In,0€ Oy

and
i€ln
Thus, (7, ) is an efficient and fair allocation. O

Using the same argument of the above lemma or Theorem 4.1 of Sun and Yang (2000),

we have

Theorem 3.3 Given a model € = ((a(i, h,c)),n, M), then there exists at least one
optimal assign'ment ‘with respect to the matriz (a(i, h,c)). For each optimal assignment
(7, p), there exists a distribution 2n-vector (z,y) of money M such that (r, p, (z,y)) ‘is an

efficient and envy free allocation.

' As Example 2 indicates that perfectly fair allocations may not always exist, this motivates
a natural question: Under what circumstance does a perfectly fair allocation exist? The
remaining section is to present a necessary and sufficient condition for the existence of a

perfectly fair allocation.

‘Condition 3.4 The trimatriz (a(3, h,c)) has the following property: For every i € I,
it holds
a(i, hl, cl) + a(i, h2, c2) = ali, hl, c2) + o, h2,cl),
Vh1,h2 € Oy,cl,c2 € O,.
Condition 3.5  The trimatriz (a(i, h, c)) has the following property: For every i € In,
there exist two n vectors H' = (H'(1), - -, Hi(n)) and Ct = (C*(1),---,C*(n)) such that it
holds
“afi,h,c) = H'(h) + C*c), Vh € O1,c € Os.

10



Lemma 3.6 Conditions 3.4 and 8.5 are equivalent.

Proof: Condition 3.5 clearly implies’ Condition 3.4. Now we prove that Condition 3.4
implies Condition 3.5. From Condition 3.4, we see that

al(i,1,1) + ali, h,c) = a(i,1,¢) + a(i, h,1)  forallh'e O; and c € O,.
Thus we obtain that

a(i, h,c) — a(i, h 1) = a(i, 1,¢) — a(i,1,1) for ali h € Orandce O,.
qu each h € O; and ¢ € O,, let

Hi(h) = a(i,h,1), and C'(c) =ali1,c) — afi,1,1).

Then we have that-a(i, h,c) = H'(h) + C%c) for all h € O and ¢ € O,. That is,

Condition 3.5 holds. , 0O

Definition 3.7 Given an n x n X n trimatric A = (a(i, h,c)) and an assignment
(m,p) € © x O, the following process is called an M-transformation of A from (m,p) if
each element a.(i, h, c) except for a(i, n(i), p(t)), i € I is addéd with a nonhegative number
8(i, h, c) so that the new trimatriz T = (a(3, h, ) +6(¢, h, ¢)) satisfies Condition 8.4, where
6(i,m(i), p(i)) = 0 for each i € .

The trimatrix T above will be called an M-matrix resulted from (, p).

Definition 3.8  An n x n x n trimatriz (a(3, h,c)) is an optimality preserved matric
if there exist an optimal assignment (7, p) € © X © and an M-transformation from (=, p)

such that (m, p) is still an optimal assignment in the M-matriz resulted from (m, p).

Obviously, a trimatrix satisfying Condition 3.4 is an optimality preserved matrix. We are
now ready to introduce the main existence result of this paper which states a necessary |

and sufficient condition for the existence of a perfectly fair allocation.

Theorem 3.9 Given a model € = ((a(i,h,c)),n, M), there exists a perfectly fair allo-

cation if and only if the valuation trimatriz (a(i, b, c)) is an optimality preserved matric.

11



Proof: Since (a3, h,c)) is an optimality preserved matrix, then there exist an optimal
assignment (7, p) € © x © and an M-transformation from (7, p) such that (m, p) is still
an optimal assignment in the M-matrix resulted from (7, p). Let T = (&(s, h, c)) be the

n X n x n M-matrix resulted from (7, p). So we have

a(i, h,c) = a(i, h,c)

ali,w(3), p(i)) = aliy (1), (i)
for all i € I, (h,c) € Oy x Oy, and

5 i (i), 60) 2 T 6, 769,96, ¥ 1) € © % © Y]
Since T satisfies Condition 3.4, then there exist two n-vectors H* and C' for each i € I, so
that &(z, h, c) = H'(h)+C%(c) for every h € Ol, ¢ € O,. Then we can rewrite equation (3.4)
as |
Y (H (@) + Cp(@) 2 Y _(H'(r(0)) + C'(v(3))), ¥(r,7) €O xO. (3-5)

i€ly i€ln

It follows from equation (3.5) that

Sier, H(n())) 2 Tier, H(r(2))

Tier, C'((1)) 2 Tier, C*(7(2)) |
for all (1,7) € O % ©. By Lemma 3.2 there exist two n-vectors = and y such that D iel, Ti =
M/2, Zﬂieln = M/2, and | | | |

Hi(r())) + 2ny > H(G) + x5

C'p(8) + 9oy = C(1) +w

for all 4, 7,1 € I,. It follows that

(i, 7(0), p(1) + Txe) + Yoty = (6 7(0), p(2)) + Zx(e) + Yoti)

| Hi(r (1)) + C*(p(3)) + Tnsy + Yo
Hi(j) +z; + C(1) + ui
a(i,7,0) +z; +y

v

v

Oé('i,j, l) + Z; + v

12



for all 4,7,1 € I,,. Thus (7, p, (z,y)) is a perfectly fair allocation.
Now suppose that (7, p, (z,y)) is a perfectly fair allocation. Then it holds that

a(i, m(2), p(2)) + Trpy + Ypi) = (i, h,C) + Th + Ye

foralli € Iy, h € O, c € Oy Tt is feadﬂy seen that (m,p) is an opfimal assignment
- with respect to (a(i,h,c)). Let A; = a(i,w(i),p(i)‘) + ZTr(i) + Ypu) for each i € I, Let
di(h,c) = A; — a(i,h,c) — zp — y. for every h € Oy, ¢ € O,. Clearly, di(h,c) > 0.
" Furthermore, d;(7 (i), p(i)) = 0 for all i € I,,. Let H'(h) = A; — z, and C*(c) = —y.. Now
define a(3, h, ¢) = ali, h, c)—{—d%(h,c). Clearly &(3, h, ¢) = H'(h)+C*(c) and a(i, 7 (3), p(s)) =
(i, (i), p(3)) for all i € I,. Thus (&(4, h, ¢)) satisfies Condition 3.4. Furthermore, for any
(7,7) € © x ©, we have |

i

Ziéfn &(27 77'(7;)3 P(i,)) Ziefn Q(i, 77(7:), p(l))
Sier, (Ai = Tn(i) = Yoti) |
Tier, (@i, 7(2), 7(2)) + Tr) + %26) — Tnli) — Yo(0)

Zie]n &(17 T(i)7 ’Y(Z)) - Zie[n Lr(s)

AV

= Yier, o) + Tiel, Tr(o) + Liet, Y1)
This means that (a(z, h, c)) is an optimality pfeserved matrix. This completes the proof.

O

One can easily verify that the matrix («(s, h, ¢)) in Example 1 is an optimality preserved
matrix and thus there exists a perfectly fair allocation, whereas the matrix (a(i, b, c)) in
Exampl.e 2 is not an optimality preéerved matrix and therefore there is no perfectly fair
allocation in the example.

To make the reader more acquainted with optimality preserved matrices, we givé one
- more example. ‘

Example 3. Consider the case in Which there are two agents 1, 2 and there are two houses
h1, h2, and two cars cl, ¢2, and total money (say, dollar) M. The values of the agents for

the different.pairs of house and car are givén in Table 3.

13



Table 3: The values of objects for both agents

1 a(l,h,c) | cl|c2
hl 4
h2 1410

a(2,h,c) [ cl | c2
hl 4.5
h2 d

jot

jov | w

The matrix (a(3, h, c)) is an optimality preserved matrix. This can be seen from the optimal
assignment ((1, 2), (2,1)) which is underlined in the tables 3 and 4. The transformation

operations are indicated in Table 4.

Table 4: The changed values of objects for both agents

a(l,h,c) | cl | 2 | a2,k cl c2
hl 4 5 h1 3+1.5|45
h2 4 10+5 h2 9 )

4 An investigation on optimality preserved matrices

In this section we will derive two fundamental properties of optimality preserved matrices |
and introduce several easily verifiable conditions for a matrix to be an optimality preserved
matrix. . | |

In Definition 3.8, an 6ptimality preserved matrix is directly associated with a particular
optimal assignment of the trimatrix. This raises the following question. When a trimatrix
has many optimél assignments, do we need to check all optimal assignments in order to
verify if the trimatrix is an optimality preserved matrix ? The following theorem tells us
that whether a trimatrix is an optimality preserved matrix is independent of any particular
optimal assignment. In other words, it isv sufficient to check (an arbitrarily chosen) one
‘optimal assignment in verifying the preserved optimality. Thus, preserved optimality is a

fundamental intrinsic property of trimatrices.

Theorem 4.1 Whether a trimat%iz 18 an optimality preserved matriz does not depend

on the choice of a particular optimal assignment of the trimatriz.
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Proof: Suppose that the n X n X n trimatrix V' = (a(t, h, ¢)) is an optimality preserved
matrix associated with the optimal assignment (, p) € © x ©. Now let (T, v) €0 x0Obe
another optimal assignment different from (7, p). It is sufficient to show that the trimatrix
V is also optimality preserved matrix associated with (7,7). Since both (, p) and (7,7)
. are optimal assignments of th.e matrix V', we have
S ali, 7@, p(0)) = X ali, (@) 1(0) = 3 o, w(0), £(0) (46)
i€, i€ln 1€ln
for every (n',0') € © x ©. It follows from Definition 3.8 that there exists a new n x
n x-n trimatrix V = (&(4, h, c)) such that a (i, (i), p(i)) = (i, 7(3), p(3)) for all ¢ € In,
a(i, h,c) > a(i, h,c) for all ¢, h, ¢, and (7, p) is also an optimal assignment of the trimatrix

V. Thus, we have

S aliy (@), p(0) > 3 a6, 7(0),7(0)) 2 3 ali, 7(0),7())-

i€ln . i€ln ieln
Combining with inequality (4.6), we have

> ali, 7(6),7() 2 3 &G, 7(0), (1)

i€ln i€ln
for (7', p/) € © x ©. Therefore, (7,7) is also an optimal aésignment of the trimatrix V.
Moréover, a(i,7(i),7()) = ali, (i), y(¢)) for all i € I,. Now, itt is readily seen that V' is

an optimality preserved matrix associated with (7,7). ' o .

Let (,p) be an optimal assingment of an n x 7 x n trimatrix V' = (a(i, k, ¢)). The
value max V = Y ;¢ a(i,7(i), p(7)) will be called the social value of V. The next theorem
. gives another fundamental property of an optimality préserved, matrix. Namely, it says
that preserved optimality of a trimatrix V = (a(4, h,c)) is totally symmetric with respect

to 4, h, and c. ‘

Theorem 4.2  Annxnxn trimatriz V = (a(i, h,c)) is an optimality preserved matriz
if and only if there exist three n— vectors u,v and w, such that a(i, h,c) < u;+vp +w, for

alli,h and c € I,, and 3 cr, u; + Yohel, Un + Xocer, We = max V.
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Proof: Sufficiency: Let &(4,h, c) = u; + vy + w, for all 4, h and-c and let V = (&(¢, h, ).
Then, we have &(i,h,c) > a(i, h,c) for all 4,h and c. Next, let (,p) be an optimal
assingment of V' = (a(i, h, ¢)). Thus,

S a(i,m(6), p(1)) =maxV =Y w+ > vn+ Yy we= Y, &i,m(4),p(1)).

i€l, 1€l heln celn 1€ln

It follows that &(i,7(i), p(i)) = a(i, 7(i), p(z)) for all ¢ € I,. Moreover, note that for any
assingment (7', p’) of V = (&(i, k,c)), we have that

S a0 = S ut Yt Y we= X a0, 7(), p(0).

i€ln i€l . hEl, . c€ln i€l,

This says that (7, p) is also an optimal assingment of the trimatrix 7 = (@(i, h,c)). There-

fore, by definition, we see that V' = (a(i, h,c)) is an dptimality preserved matrix.
Necessity: By Theorem 3.9_7 we see that for any social money M, the model £ =

((a(i, hyc)),n, M) has a perfectly fair allocation (, p, (z,y)). That is, a(i,m(2), p(7)) +

Tr(i) + Ypz) = (i, b, c) +xh+y for all 4, b and c. Now let u; = a(t, m(3), p(8)) + Zri) + Ypu) -

for all 2, 'and'v = —z, w = —y. Then we have that a(i, h,¢) < u; — Tp — Y = Us + Up + W

for all 7, A and c. Moreover, > e, Us + >ohel, Un + 2cel, We = ZieIn(ui — Tn(i) — Yoli)) =

Sier, a(i, (@), p(¢)) = max V. Thus we proved the necessity. ' O

We femark that although in a model & = ((a(4,h,c)),n, M) the economic role or
meaning of ¢ is totally diﬁerent those from h and c, whether an n x n X n trimatrix
V = (a(i, h,c)) is an optimality preserved matrix is symmetric with respect to ¢ and h, c.
~ In the following, we will identify several easily verifiable conditions for a matrix to be

an optimality preserved matrix.

Theorem 4.3  AnnxnXn trimatrizV = (a(i, h,c)) is an optimality presefv‘ed maim’z,
if one of the following conditions holds: |
Al: For every i € I, we have
a(i, hl,cl) + afi, h2, c2) = a(i, k1, 2) + afi, k2, cl),
| VhL A2 €05,cl,2 € Oy,
A2: For every h € O1, we have |
“ali, hy cl) + a4, b, c2) = ali, b, c2) + a(j, b, c1),
Vi, j € In,cl,c2 € Os.
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A3: For every ¢ € O, we have
ali, b1, e) + (G B2, ¢) = a(, b, ©) + ali, h2, ),
" VhL,h2 € Oy,i,j € L.
Proof: If Condition Al is satisfied, the result follows immediately from the definifion of
an optimality preserved matrix. ‘
Next, by Theorem 4.2 we see that Whether an n X n X n trimatrix V = (a(, h, ¢))
is an optimality preserved matrix is symmetric with respect to ¢ and h,c. Therefore, if

Condition A2 or Condition A3 is satisfied, then V is an optimality preserved matrix. O

| Conditiion Al indicates that the reservation value function of each agenf over pairs of
house and car are separable and additive. We remark thaﬂalthough Conditions Al, A2,
and A3 are symmetric and similar, they are in fact independent of one another as indicated
~ by the following example. v
Example 4. Consider the case in which there are two agents 1, 2 and there are two houses
hl, h2, and two cars cl, 2, and total money (say, dollar) M. The values of the agents for
the different pairs of house and car are given in Table 5. For this example, Condition A2

is satisfied, but Condi'tbion Al is not satisfied nor is Condition A3.

Table 5: The values of objeéts for both agents -

a(l,h,c) | cl | 2| a(2,h,c)|cl|c2
hl 214 h1 13
h2 718 h2 516

- Therefore, Conditions A2 and A3 provide two different classes of optimality preserved
matrices in which the reservation value-function of each agent over pairs of house and car

are not necessarily separable and additive.

Theorem 4.4  Annxnxn trimatriz V = (a(i, h, c)) is an optimality preserved matriz,
if one of the fbllowing conditions holds: |

B1: There exists an element 7 € © such that for each i € Iﬁ, we have
1 1
a(i,h,c) < 504(1', h,m(h)) + §a(i, 7 ¢), )
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for all h € Oy, c € O,

B2: There exists an element m € © such that for each h € Oy, we have
1 1 -
a(i,h,c) < §a(c, h,7m(c)) + Ea(ﬁ'l(i), h, %)

foralli e I, c € Os.
B3: There exists an element 7 € © such that for each ¢ € O,, we have
NS P R
a(i, h,c) < ia(z,w(z),c) + 5@(71’ (h), h,c)

forall¢ e I,, h € O1.

Proof: Suppose that Condition B1 is satisfied. Without loss of generality, we may assume
that (i) = ¢ for all ¢ € I,,. Then Condition Bl can be simplified as follows. For every
i I, it holds ‘

a(i, h,c) < [a(i, h, h) + (i, c c)]/2
for all b € 01, c € O,. Now we define a new n x n X n trimatrix V = (@(i, h,c)), where
a(i, b, c) = [a(i, h, h) + a(isc, c)]/2

for every i € I,,, h € Oy, ¢ € O,. By definition, we have a(i,h,h) = a(i, h, h) for all
i,h € I, and a(i, h, c) > (i, h,c) for all 4, h,c € I,. Now let (m, p) € © X © be an optimal

assignment of the trimatrix V. Then we have

Sier, a1, (1), 0(1) = Lier,la(i, (i), 7(9)) + (i, p(4), p(1))]/2.
= 3 Sier, o6, 7m(0), 7(2)) + § Tier, (i, p(3), p(2)).

It follows that both (m,7) and (p, p) are also optimal assignments of the trimatrix V.
Since a(i,7(3), 7(¢)) = a4, m(¢), (7)) for all 4 € I,, it is clear that (7, 7) is also an optimal
assignment of the trimatrix V. Furthermore, for every ¢ € I,,, we have

a(i, b, cl) + ali, h2,c2) = &G, b, c2) + as, h2,cl),

Vh1,h2 € Oy,cl,c2 € Os.
By definition, the trimatrix V' is an optimality Ipreserved matrix.
By using Conditions Al and A2 in Theorem 4.3, we can demonstrate Conditions B2

. and B3 following the proof for Condition B1. : ]
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Condition Bl indicates that the reservation value function of each agent over pairs of
houses and cars exhibits some kind of local convexity. Again, we remark that although
Conditions B1, B2, and B3 are symmetric and similar, they are in fact independent of one
another. One can'easﬂy verify this fact by giving an example. Furthermore, it is also easy
to check that Conditions Al, A2, A3, Bl, B2, and B3 are independent of one another. .

We can further extend the above theorem by allowing any convex parameter 6.

Theorem 4.5  Annxnxn trimatriz V = (a(i, h, c)) is an optimality preserved matriz,
if one of the following conditions holds: ‘
B1’: There exists an element 7 € © and a real number 0 < § < 1 such that for each ¢ € I,,

we have
a(i, h,c) < 8ali,h,m(R)) + (1 — 0)a(i, 7 (c), c).

forall h € Oy, c€ Os. /
B2: There exists an element 7 € © and a real number 0 < 8 < 1 such that for each

h € Oy, we have
a(i, h,c) < 0alc, h,m(c)) + (1 — 0)a (w1 (3), h, 1)

foralli € I, c € Oy |
B3’: There exists an élement 7 € © and a real number 0 < § < 1 such that for each ¢ € O,

we have
ali, h,c) < 0o, 7(i),c) + (1 — O)a(r (), h,c)

forall i € fn, h e O.

The above results demonstrate that the class of optimality preserved matrices is fairly

large and rich.

5 An extension

In this section we consider an extension of the previous model. Suppose there are m

different types of objects. There are n objects of each type, denoted by Oj, j € I,. For
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example, one might think of 01 as the collection of houses, of (’)2 as cars, of Osz as trucks,
and so on. The utility function of each égent is defined as u; : Q1 x Oy X e, OpxR—R
which is assumed to be a nondecreasing and continuous function in money. Then we can

extend the definition of perfectly fair allocation as follows.

Definition 5.1  An allocation («!,---, 7™, ?,- - , ™) is a perfectly fair allocation if it

holds that © € ©, j € Im, Sier, Yjer, ©) = M, and

(T (i), 7, Thagy o G) 2 wallha, ey )
v Viel,, h; € O;,5 € L.
.One can show that évery perfectly fair allocation is envy free, Pareto optimal, and income
fair. To obtain an exiétence resulf, once again we will focus our attention on the case where

every agent has quasi-linear utilities in money. In this case we can represent the model by

& = ((a(t, h1, ha, -+ -, b)), m, M) where the matrix (a(%, hq, - "y h.)) is an n™+-matrix, n
is the number of agents and M is the total amount of money. Each entry a(i, k1, -, hn)
represents the value of the combinatioh of objects A1, Ry, - - -, hum to agent i.

Conditions 3.4 and 3.5 can be appropriately modified as follows:

Condition 5.2 The n™-matriz (o(i,hy, -, hm)) has the following property: For
every i € I, and j,k € I, with 1 < j <k <m, it holds -

a(ivhh'“7hj7“'~7hk7”'7h7n.)+O‘<iyh1)'"7h;'7”'a ;mah’m)
=a<i7h’1a'”7hj7"'7 ;ca"’;h’m)+a(i7h17"'7h_,7'7"'7hk7"'7hm)7
V(hla"'7hm> e X o X O h; EO]‘, hj € Ok
Condition 5.3 The n™ -matriz (a(i, h1, -, hm)) has the following property: For
every i € I, and j € Ip,, there exists an n-vector Hy(j) = (Hi(j,1),- -+, Hi(§,n)) such that
it holds | |
ali b, b)) = 30 Hi(Gihy), ¥ (ha,eor ) € O1 X - X O,
j€lm .

Lemma 5.4 = Conditions 5.2 and 5.3 are equivalent.

Proof: That Condition 5.3 implies Condition 5.2 is obvious. Now we prove that Condi-

tion 5.2 implies Condition 5.3 by induction. We have proved the case of m = 2 in Section
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3. Suppose that the case of m — 1 is true. Now let us prove the case of m. It follows 4.
from Condition 5.2 and the assumption that foreveryt € I,, 7 € In, \ {m}, and each fixed
hm € O, there exists an n-vector H!(j, hm) = (H{(4,1, hm), ", Hg(j, n, hy)) such that

m~—1 ' )
a(iahla o '7hm~17hm) = Z Hz/(jv hj7h’m)) v(hh' ot 7h'm—1) € Ol XX Om—l-
J=1 .

Note that: for each fixed j € I, (H{(J, hj, hm)) can be looked as a trimatrix for all 7 € I,
h; € O;, and hy, € Op. Recall that from Condition 5.2 we have: for every j(# m) € I,

O‘(Zahla7h]:7hm)+a(zahlvah;77h;n)

:a(iyhla"'ahj'y'”:h/m)+a(ivh17"'7h_/j_>"'7hm)-

This implies that

H;(]’ h’jv hm) + Hz/(.77 h;7h;n) = H:(j, hyj, hlm) T Hz,(]a ;'7hm)> _

for all hy, b € Oy, and hp, hy, € O Then by Lemma 3.6, we see that for each ](;é m) €
I,,, there exist two n-vectors H;(7) and H}(j) such that H{(j, hj, hm) = Hi(j, h;) + H{(j, hm)

for all hj € O; and hn, € Oy,. Define H;(m) = ¥723" H{(j). Then we obtain that

a(%h’lbf >hm) = Z H’L(.77 h])? V(h177h’m) s Ol X X Om
J€Im

This says that Condition 5.3 is true for the case of m. O

Definition 5.5 Cz’ven ai W™ Lmatric A = (a(i, by, b)) and an ass‘ignmeni

(gl 7™) € © x - --v>< O, the following process is called an M-transformation of A
from (7}, .-, @™) if each element (i, ha,---, hm) except for ali,m (i), -, (i), 1 € I
is added with a nonnegative number 3(i,hy,- -+, hm) so that the new n™ '-matric T =

(a(i, ha, -+ hum) + 034, hi,- - ,hm)) satisfies Condition 5.2.
The n™*l-matrix T above will be called an M-matrix resulted from (7%, ---,7™).

Definition 5.6  An n™-matriz (a(i,hy, - -, hm)) is an optimality preserved matriz if
there exist an optimal assignment (7t,---,7™) € © X --- X © and an M-transformation
from (mt, .- 7™) such that (mt, .-+, @™) s still an optimal assignment in the M-matriz

resulted from (7%, ---,7™).
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Clearly, an n™"l-matrix satisfying Condition 5.2 is an optimality preserved matrix.
Having these preparations, we can now establish the following existence theorém on

this more general model. Here we render a complete proof, which we believe will provide

some additional insight into ¢he problem, although some part of the proof is similar to that

given in Theorem 3.9.

Theorem 5.7 Given a model € = ((a(i,h1, -, hm)),n, M), there exists a perfectly
fair allocation if and only if the valuation n™+*-matriz (o(i, h1,- - -, him)) is an optimality

preserved matriz.

Proof: Since (a(i, hy,- - -, hm)) is an optimality preserved matrix, then there exist an opti-

" mal assignment (7}, - - -, 7™) € ©x- - -x© and an M-transformation from (7%, - - -, 7™) such
that (7!, -- -, 7™) is still an optimal assignment in the M-matrix resulted from (7l e m™).
Let T = (a(i, h1,- -+, hm)) be the n™*! M-matrix resulted from (%, ---,7™). So we have

&(i, b1, - hug) 2 @i By o)
a(i,mt (@), -, 7™()) = a(i,wl(i),‘-,- SO
for all i € In, (b1, hm) € O1 X - - X Oy, and |
S a7 (@), 7T’”‘V(i)) 2 > a6, (@), -, 7™ (E), (5.7)
i€ln i€ln ‘

for all (71,---,7™) € @ x--- x ©. Since T satisfies Condition 5.2, then for every i € I, and

- j € I, there exists an n-vector Hy(j) so that &(i, h1,- -, hm) = Tjer,, H,(j, h;) for every

(h1,-+, hm) € O1 X -+ X Op,. Then we can rewrite equation (5.7) as
> X HGT@) 2 3 Y (T (0), (5.8)
1€l jE€Im 1€In jE€EIm ’ ¢

for all (71,---,7™) € © x --- x ©. It follows from equation (5.8) that
i€ln i€ln ‘
for every j € I,, and all 77 € ©. By Lemma 3.2 for each j € I,, there exists an n-vector z’

such that 3y 1, a:{;j = M/m, and .

Hi(j, @ (0)) + o5 > Hi(, hy) + 2,
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for alli € I,, j € I, and h; € O;. It follows that ’

a(ia ﬂ-l(i)a S 77rm(7’>) i ZjEIm xzrj(z) = &(27 ’/Tl(i')v e 77Tm(7“)) + Zje]m CL“Z‘_J(z)
ZjEIm H(]v ]()) s ZjGIm frj(i)
Z_?EIm( (.7? 71"7 (Z)) + xﬂ'](z))

> Yjer (Hi(j, hy) + 7))
= &6, ke, hm) + Tier,, T,
= Q(i, h’l? T h’m) +-Zj51m mij

foralli € I, and (hy, -, hpm) € Oy X -+ X Op,. Thus (72, -+, 7™, 2!, -+, 2™) is a perfectly
fair allocation. '

Now suppose that (7!,---, 7™, z*, - i ™) is a perfectly fair. allocation. Then it holds
that

alt, ”rl(/) )+ zﬂ(t) > ai, by, -y hm) + ini
. j€lm j€In

for all i € I, and (hy, -, hm) € Op X -+ X Op. It is readily seen that (ml, oo m™) is
an optimal assignment with respect to (a(i, hy, - -+, hm)). Let A; = a(s, 71 (i), -+, 7™ (%)) +
S et Thigy for each i € L. Let di(hy, -+, hm) = Ai — a(i, b, -+, hm) — Tje,, o, for
every (h, -, hm) € O1 X -+ X Op,. Clearly, di(hy,- -+, k) > 0. Furthermore,

di (7 (4), - - - ,7{”(2’)) =20

for all i € I,. Lét H;(j) = —27 for all j € I, \ {m} and H;(m) = (4 — z",---, A — z). -
Now define a(i, ki, s hm) = (i, Ry, oy b)) + di(he, -+ B Clearly a(i, hy,- -+, hy) =
Yjeln Hi(d, by) and a(i,m'(i),---,7™()) = afs, 71(i), -+, 7™(3)) for all i € I,. Thus
(@(i, ha, -+, hm)) satisfles Condition_5.2. Furthermore, for any (7%,---,7™) € © x -+ x ©,
we have | v
ier, 06w () -+, 7™ (3))
D » R R ORI 0)
= Yier (Ai — Tier,, ﬂ](z)) _
> Tier (@i, THE), -+, 7)) + Tern fcij(l) defm i)
= Yier, @, 7 (1), - -, T™(9)) + Tier, Ljeln T 7-3(1) — et Tieln T 0
= Sier, 86, 71(8), -+, (1)) | |

23



This means that (a(i, k1, - -, hp)) is an optimality preserved matrix. This completes the

proof. _ : , - " O
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