INSTITUTE OF MATHEMATICAL ECONOMICS

WORKING PAPERS

No. 298

ARTUS: The Adaptable Round Table
with a User-speciﬁc_ Surface

by

Matthias G. Raith and Helge Wilker

May 1998

University of Bielefeld

33501 Bielefeld, Germany

ARTUS: the Adaptable Round Table

with a User-specific Surface

May 1998
Matthias G. Raith Helge Wilker

Institute of Mathematical Economics
University of Bielefeld
P.O. Box 100131

D-33501 Bielefeld
Germany

Abstract

ARTUS is a process control system that provides an infrastructure for group decision
making over the Internet in the form of controllable “Virtual Tables.” The system
includes options for defining the method and structure of interaction, and records the
complete process for documentation or evaluation. ARTUS creates an environment
which can serve as a variable platform for actual group interactions, as a laboratory
for experiments, or as a classroom for educational purposes. The common basis
for these different applications is conceived to facilitate the development, testing,-
and deployment of group support systems. In this paper we describe design and
implementation of the system, and explain the technologies used.

Keywords: Process Control System, Group Support Systems, Virtual Tables

The development of ARTUS is part of a research project on “Multilateral Policy Decisions in
the FEuropean Union.” Financial support by the ‘Ministerium fiir Wissenschaft und Forschung,
Nordrhein-Westfalen’ is gratefully acknowledged. We would like to thank Uli Middelberg and
Peter Naeve for critical comrnents and helpful suggestiops.

E-Mail: MRaith@wiwi.uni-bielefeld.de — HWilker@rz.uni-osnabrueck.de

1. Introduction

A characteristic feature of research in negotiation analysis is its prescriptive, problem-
Solving approach in dealing with conflicts. This has lead to a variety of concepts
and procedures aimed at increasing the efficiency or fairness of negotiated out-
comes. Combined with modern information technology, the analytical foundation
has spurred the development of negetiation or, more generally, group support sys-
temns, allowing interacting parties to deal with otherwise too complex problems.

Despite the vast number of innovative software products, the reactions to these
developments are mixed. On the one hand, SHELL (1995), for example, offers a
clearly optimistic vision of future developments, while, on the other hand, WHEELER
(1995) points mainly to the drawbacks of computer assisted negotiation, and thus
finds the progress in software development questionable. Although a few years
can make a big difference in this field, the spectrum of views has not narrowed
significantly since then. However, the deficits of existing concepts now seem to
be clearer, and the research agenda has become more detailed (cf. STEVENS AND
FiNLAy (1996)).

The development of a group decision often involves several phases of negotiation,
many of which precede the actual decision. In political negotiations, for example,
this is manifested in institutionalized procedures, which are known to influence the
final outcome. The agenda, the type of negotiation (bi- or multilateral), or the
form of communication are all important strategic factors. CHRISTENSEN AND
FIERMESTAD (1997) argue that strategic decision making affects the usefulness of
group support systems, but that research has not focused on this aspect sufficiently.
What is missing, in their view, is a greater knowledge of group processes. From
an empirical perspective, SPECTOR (1997) also finds that quantitative analytical
support to negotiations is not all too popular with practical negotiators, indicating
that we have not yet fully understood which type of support can be made operational
in a negotiation process.

In order fo study support systems in a,cttial negotiations, one must have an infras-

tructure where procedures can easily be controlled, modified, and institutionalized,

1

and which is rich enough to allow a variety of analytical approaches. This dynamic
interaction of group process and support is emphasized by SHAKUN (1995,1996) in
his characterization of ‘evolutionary systems design,” which he sees as the appro-
priate framework for designing negotiation support systems (cf. BUI AND SHAKUN
(1996)).

In this paper we introduce a new process control system which we have labelled
ARTUS: the Adaptable Round Table with a User;speciﬁc Surface. The motivation
behind ARTUS is to create an environment which can serve as a variable platform
for actual group interactions, as a laboratory for experiments, or as a classroom for
educational purposes. The common basis for these different applications is conceived
to facilitate the development, testing, and implementation of group decision support

Vsystems. In combination with a data base, this allows both the documentation of
the interaction and an analysis during or after the process. Due to the diversity of

its tasks, the system is designed to ensure a maximum degree of flexibility.

The infrastructure of ARTUS is based solely on open Internet technologies, al-
lowing remote use from possibly all over the world and a large number of computer
platforms. Some of these technologies can be labeled as ‘leading edge’ at this time,
meaning that they are not yet in general use, but in time it can be expected that

they will be as widespread as other Internet technologies today.

In order to cope with the heterogeneity of its potential users, the platform offers
easy accessibility. Negotiators can participate directly from their own computer via
an Internet browser. This not only reduces communication costs, .but also makes it
easier to include professional negotiators. Trainings and experiments can be con-
ducted with participants in different locations. A“ctivities within organizations, such
as in-house negotiations, training programs, or experiments do not require the prior
installation of a complete software system in their local network.

An important feature is that any kind of service offered by the system is ‘virtual,’
implying that the participants only have access to it as long as the table is activated.
There are no programs to be downloaded and installed; everything happens in the

browser. This combination of flexibility and security is made possible through the

2

system’s three-stage hierarchy of users.

In section 2, we characterize the three different types of ARTUS users and how
'they are related. Section 3 then describes design and implementation of the system,
and the technologies used. In section 4, we discuss limitations of the system and
problems that may be encountered during deployment. In section 5 we conclude
with an invitation to visit the Website of ARTUS. All technical terms are collected

in a Glossary that we have included at the end of the paper.

2. The Users of ARTUS

Users fall intc; fhree categories. The ARTUS system is managed and administered
by one or more persons known as Quwner. They play a role similar to the system
administrator in the UNIX system, who has absolute control over the system. On
the next level are Controllers, who are responsible for a single negotiation table.
The Participants of a negotiation are just that, participants.

Using traditional media like the telephone or email, a would-be Controller ap-
proaches an Owner about an ‘appointment’ for using a virtual table. The Owner
uses a few web forms to enter the Controller’s wishes into the database: The type
of table and usér interface, the expeéted number of Participants, the date and time.
A password is entered and given to the Controller. This uncomplicated registration
process allows the Controller to enter the restricted area via the ARTUS main page.
Using the password to access another set of web forms, the Controller then preparés
her own table. She enters the names of the Participants a,nd- some other data. As
before, passwords must be provided, this time for each Participant, and there is the -
option of automatically sending the data out via email, if the addresses are known.

At the specified time, the Controller visits a web page on the ARTUS server
conta,in‘ing a Java applet. This applet, called the Controller Client, allows her to
“switch on” her virtual table, which will have the requested functions. From this
moment, Participants can log in to the table using another Java applet, especially
made for the type of table in question. There may be more than one type of User

Client for a single virtual table, depending on the structure of the virtual table (e. g.,

3

one may wish to specify a table with a designated “chairman” who has more rights

than the other Participants).

Participants enter through the ARTUS main page and access their client applet
on a web page created specially for their table. This activates the user-specific

surface chosen by the Controller.?

When everybody is (virtually) present, the Participants interact, the system
faithfully keeps minutes about everything that crosses the table, and the Controller
can monitor what happens using her Controller applet. For real-life negotiations,
in which Participants may wish to communicate privately, Controller surveillance
can ‘be shut off. Another possibility is increased Controller participation, e. g. for
educational purposes. For this, out-of-band communication is provided, along with a
“Freeze” mechanism allowing the Controller to suspend the session. If the Controlter
actively wants to take part in the negotiation, she must use a separate user applet,
e. g. 1n another browser window on her computer screen. The Controller is primarily
a f‘table technician,” and if she wishes to act as a Participant or Mediator (in

principle just another type of Participant), she must do so explicitly.

If somebody inadvertently crashes their computer, exits their browser program
or stumbles upon one of the many possible ways modern computers can be made to
fail, the system provides a way for this unfortunate one to reestablish the connection

to the virtual table and the status of the negotiation.

After the session concludes, the Controller, now using web forms once more,
can review the minutes of the negotiation and either discard them (perhaps for
reasons of confidentiality) or oﬁ'ér them to the Owners for inclusion into the long-
term negotiation archive. When she is finished with this, all traces of her table,
along with the user data, are purged from the system. It should be pointed out here

that even if the minutes are included into the archive, no private user data is kept.

!During this step the Controller may ask her Participants to fill out a questionnaire, which can
also be provided by ARTUS. For example, experimenters may wish to know the socio—economic
background of their subjects. Information collected in this way takes the same path as negotiation

minutes for a table, so that also in this case, privacy is guaranteed.

4

The records are simply identified by the ID everybody is given by the system, and
after deleting the table-specific data from the system, there is no way of matching

names to IDs.

3. Technical Design

The ARTUS system consists of the following components:
* A relational database management system (RDBMS, or DB for short),
o an HTTP (or web) server,
* a Java server program, providing core negotiation facilities, and

¢ multiple Java client applets, making up the user interface for Participants.

All components are integrated and interdependent. Their relationship is illustrated
in Figure 1,

The user interface is made up of several web forms posing as a frontend for
the database together with a set of Java applets enabling the user to participate
in a negotiation. The advantage of this combination is that both parts of the user
interface are easily accessible from a Java-capable web browser, thus removing many
potential obstacles in the form of client-side platform dependencies, client software
distribution and remote access. ‘

The web server, using information from the database, dynamically creates ap-
propriate pages for each visitor - Owners, Controllers, and Participants get pages for
their special Java applets and access to the forms mentioned above, casual visitors
can view general information and try out a demo table for a limited time.

The core functions of the system are provided by the Java server program, which
makes use of information from the database and stores negotiation data in the
database. The use of a fully-grown RDBMS with its built-in safety and backup
features should ensure that no valuable data about negotiations is lost, as well as
giving some protection against errors on the client side by enabling clients to retrieve
status after crashes, usage mistakes etc. It also makes it easy to administrate users

and system use. In addition, the database design helps provide security and privacy,

5

~ - \ —— ~

0 Web Browser Web Browser Web Browser
C Contraller Particpant :
o ™
o
o HTML form Java Java
o Info page Contraller applet Client applet
= d
2
[3
-g' y,
1] —-—
&l |5
a 3
= g
£ 3
T wm
F] ’I >
. —
[}
\)
& | - generates forms A Virtual @
- : i Table
g prov;edes appropriate Table (ED
(¥3) applets Administration T =
8 - 5
- - - <
£ g 17 - - o
m - e
— rd
T -
)
w0
2]
=
=
<
©
[&]
L=)

Virtual Virtual
Table Table

General

Info
—# database access from Web Server

= = == database access from Java

Database - HTTP protocol

= m mis Java BMI ecalls

Figure 1: The architecture of ARTUS

since data about each virtual negotiation table is owned by a separate database user
(the Controller, actually), making it possible for the Controller to delete it for reasons
of privacy or otherwise utilize it further. This split also circumvents problems with
concurrent database access when multiple negotiation tables are active at the same
time, as every table works with its own set of database tables.

The choice of a relational database management system (RDBMS) may seem
illogical at first. Since Java is an object-oriented language, an object-oriented
database managemént systern (ODBMS) should naturally be first choice. In fact,

this may be a point for future extension of the system. At this stage, however, an

6

RDBMS seems the “safer” choice, as experience with this is available, and most

ODBMS are, relative to relational systems, still in their infant age.

Java offers a simple way to create and use remote software objects called Remote
Method Invocation, or RMI. This is the reason why the server program is written in
Java and not just the client applets: communication between the two parts of the
system is handled completely by RMI, removing another especially murky source of
errors.? Communication between client applets and the server program is restricted
to the exchange of so-called ArtusEvents. These are software objects used to send
information in both directiéns. They carry information about their own type, the
sender, the recipients and provide space for arbitrary data. “Type” indicates that
there are many kinds of ArtusEvents: some for indicating status, some for send-
ing messages between Participants, some for login/logout etc. This architecture is
designed to be extensible, allowing the addition of new ArtusEvent types for new
applications. Clients send ArtusEvents away using one Java RMI method call, and
receive them using another. These two method calls are the whole communications
setup, ultimately enabling clients to negotiate from remote locations ﬁsing only stan-
dard web browsers. Other provisions for extensibility are given by the feature that
the softwa;e is designed for easy extension of the system’s functionality. It provides
two Java classes, one for the client applet and another one for the server side, able
to handle the basic work of login/logout, status monitoring and error recovery. The
only thing lacking in these so-called abstract base classes is the message handling
itself, 1. e. the typés of message content and how messages are generated or acted
upon.

Using this software substrate, it 1s now possible to specify an actual negotiation
table. Basically, the designer of the user specific surface (not to be confused with a
Controller who later chooses a designed surface) defines a “method of negotiation,”

say, the simple sending of text messages from Participant to Participant. He then

?This is not to mean that using RMI (or Java) guarantees bug-free programs! It is only much
simpler to use than, for instance, Remote Procedure Calls (RPCs) or the implementation of a

proprietary low level protocol using TCP.

implements a subclass of the Java Table class defined in the ARTUS system, which
offers the basic services mentioned above for the server side. He extends this class by
a mechanism that takes ArtﬁsEVénts of the type “message”, looks at the recipient
to check whether the sender is allowed to talk to him and sends it along to the
recipient’s client. On the client side, he designs a user-specific surface, i.e. a user
interface — in this case probably some sort of text window and a list of Participants
to select from. This user interface is built by extending the other abstract base class,

Client, which is already a subclass of the Java Applet class.?

Leaving the case of simply passing along text messages, it is possible to im-
plement Table subclasses that contain more elaborate mechanisms of message pro-
cessing, such as automatic mediators, voting procedures, auctioning systems, and
algorithms for implementing solutions. At this point, ARTUS can become a labo-
ratory for experiments, a bargaining table with or without analytical support (cf.
RANGASWAMY AND SHELL (1997)), or an arsenal of group support techniques. Ar-
tusEvents for messages must then contain other data than just simple text, and it
may be necessary to create new types of ArtusEvents. The complexity of Clients
increases accordingly. The table and its surface can thus be adapted to the specific

needs of the users.

Despite the simple way in which the system can be extended, the programming
must be done “in-house”, as the definition of new Java subclasses or ArtusEvent
types requires recompilation. This may sound inflexible, and there may indeed be a
way to further extend the openness of the system to a point where Controllers can
bring their own table and client classes and simply “plug” them into the system.
However, the all-important question of system and user security must be answered

before.

3If the capability of the Client class is provided in a way that does not require using an applet,
then applications can be built independent of a browser, thus enhancing the flexibility of the

system.

4. Limitations for ARTUS

One of the main obstacles for easy deployment of the system described above is the
sluggish implementation of the Java standard by browser vendors, such as Netscape.
Netscape’s Communicator browser started its career with a real Java logo indicating
full compatibility with the Java standard as defined by SunSoft. However, in one of
the subsequent releases of the browser, this logo was quietly removed. It had become
clear that, indeed, the Java standard had changed and what the browser supported
was not complete, and therefore not compatible, anymore. This is important for the
ARTUS system, because one of the elements not supported by widely used versions
of the Communicator (before version 4.05) is Remote Method Invocation (RMI),
the base upon which the whole software design of ARTUS rests.

Other, less important, but nonetheless annoying bugs appear in the Graphical
User Interface parts of the Netscape implementation. However, Netscape has made
the program source code for the Communicator software available for free, and at the
same time has announced that future releases of Communicator will provide a way
of integrating third-party Java Virtual Machines with the browser, thus enabling
users to use the best Java implementation for their platform.

More problematic is Microsoft’s Internet Explorer, the other “big browser.” It
does come With a Java Virtual Machine, but one that, like Netscape’s, does not
implement the full Java standard. Unlike Netscape, though, Microsoft is promoting
its own standard for distributed objects based on the Windows operating system and
expects developers to use this proprietary standard. Of course, this constrains Java
programs written by this standard to computers running Windows, thus negating
the alleged Java advantage of “write once, run anywhere.” So for our intent of
building what SunSoft calls “pure Java” programs, the Microsoft browser in its
current form cannot be used.

The Java standard continues to be a moving target, and at this time the only web
browser that can be relied upon to fully implemeni; “pure Java” is SunSoft’s own
HotJava browser. This browser is available for download ready-to-run in packages

for Windows 95/NT and SunSoft Solaris. The browser can be made to run under

9

other environments where a suitable Java runtime implementation is available, e. g
Linux (definitely} and other Unixes (almost certainly). |

It is to be expected that the problem with lacking RMI support will go away in
time as browser vendors update their Javc;i implementations. Hence, time seems to
be working for ARTUS. Other ways to circumvent this obstacle would be to create
standalone, compiled client applications for certain platforms when necessary. This,
however, would sacrifice the advantage of the simple, standard user interface in the
form of the browser.

Another possible source of problems could be the performance of the RMI layer
of Java. It remains to be seen whether the architecture described above survives in |
the wilderness of the Internet jungle, or if delays and data loss make communication
by this method impossible over long distances. At least in local networks, though,

this should be less of a problem.

5. Summary

The ARTUS system provides an infrastructure for group decision making over the
Internet in the form of “Virtual Tables.” The system includes options for defin-
ing the method and structure of interaction, e. g. through negotiations, voting, or
auctions, and keeps “minutes” of everyfhing that happens during a session for later
examination. An important feature is that every Virtual Table has its own Con-
troller.

Through its user-specific surface, ARTUS is adaptable to different environments.
This variability is necessary to satisfy the wide research framework for group support
systems.

ARTUS allows support tools to be integrated, thus creating possibilities for a
variety of group support systems. However, due to the fact that the virtual negoti-
ation tables run inside a browser window, individual support systems can be used
separately as well.

ARTUS can be contacted under the following address:

http://artus.wiwi.uni-bielefeld.de/

10

Visitors who are not registered Participants or Controllers are invited to test a
simple ‘Demo Table’ for a limited amount of time, in order to gain an impression of

the systems capabilities.

Glossary

applet A type of Java program made to be downloaded from a web server and
run inside a web browser. Special security considerations apply: An
applet normally cannot access files on the computer the web browser
is running on or create network connections to other computers.

ArtusEvent A class in the ARTUS system, responsible for communication between
the different components (User and Controller clients, and the Table
server program). There are many types of ArtusEvents, and new ones
may be defined to implement new system features. ArtusEvents are
stored in the system’s database for archival and safety purposes (in
case a user’s client crashes, it can retrieve all communication after
restart).

class A “blueprint” for a software entity, defining data structures and meth- -
ods to manipulate them. Classes can be extended by subclassing. A
subclass is class that has all the features of another class, called the
superclass, but may change some of them or add other features. A
subclass is said to inherit its superclass’s features.

client A program meant to be used by a human. It accesses some server to
retrieve information, perform computation etc., and display the results
in a convenient form. In ARTUS, clients come in the form of Java
applets. There are User and Controller clients for access to a Virtual
Table, as well as an Owner client for monitoring the whole system.

HTML Hypertext Markup Language: the lingua france of the World Wide
Web. A document structuring language. The author of a document
specifies categories such as “title,” “heading,” “text” etc., not caring
about how they are eventually displayed. A reader generally uses a web
browser to view an HTML document, which transforms the structure
information given by the author to visual forms, like large, bold type
for headings or italic type for emphasis.

HTTP Hypertext Transfer Protocol: a network protocol used mainly to trans-
fer HTML pages and associated data (images, sound, video) between

a web server and a web browser.

11

Java

Java Virtual
Machine

object

RDBMS

Virtual Table

web browser

web server

An object-oriented programming language designed by SunSoft. Once
written, Java programs run on many hardware platforms. Java has fea-
tures simplifying Internet applications: A well-defined security model,
easy inter-program communications over the Internet, and integration
with web browsers. . '

A piece of software that actually runs a Java progra,m-. In most cases,
Java programs are translated into bytecode, a transitional stage more
efficient than human-readable Java code and less hardware-dependent
than machine code for a specific computer. This bytecode is inter-
preted by the Virtual Machine. .

A software entity encapsulating data and methods for working on this.
An object is an instance of a class. There may be many objects of the
same class.

Relational Data Base Management System: The software that runs
a database. “Relational” means that everything is stored in two-
dimensional tables (called relations). An RDBMS provides efficient
storage and retrieval of data, as well as safety features like backup.

A part of the ARTUS system. A Virtual Table has special proper-
ties, e. g. defining a negotiation method, and it is the server to the
Participant and Controller clients.

A program enabling users to request HTML pages from remote web
servers. Many widely-used web browsers also contain a Java Virtual
Machine, enabling users to run Java applets.

A program that serves requests made by web browsers for HTML
documents. These documents may be static, containing text, images
or other non- or slowly-changing information, or dynamic, created on
the fly by the web server, e. g. by extracting data from a database.

Documents also can contain Java applets.

12

References

Bui, T.X., M.F. SHAKUN (1996): “Negotiation Processes, Evolutionary Systems
Design, and NEGOTIATOR,” Group Decision and Negotiation, 5, 339-353

CHRISTENSEN, E'W., J. FIERMESTAD (1997): “Challenging Group Support Sys-
tems Research: The Case for Strategic Decision Making,” Group Decision and
Negotiation, 6, 351-372

RANGASWAMY, A., G.R. SHELL (1997): “Using Computers to Realize Joint Gains
in Negotiations: Toward an “Electronic Bargaining Table”,” Management Sei-
ence, 43, 1147-1163

SHAKUN, M.F. (1995): “Restructuring a Negotiation with Evolutionary Systems
Design,” Negotiation Journal, 11, 145-150

SHAKUN, M.F. (1996): “Modeling and Supporting Task-Oriented Group Processes,”
Group Decision and Negotiation, 5, 305-317

SHELL, G.R. (1995): “Computer-Assisted Negotiation and Mediation: Where We
Are and Where We Are Going,” Negotiation Journel, 11, 117-121

SPECTOR, B.I. (1997): “Analytical Support to Negotiations: An Empirical Assess-
ment,” Group Decision and Negotiation, 6, 421-436

STEVENS, C.A., P.N. FINLAY (1996): “A Research Framework for Group Sup-
port Systems,” Group Decision and Negotiation, 5, 521-543

WHEELER, M. (1995): “Computers and Negotiation: Backing into the Future,”
Negotiation Journal, 11, 169-176

13

