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Abstract

We propose a new class of excess functions for coalitional games‘
with non-transferable utility (NTU games) and investigate the result-
ing class of NTU prenucleoli. We follow the basic ideas of [Kal75]
to formulate conditions under which certain functions are believed
to measure dissatisfactions of coalitions appropriately. However, we
formulate other conditions than {Kal75] which characterize the new
excess functions uniquely. The resulting NTU prenucleoli and the
well known TU prenucleolus share some important properties like
-single-valuedness and the characterization by the Kohlberg criterion
{[KohT1]). A special member of this class of NTU prenucleoli is in-
troduced which has some additional properties like covariance, consis-
tency (with respect to a new reduced game, which is an extension of
the Davis and Maschler reduced (TU) game) etc. Due to this proper-
ties we call this member the NTU prenucleolus. Additionally we attack

- the problem of computing this new solution concept. By demonstrat-
ing a closed connection between the NTU prenucleolus and the TU
prenuclenlus we show how the results concerning the computability of
the latter can be used for this.

*email: sklauke@wiwi.uni-bielefeld.de
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1 Introduction

The (pre-} nucleolus for cooperative games with transferable utility (TU
games) as introduced for the first time by [Sch69] is a well-known and ex-
tensively reasearched solution concept. Some other solution concepts for TU
games like the Core or the Shapley value have been successfully extended
to a superclass of the class of all TU games, to the class of all cooperative
games with non-transferable utility (NTU games). For the prenucleolus this
task is still unsolved. : _
One very basic ingredience in the definition of the (TU) prenucleolus is the
concept of excess. The excess of a coalition is designed to be a measure of
dissatisfaction of the coalition with a given imputation. The prenucleolus
minimizes the excesses of all coalitions lexicographically. Thus an intuitive
way to extend the prenucleolus to NTU games is to extend the excess to this
class of games. :

This idea was first considered by E. Kalai in [Kal75]. In that paper a class
of excess functions for NTU games was defined by means of some intuitive
properties (in the sense that the excess functions for TU games were easily
seen to satisfy these properties). The resulting NTU prenucleoli were proven
to be nonempty and to be included in the Core, provided the latter is non-
empty. However, single-valuedness, continuity, consistency, characterization
by balanced collections of coalitions (the Kohlberg criterion, [Koh71]) are
properties that these NTU prenucleoli do not satisfy in general.

In this paper we introduce a new class of excess functions (the S-excess
functions) and thereby a new class of (NTU) prenucleoli, called ﬁ—prenucleoli.
We are doing this by providing (and discussing) four properties that uniquely
characterize this new class of excess functions, i.e. we axiomatize this class of
excess functions. We proof some properties that every S-prenucleolus meets
like single-valuedness, validness of the Kohlberg criterion and coincidence
with the (TU) prenucleolus on the class of all TU games.

Furthermore, we examine a special member of the class of all 8-prenucleoli.
For this member we show additional properties like covariance, consistency
with respect to a new reduced game and inclusion in the core for a subeclass
of games. In view of this properties this special A-prenucleolus will be called
the (NTU) prenucleolus.

By demonstrating some close connections between the (NTU) prenucleolus
and the (TU) prenucleolus of specific TU games, we are able to apply results
from a previous paper ([Kl2a97]) and derive a set-valued dynamical system
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that converges to the (NTU) prenucleolus. This result yields a method for
computing it. However, the details of this approach are not the subject of
the present paper.
In a recent paper, Chang and Chen ([CC02]) consider a class of so-called
affine excess functions and its subclass of C-excess functions. The latter is
a superclass of the S-excess functions and contains (like the class of Kalai)
excess functions that do not necessarily coincide with the TU. excess on TU
games. They prove single-valuedness and validness of the Kohlberg criterion
for the resulting prenucleoli. '
Of course, the excess concept is also used to define another well-known solu-
tion concept for TU games, the (TU) (pre-) kernel. With the (NTU) excess
introduced in this paper, an extension of this solution to the class of all NTU
games is also possible. We will not discuss this in the present paper.
This paper is organised as follows. In section 2 we provide the necessary
notational conventions and some basic definitions. In section 3 we introduce
the (NTU) excess functions introduced by E. Kalai in [Kal75]. Qur (NTU)
excess functions will be motivated and defined in section 4. In the same
section the resulting (NTU) S-prenucleolus will be defined and we prove
some results that apply to every member of the class of all B-prenucleoli. In
section 5 we investigate in detail a member of this class that we will call the
(NTU) prenucleolus since we will show that there enough resemblances to
the (TU) prenucleolus to justify this.
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2 Definitions and Notations

Let us first agree on some notation. Let U be the (finite or infinite) universe

of all players and let N C U be a finite subset. The subsets S C N are called
coalitions, /V is called the grand coal1t1on 2% is the set of all coalitions of N.’
RY is the set of all functions from N to R. Every z € RY will be identified
with the | N|-dimensional vector (z (z)),., whose components are indexed by
the members of N; we will therefore write z; instead of z (¢) for z € RY and

i€ N. If S € 2% is a coalition and z € R, we denote by zs the projection

of onto R :={z € RV lz; =0 Vi¢S}.

If z,y € RY, then = > v means z; > y; for every 1 € N, while z > vy

denotes the case where z; > y; for every i € N. The scalar product of z
and y is denoted by (z,y), e (z,y) =3, yTiv;,z,y € RY. Ifz € RY

is a vector and 7 € R is some real number, then rz := (rz;),.y. The

componentwise multiplication of two vectors z,y € RY is denoted by zy, i.e.
o

Ty = (x,yl)zEN,a:,y € RY. Of course % means (5.1) Y eRY y £0.
33

For A € RY and A C R¥, MA is the set {\aja € A}, whereas rA for r € R
is the set {raja € A}.

'The relative interior of A is denoted by int(A) and its boundary by 8A. If
z € A and y < z implies y € A then A is called comprehensive.

Definition 2.1 _
A coalitional game with transferable utility (TU game) is a pair
(N,v), where N C U is the set of players and v : 2V — R, v (§) =0, s
‘the coalitional function that assigns to each coalition S € 2% its worth
v(S). Let TTYV be the class of all TU games. :
For every game (N,v) € TTV let '

I’ (N,'i)) = {z € R" |z(N) = v(N) } be the set of preimputations.

Definition 2.2
Let T C T7V be a class of games. A solution concept on T is a
mapping 7
c:I' — U 21" (N>w)
(Nw)er
o(N,v) C I'(N,v),

that assigns to each game (N,v) € ' a subset o (N,v) of the set of
preimputations I* (N, v).
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Definition 2.3

A coalitional game with non-transferable utility (NTU game)
is a pair (N, V), where V : 2§ — 2R V(S) C RS, is the coalitional
function that assigns to each coalition S € 2V a closed, comprehen-
sive, non-empty proper subset V(S) of outcomes that are attainable to
S through cooperation. Here RS := {zx € RV |z;=0 Vi¢ S} is the
projection of RN on the subspace that is spanned by the members of S.
Let TNTY be the class of all NTU games. If z € V(S) we say that S
is effective for . We make the assumption that V ({i}) = (—o0, 0] for
every playeri € N.

A subelass of T¥7V ig the class of all hyperplane games, denoted by I'#. In
a hyperplane game, every V(S) is a halfspace, given by
V(S) = {z e RS |(p§,z) < &5 }, where p§, € R}, and ¢ € R,. Of course,
the representation of V(S) by p{ and ¢i is not unique; in fact, if p{, and ¢/
represent V (S}, then so does 2pj; and r¢ forevery r € Ry If (N, V) e TH
is a hyperplane game with p&} = r(1,...,1) for some r € R,, i.e. 3V(N)
is parallel to the boundary of the unit simplex in RY, then {N, V) is called
simplex game. Those NTU games, for which V(N) is a halfspace while
every other V(S5), S # N, is arbitrary (but satisfies of course the conditions
of Definition 2.3), we will call quasi hyperplane games and denote by
9 the class of all those games. If (N,V) € TNV is an NTU game and
A € RY,, then we call (N, V) and the game (N, AV) coveriant under a linear
transformation of utility. The game (N, AV) is given by (AV)(S) = AV(S)
for every coalition S € 2V.
Definition 2.4 _ '

If (N,v) € TTV is o TU game, then denote by (N,V*) € T'# its accord-

ing NTU game, t.e. (N,V") is given by

p‘sf‘u = (1,,1) |S:
civ = v(S)
for every S € 2. Of course, (N, V?) is a simplez game.
If (N, V) € TH is a hyperplane game, such that pj, =rs(1,...,1)|s for

somers € RS, holds true for all S € 2V, then denote by (N,v") € TTV
its according TU gamne, t.e.

vV(S) = —1-05 VS € 2.
TS
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Definition 2.5 (monotonic NTU games)
Let (N,V) € TNV be gn NTU game. V is monotonic if for all
coalitions S,T € 2V with ® # S C T and all z € V(S), there exists
y € V(T) with yg > z.

An equivalent formulation of Definition 2.5 is to say that V is monotonic if the
projection of V(T'} on R® contains V(S), which means that for every payoff
vector that a coalition S is effective for it is possible to assign payoffs to the
players in T'\ S such that the coalition 7T is effective for the resulting payoff
vector. Note that there are no restrictions on the payoffs to players in T \ S.

By introducing such restrictions we get another concept of monotonicity,
which is also called "individual superadditivity”.

Definition 2.6 (individual superadditive NTU games)
Let (N, V) € "V be an NTU game. V is individual superadditive
if for every player i € N and every coalition § # S C N\ {i} the
following holds:

V(S) xV{i}) cV(SuU{}). (1)

Since V ({i}) = (—c0, 0] and V(S) is comprehensive for every S € 2V, equa-
tion (1) is equivalent to

V(S) x {0} cV(SuU{i}). (2)

Individual superadditivity requires that feasible outcomes for coalitions must
remain feasible in supercoalitions when the "new” players’ payoffs are zero.
Thus individual superadditivity is a stronger property then monotonicity.

Definition 2.7 _
_ A solution concept on a class I' C TV is a mapping

c:T— U - 9ViN)
(N,V)eT
o (N,V) C V(N),

that assigns to each game (N, V) € T a subset o (N,V) of the set of
outcomes V(N) for which the grand coalition is effective.
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The main solution concept in this paper is the (pre-) nucleolus. Therefore
we will now introduce the concept of the general nucleolus. Every nucleo-
lus considered in this paper, e.g. the (TU) prenucleolus, the Kalai (NTU)
prenucleoli or the (NTU) S-prenucleoli, are special cases of this general con-
cept. Theorems about existence and uniqueness of these solution concepts
are more or less simple corollaries of theorems that are valid for the general
nucleolus.

Definition 2.8 (General Nucleoclus)
Let X be a (finite or infinite) set, let D be a finite set and let H :
{hi}iep, (Dl =t d < 00,h; : X = R Vi €D, be aﬁmte famaily of
real-valued functions on X.
Let © : X = R* be defined by

©;(z) := max {min {h;{(z) |7 € S}ISC D,|S|=4i},i€ D,r e X.

Thus © arranges the components of (hi(x));cp non-increasingly.
The set :

NH X):={zeX |@(x) <iez Oy) VyeX}
s the general nucleolus of X w.rt. H.

Here <), denotes the lexicographical ordering of R%. That means that
z Zyex ¥ if T = y or there exists a number £ € D with z; = y; for all
1<:<k~-1and z; < ¥.

Theorem 2.9
e If X is non-empty and compact and h; zs continuous for every

i €D, then N(H,X) # 0.

e If X is convez and h; is conver and continuous for every i € D,
then

1. N(H, X) is convezr and
2. h,'(l') = hz(y) V.’E,y = N(H, X),Z eD.

Proof:
See [Pel88], Theorem 5.1.3. and Theorem 5.1.5. ) [
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Definition 2.10 (Prenucleolus of TU games)
Let

PN:ITV o | 20w
(N,v)el'TV
PN (N,v) C I*(N,v) V(N,v)er?V

be defined by
PN (N,v) :== N (I* (N, v), {v(S) — o(S) |S € 2" }) , (N,v) e TV

Then PN is called prenucleolus for TU games. Let e(S,z,v) :=
v(S) — z2(S) V(N,v) € TV 1z € RY,S € 2V, denote the excess of
coalition S at x. '

Theorem 2.11
PN (N,v)|=1 V{(N,v)€ v,

Proof: -
Let (N,v) € TV be a game. It is easily checked that I* (N,v) is non-
empty and conver and that the excess function e(S,z,v) = v(S) —
z(8),z € I*(N,v),S € 2V, is continuous and convez (even affine
linear).
‘Of course, I* (N, v) is not compact, thus the first part of Theorem 2.9
does not apply directly to show non-emptiness of PN (N,v). But let
£ € I"(N,v) and define t :== max{e(S,z,v)|S€2¥}. Let X :=
{y € I*(N,v) |e(S,z,v) <t VS €2V}, then X is non-empty (r €
X ), conver and compact and PN (N,v) = N (X, {e(S,e,v)|S €2V }) #
.
" The second part of Theorem 2.9 ensures e (S,z,v) = e(S,y,v) for all
S € 2¥ and all z,y € PN (N,v). From this ¢ = y follows, thus
PN (N,v)| = 1. | |

Let (N,v) € I be a TU game. Then
Do, z,v) = {SE 2V le(S,z,v) > a} Vo eRzeR”,

denotes the set of all coalitions with excess greater than a.
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A collection of coalitions § C 2V is said to be balanced, if there exist
balancing coefficients (dg) ses:9s €R VS € 8, such that

21553 = 1N-_

Ses

The well-known Kohlberg characterization of the prenucleolus {[Koh71]) can
now be stated as follows. Actually Kohlberg proved a version of this theorem
for thé nucleolus.

Theorem 2.12 , )
Let (N,v) €T be a TU game and let x € I* (N, v) be a preimputation.
Then z = PN (N,v) & D (a,z,v) is balanced for all o € R such that
D(o,z,v) # 0.

Proof: )
See [Pel88] (Definition 5.2.5., Theorem 5.2.6. and Theorem 6.1.1.). W

For shortage of notation we will say that Theorem 2.12 means that for PN
the Kohlberg criterion holds.
For any two players 7,7 € N, i # j, denote by

Sij(x.) = Se?ﬂgdgs eA(S, z,v)

the maximal surplus of player ¢ against player j at z. The set
PK (N,v) = {z € RY |s;;(x) = sj(z) Vi,j € N,i# i}
is called the prekernel of the game (N, v) € T7U,

Remark 2.13
- A useful property of the prekernel is that it always contains the prenu-
cleolus. Thus the prekernel is always non-empty.

An important concept for solution concepts in cooperative game theory is
consistency. Suppose a solution concept ® on a class I' of (TU or NTU)
games is agreed upon by all players. Then in a game (N, V) € I a coalition
S € 2" might want to analyse "its own game” (S,V*), called the reduced
game, where V* is that coalitional function that reflects in some sense the
possible gains of cooperation, when the ”outside players” N \ S are payed
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according to ®. Whenever the outcomes according to & for players in S differ
from game V' to game V* some players have an incentive to prefer building
coalition S (and "play” the game (S, V*)) rather then joining in the grand
coalition N. :

The solution @ is immune against such sort of instability, if ® (S,v*) =
- ®(N,V)ls, ie. the payoffs to the players of the ”split off coalition S do
not change. Thus there are actually no incentives to depart from the grand
coalition. This informally described property of solution concepts is either
called "reduced game property” or ”consistency”. Of course, specifying the
coalitional function V* of the reduced game is crucial to this concept, but by
no means canonical. )

We present here the definition of a reduced {(TU) game that was introduced
by Davis and Maschler ([DM65]), because it plays an important role in the
theory of the (TU) prenucleolus and we will later define an extension of this
reduced game to the class of all NTU games which will be useful in the
analysis of the (yet to be defined) NTU prenucleolus.

Definition 2.14
Let (N,v) € TTY be a TU game, let x € RY be an arbitrary vector and
let S € 2V\ {8, N} be a coalition. The (TU) reduced game (S, v5)
of S w.r.t. z is defined by

v (T) = max {v(TUQ)-=z(Q)},T e 25\ {0, S}

QCN\S
v3(8) ;== w(N) -z (N \S)
v3 (B) := 0.

Definition 2.15 o
Let @ be a solution concept on a class ' C I'TV. & is consistent

(or satisfies the reducéd game property, RGP), if for every z &
& (N,v) and every S € 2V \ {B, N} the following is true: (S,vf) €T
and s € ® (S, v5).

Lemima 2.16 A '
The prenucleolus PN and the prekernel PK are consistent on T7V,

For the proof again [Pel88] is referred to'.

'Lemma 5.2.1 (and Corollary 5.2.2) and Theorem 5.2.7 (and Corollary 5.2.8)
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Definition 2.17 (TU and NTU Core)
1. Let (N,v) € I'TV be a TU game. The (TU) Core of (N,v) is
defined as

Core (N, v) := {z € I" (N, v) |(S) > v(S) vSe2"}.

2. Let (N,V) € TNV pe an NTU game. The (NTU) Core of
(N, V) is defined as

Al

Core(N,V) = {z ¢ R" |zg ¢ RS \ intV(S) vSe2"}.
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3 The NTU nucleoli of Kalai

We now introduce the approach of E. Kalai ([Kal75]) towards an extension
of the prenucleolus to the class of NTU games.
Let I' C I'VTY be the subclass of NTU games that satify

VS e2V: 3a° € R® such that o° >z Vz € V(S).

Definition 3.1 (K(alai)-excess function)
Let (N,V) € T be a game. The function

V). 9N RN SR

is called K-excess function, if the following conditions hold for all coali-
tions S € 2V:
1. Independence of other coalitions
[.’E, /S RNa:ES = yS] = l(N’V) (S! :L-) = [%V) (Sv y)

2. Monotonicity
[z,y € RN, 25 < ys]| = 1MW) (S, 1) > 1Y) (5, y):

3. Normalization
[z € RV, z € 0V(S)] = I¥V)(S,z) = 0.

4. Continuity in both arguments.

As we already mentioned earlier, one can easily see that the conditions of
Definition 3.1 are satisfied by the (TU) excess function e (5, z,v) = v(S) —
z(S) (see Definition 2.10), when they are properly reformulated within the
TU environment. But notice that TU games as members of T2V do not
belong to the class I' considered by Kalai.

Definition 3.2 .
Let (N, V) €T be a game and let I'™V) be o K-excess function. Define
the K(alai)-nucleolus of (N, V) w.r.t: I(MV) g5

K — PN'(N,V) := Nu (I V(N)).

Before we proceed, we will give some examples for K-excess functions. These
examples are visualized in Figure 1.
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Example 3.3
1. Let u€ RY, be a vector and (N, V) € T be a game. Define

fu(S2) = FV(55) |
= sup{t € R|zs+tus € V(S)}
vV Se2¥, vzeR'.

) When the vector u is thought of as a direction in which coalitions
are able to "move” from a starting point x € RY then f, (S, z)
is the mazimal distance the coalition S can "move in direction
p” without leaving V(S) or the minimal distance S has to move
when = is not a member of V(8) and S is "forced back” to V{S).

It is easily checked that f, is indeed a K-ezcess function, i.e.
meets the conditions 1 to 4 of definition 3.1.

2. A special case of f™V) is given by

¢V (S,2) = g7 (5,)
5

where g = (1,...,1) € RY.
Here the direction in which to move is the "egalitarian” one.
3. The sum of "individual excesses” is another possibility.

RNV)Y 9N RV 5 R
RV (8,2) =D mV(S,9),
ic8
where

hEN’V) (S,z) == max{t € R|z; +te; € V(S)}.

Without going into further details, we briefly list some of the properties that
K-nucleoli have or do not have in the next two remarks.

Remark 3.4
The following two important properties of the K-nucleoli are proven in
[Kal75].
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\ fﬂ(S, T)

9(S,z)

FS %) - \

Figure 1: Three K-excess functions

o KPN'(N,V) # 0 for every game (N,V) € T and for every K-
ezcess function I.

o KPN'(N,V) € Core(N,V) for every game (N,V) € T, such
that Core (N, V) #0, and for every K-ezcess function l.

Remark 3.5
1. The results on single-valuedness of the general nucleolus can not
be applied to state single-valuedness of KPN' for every choice
of a K-excess function I, because in general K-excess functions
are not conver. Look at g™V of ezample 3.3, which might even
-be concave. There is, however, a "generic uniqueness” result in
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[Kal75], that holds under some additional restrictions to the K-
excess functions. But also an example of a K-nucleoli that consists
of three distinct points is given is that paper.

2. The Kohlberg criterion does not hold in general. A look at the
proof of Theorem 2.12 reveals that the fact that the K-excess func-
tions are in general not affine linear might be the reason for this.
Also see example 3.6 below for a counterezample.

3. According to o theorem in [Yan97], there is no K-excess function
[ such such KPN' is consistent. Of course, we did. not yet specify
any reduced (NTU) game. We postpone this until the discussion
of the consistency of the (NTU) prenucleolus in section 5. We
only mention that the (TU) reduced game. (Defintion 2.14) has
a direct analogon for NTU games, which is used in the stated
theorem.

4. KPN! does not necessarily coincide with the prenucleolus on the
class of TU games considered as a subclasss of T¥TV. As men-
tioned earlier, this subclass does not belong to the class T used
by Kalai. It seems though like his results can be formulated and
proven for hyperplane games such that this question of coincidence

15 valid.
Example 3.6 .
Let N = {1,2,3} and let Vy the hyperplane game wherep® = (1,1,1)|s VS €
2Y and
1 Lif [8]>2
s = U VS € 27,
0 ,if |S|<2

. Then vy := PN"(N,Vp) = 1 (1,1,1) and the K-excesses are given in
Table 1 (we use h'™Y) as K-excess function, see 3. in example 3.3).
When we change the game by decreasing p%l’z} and p}lﬁ} , see Figure
2, then, as 1'% and p!*3 approach (},1), the K-nucleolus of the so
derived game V} approaches z := (%, -51;, %) with the K-excesses as given
in Table 2.

From the view of the Kohlberg criterion this looks right, i.e. the col-
lection of coalitions that attain maximal K-excess at = is balanced and

30 is every other collection attaining at least the second highest excess
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8 - et (S, v, Vo)
{1,2}
{1,3}
{2,3}
N
{1}, {2}, {3} | -

Table 1: K-excesses w.r.t. the K-nucleolus of V

[ I FIITCR FACT T R FRYTECN

Q3

Figure 2: The game V)
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S e (S,z, W)
{1,2}
{1,3}
{2,3}
N

{2}, {3}
{1} -

Table 2: K-excesses w.r.t. z in game 1}

O [roree o bolce

e | ool

etc. But as we already mentioned, the Kohlberg criterion does not nec-
essarily hold for the K-nucleoli and indeed we can show that z is not
the K-nucleolus of the game (N, V}). Let therefore € > 0 and define z°

by

] = T —€ -

TS = Zs 4+ ¢

.— 2 -

2 2

Ts = I3+ ¢

= 3 —-.

3 2

'Then we have z° € OV (N). Since x°|(19) and 3[1,3; ke on a line that
is parallel to 0V ({1,2}) and 8V ({1,3}), respectively, the K-ezcesses
of the coalitions {1,2} and {1,3} are the same with respect to z and to
z¢. But we have |

e" ({2,3},25, W) < e ({2,3},z, Vi)

from which it follows that z is not the K-nucleolus of the game (N, V}).
Actually, it is y := (0,1,1) = 2%. The K-excesses with respect to y are
given in Table S.

This example shows the non-validness of the Kohlberg criterion and some
form of discontinuity of the K-nucleolus. This unwanted behavior can also
be observed for other K-excess functions.
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S

e" (S, y, V)

{1,2}

{1,3}

{2,3}

{1}, N

o fom I FXTTURN PRCTTS

{2}, {3

LT

Table 3:

K-excesses w.r.t. y in game ¥}

17



4 THE NTU 8-NUCLEOLI FOR QUASI H YPERPLANE GAMES 18

4 'The NTU S-Nucleoli for quasi hyperplane
games

The previous section showed that Kalai’s excess functions, although based on
rather intuitive axioms, did not exhaustively establish a theory of nucleoli-
like solution concepts for NTU games. ,

In this section we will develope a new class of excess functions and investi-
gate (in Chapter 5) in detail a member of this class with yields an (NTU)
prenucleolus with some nice properties.

For the remainder of this section the class of NTU games under consideration
is T'%% | the class of all quasi hyperplane games, thus for every game (N, V) ¢
T'# we have p¥ € RY and ¢ € Rsuch that V(N) = {zeRY |(p",z) <N}
and every V(S), S € 2V \ {N}, merely satisfies the conditions formulated in
Definition 2.3. We will develop all the necessary theory for this class of NTU
games and propose an extension to general NTU games in a subsequent pa-
per. .

In the sequel we will have to deal with some form of monotonicity for hy-
perplane games, but we encounter a problem with the known concepts as
described in section 2. -

Lemma 4.1
1. Hyperplane games are always monotonic (Definition 2.5).

2. If a hyperplane game (N,V) € T'" is individual superadditive
(Definition 2.6), then (N, V) is covariant (under a linear trans-
formation of utility) to a simplez game (N, V?) belonging to some
TU game (N, v). :

Proof:

1. Since pf € RY, VS € 2V, it is immediately clear that the pro-
jection of any V(T) onto a lower dimensional R® (S C T) is
always the entire RS itself, thus it contains V(3).

2. If (N,V) is indz’m’dually-supemdditz've, then p° = pT|g must hold
forall SCT,S,T€2¥. Thusp® =p"|s VSe2V, n

We will use another concept of monotonicity, which we call weak individual
superadditivity.
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Definition 4.2 :
Let (N,V) € T™U be g game. (N,V) is called weak individual
superadditive, if for every player i € N and every coalition § # S €
2N} the following holds: ' '

(VS)NR) x V ({ih) c V(Su {s}). _ (3)

Definition 4.2 re'quires that at least the individual rational outcomes in
V(S),S € 2V, are also obtainable in supercoalitions T' D S,7 € 2%, by
assigning zero payoff to playersin 7' — S.

4.1 -Definitions and general results

We will now introduce the key concept of the new (NTU) excess functions. ‘

Definition 4.3
For every (N,V) € T let pV¥) : 2N 5 RV 5t gNYI(9) ¢
R° VS € 2V, be a function that assigns to every coalition S € 2V
its reference point SVV)(S) € RS. Cuall every such 8VY) o refer-
ence function and denote by .

B = {fMV (N, V) e T, V) oV L RV BNV)(5) e RS VS e 2V)

the set of all reference functions.
Instead of BNV)(S) we will write 8V (S) or B(S) whenever there is no
danger of confusion. .

The purpose of introducing the concept of reference points and reference
functions is to identify a ”point of indifference” for every coalition, that
means a point x € R yielding an excess of zero to coalition S , 1.e. a point at
which the coalition is neither satisfied nor dissatisfied2. Although the concept
of a reference function resembles somehow a solution concept itself, i.e. it
could be interpreted as assigning a payoff configuration to any NTU game,
it is meant as a mere auxiliary concept. Note that so far we did not impose
any conditions on 3 such as 8(S) € V(5) or the like.

Once a point of indifference is chosen for every coalition (we will later dis-
cuss the way this can or should be done), there are of course other points in

%or, in other words, is indifferent between satisfaction and dissatisfaction.



4 THE NTU 8-NUCLEOLI FOR QUASI HYPERPLANE GAMES 20

R? yielding equal excess (of zero at the moment) to the coalition. Another
important feature of the excess function we are about to introduce is the
way those points are characterized. This characterization is based on the
following considerations. Technically the domain of any excess function for
coalition § € 2V ig RS, hence the (dis-) satisfaction of the coalition only
depends on the outcome for this coalition and ignores the payments to the
complementary coalition (compare Axiom 1 of Kalai in Definition 3.1). But
since we are using excess functions in order to determine a solution con-
cept for the grand coalition via minimization of dissatisfactions, this domain
should be interpreted as the projection of 8V (N) onto.RS. Note that this
projection is indeed the whole R¥ since we are dealing with quasi hyperplane
games. ) '
Now suppose there is an imputation z € 8V (N) such that zg is a point of
indifference for the coalition S € 2¥. The coalition might consider 3 redis-
tribution of its share xs according to those transfer rates that are relevant
to them in the grand coalition, namely p¥. Since the imputation z has been -
made possible through cooperation of all players and coalition S might well
be not effective for zg these transfer rates are surely the only possible basts
for any such redistribution. Of course, these are only virtual redistributions:
The imputation £ € 3V (N) has not been allocated to the players yet. It is
only a proposal which is to be checked wether or not is minimizes dissatisfac-
tion. We are still within the process of determining the difference between
the status quo rs and what might be, i.e. we are "calculating dissatisfac-
tion”. Due to the principle of independence of other players (again compare
Axiom 1 in Definition 3.1} such a redistribution should not effect the excess
of any coalition outside of S. We argue that it should not change the excess
of coalition S either.

Otherwise, i.e. when the coalition should be able to change its excess by
redistributing zs according to p¥, then the nucleolus defined by such an
excess function would not really be a lexicographical minimizer of dissatis-
faction/excesses because it is in this sense not well defined what the dissat-
isfaction of a coalition actually is. This we want to avoid. Therefore we
will impose another property on the new excess functions which might be
informally described as ”invariance under changes according to pY”. Since
‘the motivation we gave for this property of course also holds for imputations
z € OV (NV) such that x5 is not a point of indifference for S, we might also say
that the excess function for S should have contour sets that are hyperplanes
with a normal vector proportional to p¥.
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In the case that a TU game (N, v) € I'"Y is under consideration, we already

know which points z € R%,5 € 2V, are candidates for being a "point of

indifference” by looking at the TU excess function e (S, z) = v(S) —z(S). In
other words, when considering (N, v) as a member of V7Y i.e. as (N, V”),
then the points of indifference of S lie on the boundary of V*(S). This tells us

that 5(S) € OV?(S) should be satisfied, or in other words 3" 8,(8) = v(S),
€S8
if we want to make the new excess function compatible to the TU excess.

This motivates the next definition.

Definition 4.4 _
Let B C B be the set of all reference functions B that satisfy

S BMVIS) = u(S) vs e,
i€§ ' ‘

for every TU game (N,v) € T'TV.
The following theorem states that if an excess function for NTU games should
satisfy the two properties just discussed, i.e. vanishing on 3(S) for 8 € B and
having contour sets that are hyperplanes with normal vectors proportional

to pfg‘r , and if it is furthermore an affine linear function that coincides with
the TU excess function on I'7Y, then it is uniquely defined.

Theorem: 4.5 :
Let (N, V) € I'"" be a quasi hyperplane game. Let

e=e’ 2V xRV xB R
be a function that satisfies

1. Vz,y € RV : (56 Pﬁs) (%Pvls) = e(Sz,8)=e(Sy,8) VS €
2V B e B,

2. ¢(S,8(5),8) =0VS € 2, 8 € B,

3. e(S,z,8) = (z,rs)+cs,7s ER,cs e RVS €2V 2 ¢ RV, B € B,
and

4- If (N,V) € TTY, then e(S,z,8) = vV (8) — z(S) VS e 2V x ¢
RY, B € B (coincidence with the TU excess function on 7Y ).
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Then

Proof:

e(S,2,8) = > (B:(S) — z) B,

= (B(S) - =zs,07).

Let S € 2% be a coalition.

Claim 1

Azioms I and 3 imply rs = v..pil|s for some s € R
Claim 2 :
The value v, in Claim 1 is negative.

“Proof of Claim 2

Let (N, V) € TTY be a TU game. Then the Azioms 3 and 4 imply
(together with Claim 1):

Trs (2,87 1s) + s = (z,— (1,..., 1)) +0¥(8), (4)
which at once yields ~,, < 0.
Claim 3 -
Claim 1 and Aziom 2 imply
B(S,.’E,ﬁ) = Qg (JB(S)_-TJ,ngS>, (5)

with ar, € Ryy.

Proof of Claim 3

By Claim 1 we have rg = v,,pyl|s for some v, € R,y,s < 0. By
ariom 2 we have

e(S,8(5),8) = (B(S),rs) +es=0
eos =~ (B(S)pVls).

which yields

e(S,z,8) = {(z,rs)+cs

Yrs (T PV |5} — Yrs (B(S), 2V |5)
= s (-"3 - 5(5):13%5)

= ars{B(S) —z,pVs)
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with o, = —7v,s > 0 and the proof of Claim 3 is complete.
Now Claim 3 together with aziom 4 yield (for any TU game
(N,V)eTITV). -

e(S,z,8) = org (B(S) — z,p¥ |s) = vV (S) — 2(S),z € R,
which is equivalent to
’ Qrg (Zﬂi(S)—z(S)) =vV(S)—:c(S),3:€RS.
€S
Since B € B, i.e. 3 Bi(S) = vY(8), this in turn yields a,, = 1.
€S :
|
Theorem 4.5 has anticipated the next definition, which is reformulated now
for the sake of clarity.

Definition 4.6 (3-excess function) _
Let (N,V) € T''® be a (quasi hyperplane) game. The function

eV) . N ARV B SR .
NV (S,Z',B) — E (ﬁi(N’V)(S) _ -’171') pi‘\f
ies

(BNN(S) ~ zs5,0%)

.18 called B-excess function.

The previous theorem 4.5 proved that the axioms 1 — 4 uniquely determine
an excess function for NTU quasi-hyperplane games. The next lemma will
answer the question affirmatively if these axioms are logically indepent, i.e.
no axiom is an implication of the others.

Lenima 4.7
The azxioms of Theorem 4.5 that characterize the (3-ezcess functions,
are logically independent. ‘

Proof:
Let B € B be a reference function. We show the independence of the
azioms by giving an ezample of an excess function for every aziom,
respectively, that satisfies the other azioms and is different from the
B-excess function.
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1. Let

={f—=,(1,...,1)).
Then €' satisfies the arioms 2, $ and 4.

2. Let

e*(z) == (x pV)

Then €* satisfies the azioms 1, § and 4.

3. Let

— (- n AN

Then €3 satisfies the azioms 1, 2 and 4.
4. Let
Yz)=a(f~z,p¥) = -
with o > 1. Then e* satisfies the azioms 1, 2 and 3. |

By Theorem 4.5 and Lemma 4.7 we have shown that the axioms (1) — (4)
constitute an axiomatization of the 3-excess function.

Remark 4.8
A look at the azioms 2 imd 4 of Theorem 4.5 reveals that we can not
relaz the condition B € B to B € B because these azioms would then be

incompatible.

Apa,l:t from the axioms that axiomatize e?, the B-excess functions also satisfy
those properties as stated by the next lemma. These properties are in fact
simple corollaries of Definition 4.6, thus the proofs are omitted.

Lemma 4.9
Let (N, V) € T9% be g game. For every reference function 3 := ™ V) e
B, the B-exrcess functwn e? has the following properties ( compare Defi-
nition 3.1):
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1. Independence of other players

[xay € RN::I:S = yS] = 65 (S,l‘) = eﬁ (Say)'
2. Monotonicity

[z,y € RY x5 < ys| = ¢®(S,2) > # (S,0).

3. Normalization _
T € RN: <$S:p\1>':.5') = <ﬁ(S)apg,S> = 6'8 (S,QS) = 0
4. Continuity n x.

Note that the S-excess functions meet three of the four properi:ies that define
the Kalai-excess functions, i.e. independence of other players, monotonicity
and continuity.

Definition 4.10 (3-prenucleolus for quasi hyperplane games)
Let (N, V) € T'" be a quast hyperplane game. The set

PNB (N,V):=Nu (eﬂ’tN‘V) (S: ), V(N))-

is called B-prenucleolus for quasi hyperplane games or (NTU)
S-prenucleolus for short. .

Example 4.11 :
Let us look at an example of a reference function and the resulting
(NTU) B-prenucleolus.
Let (N, V) € T'H be a hyperplane game and define BMV)(S) € RS by

5(S) :={ FBE €Y (geam). Q
0 , 1¢5

The number ;;sr (k € 8) is the mazimal amount that player k € S can
k

- achieve under an imputation for coalition S that is individual rational
for players in S, i.e. is contained in V(S) NRS. BNVI(S5),S € 27, is
the mean value of these extreme points, see Figure 3.

Let us compute the B-prenucleolus of the game (N, Vi) of ezample 3.6,
i.e. (N,V)) consists of N := {1,2,3} and the coalitional function Vi,
which is given by Table 4.

The computation yields PN® = (2,1,1). The resulting -excesses are
given in Table 5. Note that for this 3-excess function and this hyper-
plane game the Kohlberg criterion holds.
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Figure 3: A reference function
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S i c3,
{1} |00

0
{2} (0,1,0) |0
{3} (0,0,1) | 0
{1,2} | (3,1,0) | 1
{1,3} | (3,0,1) |1
{2,3} ] (0,1,1) |1
N (1,1,1) | 1

Table 4: The game V] of example 3.6

We now turn to the analysis of some basic properties of the (NTU) g-
prenucleolus. The first result on existence and uniqueness of PN? follows
as directly as those about the TU prenucleolus from Theorem 2.9 about the
general nucleolus.

Theorem 4.12 _
|PNP(N,V)|=1 V(N,V)eTl¥ vgeB.

Proof:
See the references to [Pel88] in the proof of Theorem 2.9. |

A direct advantage of PN? over PKNu! is that the both technical and
interpretational meaningful Kohlberg criterion holds as the next Theorem
states. Again, the proof is a more or less simple reformulatlon of the proof
of Theorem 2.12, so it is omitted here.

Theorem 4.13
Let (N,V) € T be a game and let YY) € B be a reference function.
Let z € V(N) be an imputation. Then z = PN? (N, V) & D(a,z, V)
is balanced for all oo € R such that D (o, z,V) # 0.

Note 4.14
So far no restrictions to the choice of the reference function BNY)
were made, i.e. Theorem 4.12 and Theorem 4.13 are true for every
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S eﬂ(S,x)

02 | (F-3) 1+ G- 1=3
3 |3

23 [(F-01+G--1=2
N 0

{2}, {3} | =5
-3

Table 5: S-excess for the S-prenucleolus of exampfe 3.6

choice of BMV). This fact establishes a quite comfortable basis for
the following investigations, since no matter what subset of B is under
current consideration, the 3-prenucleolus erists, is even single-valued
and the validness of the Kohlberg criterion makes computations of 3-
prenucleoli much more easier.

However, for many of the remaining properties of solution concepts that will
be investigated in connection with PN?, restrictions to appropriate subsets
of B will be necessary.

A question -that arises in connection with every solution concept for NTU
games is its behavior on a special subclass of I'TU namely on the class
of TU games I'"V. Often solution concepts for NTU games are extensions
from TTY to its superclass I'V7Y. Those (NTU) solutions have to coincide
on I'"Y with the (TU) solution they stem from, otherwise they would not be
an "extension”. As we plan to extend the TU prenucleolus to I'¥TV, we have
to examine the behavior of PN? on I'TV.

As we pointed out in section 3 the coincidence of KP N’ with the prenucieolus
on TU games is not independent of the choice of a K-excess function. For
the S-prenucleolus this coincidence is valid for every SB-excess function, for
which the axiomatization (Theorem 4.5) is valid, i.e. for 8 € B.

Lemma 4.15
Let (N,v) € TTY be a TU game and let (N,V*) € T'E its according

NTU (simplez) game. Then PN (N,v) = PN® (N, V) holds true for
every SNV ¢ B.
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Definition 4.16 (covariant reference functions)
Let the set of all covariant reference functions B C B be defined by
Beov = {ﬁ{"‘”’) |,3(N’V) € B, BWAVN(S) = AgIWVI(S) ¥S eV VA€ RY, }

Lemma 4.17
B € B = PN? is covariant.
Proof: :
* Let (N, V) € T be a game and let B € B be q reference function.
Then
TN
BANAV) — BNV .y ). P
e (S, Az) Z (ABY(S); — Nizy) ”
ies
= £IVY(S 1)
V Se2¥ zeRY.
Hence PN? (N,AV) = APN?(N,V) VAeRY,. _ ]
Remark 4.18

The reference function of ezample 4.11 is covariant. -

Let (N,V) € T% be a simplex game and let 3%%Y) € B be a reference
function. The excess of a coalition § € 2V at z € RY computes as

e? (S,z,V) = Z (B:(S) — z) p¥

i€
= Bi(S) - (S).
i€S
Thus the reference function 3 induces a TU game via
] vi(S) = D B(S) VSe2N\{N} (7)
ics
(V) = of (8)

with the property that for every coalition S € 2¥ and every imputation
z € V(N) the (TU) and (NTU) excesses are equal:

e (S,z,V)=¢e (S,:r, 'uﬁ)
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and thus the S-prenucleolus and the (TU) prenucleolus coincide:
PN (N,V) =PN (Vo).

This fact will not only help in computing PNU? (see below) but also y1elds
conclusions about PN?.

Definition 4.19 '
Let (N, V) € T9% be a simplex game and let BV'V) € B be a reference
function. The TU game (N Uv) as defined by (7) and (8) is called the
(TU) B-game of the NTU game (N,V).

Lemma 4.20 .
Let (N, V) € T'¥ be a game and let f%Y) € B be a reference function.
Let (N,W) € ¥ pe q szmpler game that is derived from (N, V) by a

lmear tmnsformatwn If ?JW is ndividual superadditive, i.e. ’U]'?V (S) +

vh, ({i}) < v, (SUi) VS € 2"\ i € N, then PN? (N, V) is indi-
vidual retional. ‘

Proof: -
In view of the comments about the (TU) B-game of an NTU game

above, we show that PN (va) is individual rational. To this end, let
= PN ('uﬁ,) and suppose there exists a player i € N such that

x; < vh, ({i}). For every coalition S € 2V\} that does not contain i
the following is true:

e (S, T, va) = o5,(9) —zs
' < o5 (8) + b ({i}) — 2(5) —
; < vy (Su{i}) —z(Su{i})

e(SU{i},ﬂ;,vﬁ,).

Thus coalitions that attain maxrimal excess under the imputation z must
all contain player i. Since e (N, x,v{,gv) =0 gnd e ({z} ,:L‘,va) > 0,
N is not a coalition with mazimal excess. It follows that the collec-

tton of coalitions with mazimal excess is not balanced, contrary to our
assumption that x is the prenucleolus of 'uﬁ,. , n
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Corollary 4.21
If a TU game (N,v) is individual superadditive, then PN (N,v) is in-
dividual rational.

If (N,V) eI is not a simplex game but 5 € B is covariant, then we can
also describe the (NTU) §-prenucleolus of (N, V) by the (TU) prenucleolus
of a suitably chosen TU game. Since the game (N,pYV} is a simplex game,
we have '

3

_ B
PN? (N,pyV) = PN (N, up,&,v) :
Now the covariance of 5 and Lemma 4.17 yield
) _
B — B
PN?(N,V) = pg’PN (N, ”pg) .

The Core is a very well established solution concept both for TU and for NTU
games. Therefore it is considered a major advantage of the (TU) prenucleolus
that it is always a member of the core whenever the latter is non-empty. This
is important in situations where there is demand for (in the core-sense) stable
“but single-valued solutions for TU games. Sometimes the (TU) prenucleolus .
is therefore said to be a core-selector. -

As noticed in section 3, the Kalai prenncleoli for NTU games are also con-
tained in the core, when the core exists. We will now investigate this property
In connection with the class of 3-prenucleoli.

The simplicity of the proofs that both the (TU) prenucleolus and the Kalai
(NTU) prenucleoli are core-selectors is due to the fact that the respective
cores can be defined as those imputations yielding non-positive excesses.
This is not true for the S-prenucleoli and, moreover, core-inclusion will turn
out to be a property of some reference functions on some subclass of games.

Example 4.22 :
- Let N = {1,2,3} and consider the hyperplane game as gwen by Table
6:

The core of this game is a singleton.:
Core (N, V) = {(0;0.7;1.7)} .

Take, for example, the reference function 8 as defined in ezample {.11,
then ‘

PN?(N,V) = (0.8, -0.61;1.05),
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s |pf |&
1 {100 |0
2 (010 |0
3 (001 |0
12 {51007
‘ 13 |8010 |17
23 |037 |11
123|919 |16

Table 6: The game of example 4.22

thus PNP (N,V) ¢ Core(N,V). Furthermore, with Lemma 4.20 in
mind we can imply that the S-game of (N, V) is not individual super-
additive. '

Example 4.22 also serves to proof the next lemma, which states an impossi-
bility.

Lemma 4.23
There ezxists a game (N, V) € T with |N| = 3, such that Core (N, V) #
D and PN? (N, V) ¢ Core (N, V) for every BNV} € B with SNV)(S) €
aV(S)NRS, VS €2V,

Proof:

Consider the game of example 4.22 and denote by z := (0;0.7;1.7) its
unique core-element. Let BNV) € B be a reference function, such that

TBMVI(S) € OV (S)NRS .. Thene? ({12},7,V) > 0 ande? ({13},2,V) >
0. Since the 3-excess for the coalitions {1}, N and 0 are zero and the
B-ezcess for the coalitions {2} and {3} are negative, the 5-excess for the
coalition {23} must be positive - and furthermore equal to ¢ ({12} ,z,V)
and e ({13}, 2,V - for the collection of coalitions with highest ezcesses
to be balanced.
ForO<A<lletpr:=2(0,%)+(1-2) (131—,0) be any point on the
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open line segment 8V ({23}) N Rﬁf}. Then

& ({23},;35,1/) - ((1-,\)%1—{6) + (Al—;— - %) 9
_,220 37

21 3
Thus €® ({23}, 6%, V) > 0 if and only if A > 25 > 1.

33
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3 The NTU prenucleolus

In chapter 4 we have introduced the new class of S-excess functions for NTU
games and the according class of NTU Bprenucleoli. Of course among the
members of this class there exist prenucleoli which fail to satisfy some es-
sential conditions such as covariance, coincidence with the TU prenucleclus
on the class of all TU games and the like. Thus not much more than the
definition of these solution concepts seem to justify the name prenucleolus.
In this chapter we will examine more detailed a subclass of some NTU B-
excess functions which all yield the same NTU B-prenucleolus. This NTU
B-prenucleolus is covariant, symmetric, single-valued and consistent with re-
spect to a new reduced game, thus satisfies all the axioms that in the TU
case characterize the TU prenucleolus uniquely. Although so far we do not
know whether or not these four axioms consitute an axiomatization in the
NTU case, we feel that they are certainly enough reason to justify the name
'NTU prenucleolus’. :

Definition 5.1
Let (N,V) € T be a quasi hyperplane game. For every coalition
- S €2V define - '

S ._ N
my 1= max (:r:, pv>
zepp V(5)+

and denote the mazimizers by M3, i.e.

M3 :=arg max {z,pN).
v g:cEp{gV(S}'*'_( pv)

Remark 5.2 :
1 If (N,V)eT¥E ie (N,V) is a hyperplane game, then an alter-
native formulation of Definition 5.1 s

2. The value m3, is invariant under positive linear transformations,
i.e. for every A€ RY, :

myy =my Y(N,V) e ¥ vs e 2V
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Definition 5.3
Let (N,V) € T be a quasi hyperplane game. Let S™Y) € B be a
reference function. BYV) is called maximal feasible, if
>8NS -pY =mf
i€§
holds true for every coalition § € 2V .

Lemma 5.4 _
If B € B is mazimal feasible, then 8 € B.

Proof: : : :
Let (N,v) € TTY be a TU game and let (N,V?) € T'H be its according
simplex game. Then

3N BNVIS) = md,

ics
=
v(S5)
holds true, hence B € B. - [ |

Lemma 5.4 tells us that if we consider maximal feasible reference functions,
we are within the framework of Theorem 4.5.

Assume that (N,V) € ' and p = (1,...,1), then Figure 4 illustrates
definitions 5.1 and 5.3. |
The number m3, is the maximal amount a member of coalition S can get
under an individual rational imputation. Every maximal feasible reference
function assigns to a coalition S a redistribution of ms, according to the
transfer rates pY that are relevant to the grand coalition.

For every two maximal feasible reference functions 8 and 5’ the excess func-
tions f and e coincide:

é(8,3,V) = 3 (BNV(8) ~ =) ol
i€l
= mé—zx_ipg,i
ic§
= > (878 - =) o
ics

= ¢ (5,3,V),
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Figure 4: The value m$, in a special case

and hence also PN? and PN? coincide. We will therefore shoften the nota-
tion by defining PN (N, V) := PN? (N,V) whenever 3 is maximal feasible
and call PN the (NTU) prenucleolus for quasi hyperplane games.

Lemma 5.5
Let (N, V) € T be a quasi hyperplane game. If 3V € B is mazimal
feasible ("for V”), then A\ is mazimal feasible ("for AV ) for every
AeRY,.
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Proof:
Let S € 2V be a coalition and _let A€ IRL_. From

. 1
Z‘ (A8Y), (Sipdv,i = zf\iﬁy(s)xp{g,i
€S i€s :
= Z 5;/ (S )Pg,i
€S
= ms
= mfv
we see at once that ABY is mazimal feasible. ) |

Thus the property of maximal feasibility of a reference funection is invariant
under a positive linear transformation of utility. This directly vields the
covariance of the (NTU) prenucleolus.

Corollary 5.6
The NTU prenucleolus PN is covariant.

Proof: -
Let (N,V) € T"™™ be a game und let A € RY,. Let B™Y) € B be
mazimal feasible. Lemma 5.5 yields that SVAY) .= AWVY) is mazimal
feasible for (N,AV). Then

eﬁ(N’W) = l Z (@{N,AV)(S) - /\i.'cz‘) P%fjf
€S
= 3 (MEVS) — r) ol
ieS . '
= leﬁ(N’V) (S: z, V) ’

" which yields PN (N, \V) = XPN (N, V). n

As the next result concerning the NTU prenucleolus we will present a The-
orem similar to Lemma 4.20, which states that for weak individual superad-
ditive quasi hyperplane games the NTU prenucleolus is individual rational.

Theorem 5.7
If (N,V) € T'%¥ is weak individual superadditive (see Definition {.2),
then the NTU prenucleolus PN (N, V) is individual rational.
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Proof:
Let (N, V) € T be weak individual superadditive, and let 8 € B be a
mazimal feasible reference function.

We know that PN (N,V) = PN (N, ve), thus all we have to show is
that vg i8 indwidual superadditive, i.e. vi satisfies
W (S) +vh ({i}) < (SU}) VS e2M\ e N,

since for individual superadditive TU games the TU prenucleolus is in-
dividual rational (Corollary 4.21). |
Now suppose that vi, is not individual superadditive, thus there is a
player i € N and a coalition S € 2Y\U} gych that

W) + 8 ({i}) > o8 (SU{3}).

Since v& ({i}) = 0 and v2(S) = mS we have

my > miU{’}

S

Let 75, be "a mazimizer for m®, i.e.

M =
7€My =arg max, (z,pv]s) -
Since 75, € V(S)* and the game is weak mdwzdual superadditive,
(z8,0) € V(S U {i}) must hold. :
But

<(E€'JO)1P¥|SU{!,}) = (f\S/:PI.Ing)
> mot

holds, thus (25,0} ¢ V(Su {i})*. By (z,0) € Rf_u{i} also (z5,0) ¢

V(S) holds, a contradiction to the assumption of weak individual su-

peradditivity of (N, V). ' [ |

5.1 Computation

In chapter 4 we showed how general S-prenucleoli can be expressed via (TU)
prenucleoli of suitably chosen TU games. In the case of maximal feasible
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reference functions, i.e. for the NTU prenucleolus, things are even simpler
because of the invariance of the values m$, S € 2V,

To be more precise, let (N,V) € I'? be a quasi hyperplane game, not
necessarily simplex. The game (N,p{{V) is simplex and, because of the
maximal feasibility of 3, '

B (8) = D APY(S)
‘ i€S

Nv
= Zﬂfv (5) 'Pﬁgm
- ieS
= my VS€2V S£N
holds true.
Again by the covariance of the NTU prenucleolus we have

1 8
PN (N,V) = ~sPN (N, Upgv) _

It follows that the computation of the NTU prenucleolus for a given quasi
hyperplane game (N, V) consists of determining the values m3$, S € 2V and
computing the (TU) prenucleolus of the TU game (N, vﬁ NV)' '
v

Having this in mind, we are now able to apply the results of [K1a97] which
will yield a set-valued dynamical system that converges to the (NTU) pren-
culeolus®. As it was shown in [Kla97) these results can be used to develop a
computer program to compute the (NTU} prenucleoius. A detailed discus-
sion of this will be the subject of a subsequent paper.

5.2 Inclusion in the Core

Definition 5.8
Let (N, V) € T be a quasi hyperplane game. If for all balanced col-
lections § C 2V with balancing coefficients (8s)gcs we have

N > Zchm‘S},
SES
then (N, V) is called m-balanced.

#See also Justman ({Jus77]) for a different set-valued dynamical system.
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Theorem 5.9
‘Let (N, V) € T be a quasi hyperplane game. If (N, V) is m-balanced,
then PN (N,V) € Core (N, V).

Proof: :
Without loss of generality, assume that (N, V) is a simplez game. Let 83

be a mazrimal feasible reference function. Let (N, vg) be the TU game
derived from 8 and V', i.e

() = D BVS), Se2\ (N}
i€s ’
W(N) = &
Since B is mazimal feastble, we have
vo(S) =mi VS e2V,
Thus the m-balancedness of (N, V') is equivalent to
(V) 2 ) osvi(S) (9)
5e8 : .
for all balanced collections & C 2V with balancing coefficients (0s)g.s,
which yields Core (N ) vg) # 0 by Scarf’s Theorem ([Sca67],equation
(9) tells that v, is balanced).
Let v := PN (N, v‘ﬁ,) be the (TU) prenucleolus of (N, vf}), then v €
Core (N , vfr) , in other words: |
ZV" > v2(S) vSe2V.
i€S
Thus v satisfies
Z vy Z mf/’ VS € 2N}
i€s

and, since v € Core (N, vf}), v is individually rational:

v; >0 VieN.
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Thus we have

pov>cey vSeaV

= v € Core(N,V).

The observation v = PN (N, V) (see the consideratioris on page 29)
now completes the proof. |

We immediately see that m-balancedness of a quasi hyperplane game is a
sufficient condition for the core of this game to be non-empty.

Corollary 5.10
If (N, V) € T"H is m-balanced, then Core (N,V) # §.

9.3 Consistency

For the class I'7V of TU games two different versions of reduced games are
used in axiomatizations of solution concepts. The reduced game defined in
Chapter 2 is due to Davis and Maschler ([DM65]) and is used to axiomatize
the (TU) prenucleolus and the (TU) prekernel. The other reduced game, due
to Hart and Mas-Colell ((HMC89]), yields an axiomatization of the Shapley
value via the same axioms used in the axiomatization of the prenucleolus just
by exchanging the two reduced games in the definition of consistency.

These two (TU) reduced games can easily be generalized to the class of
NTU games and the question arises wether or not the (NTU) prenucleolus
is consistent w.r.t. one of these (NTU) reduced games. But, as [MO89] have
shown, there does not exist a solution concept for hyperplane games that is

e efficient,
e symmetric,
e covariant and

¢ consistent w.r.t. to the reduced games of Davis and Maschler or Hart
and Mas-Colell.
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Since PN satisfies the first three properties, we can imply that PN is not
consistent, although one should be aware that the covariance that {HMC89]
used contains also additive transformations of utility.

To overcome this problem, two different ways are possible. The first way, as
undertaken is [MO89], is to keep the definition of the reduced game and to
- modify the definition of consistency By this means they axiomatized their
new solution concept, called the consistent NTU shapley value, by efﬁmency,
symmetry, covariance and the so-called bilateral consistency.

However, we will take the other possible way and keep the definition of
consistency but use a new reduced game in order to establish consistency
of PN. This new reduced game coincides with that of Davis and Maschler
on the class of all TU games. As yet we do not know if the propert1es of PN
together with consistency constitute an axiomatization.

Definition 5.11
Let (N,V) € T be a quasi hyperplane game and let S € 2V be q
coalition. Denote by My € V(S)™ the marzimizing member of V(S) in
the definition of my.. If there are more than one mazimizer, choose one
arbitrarily. '
Let Cs = {ie JM‘% > 0} be the set of those players of S whose
outcome under MV 18 stmctly positive.

Definition 5.12 .
| Let (N, V) € T be a quasi hyperplane game, let z € RY be an impu-
tation and let S € 2% \ {§, N} be a coalition. The (NTU) reduced
‘game (S, V%) of S w.r.t. z is defined by
VIT) == V(T)+sr (T CS)
O VP(8) = {375 €R® |<P¥=$S) <V — (P{y,xN\ﬂ} .
Here sy € RT is defined by |

maxgcnysimy o —2(Q) }-mf
|Crlpy;

G : i¢-CT

1 & Cp

h =

Remark 5.13
In the case when (N, V) is a hyperplane game, then Definition 5 12 can
as well be formulated as

Vf(T) = {xT e R” ’(p%“,, z7) < c{;s} (T'c8)
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with
TUQ i
T ue . £
VI ot {mV 2(Q) § min Py,
Remark 5.14 :
1. The (NTU) reduced game of a simplex game is itself a simplex
game. ' ‘

2. Remark 5.13 shows that the (NTU) reduced game coincides with
the (TU) reduced game of Davis and Maschler when the original

game is a TU game. For this we only need to notice that in this
case py = (1,...,1) and ,m§ = v(S) holds true for all S € 2V,

Definition 5.15
Let @ be a solution concept on 9. @ satisfies the reduced game
property (RGP) or is called consistent, if the following is true for
every game (N,V) ¢ T4¥ ;

t€®(N,V)=>25€® (S V) vSe2V

Theorem 5.16
The NTU prenucleolus is consistent.

Proof:

Essential for this proof is the (TU) consistency of the (TU) prenucleolus
(Lemma 2.16).
Let (N, V) € " be a quasi hyperplane game and let B&Y) € B be a
mazimal feasible reference function. Assume w.lo.g. that (N,V) is a
simplez game, hence pi¥ = (1,...,1). |
Denote by v := PN (N, V) the (NTU) prenucleolus of (N,V) and by

- (N, 'u‘f}) the (TU) B-game of V, i.e. v2(8) = Y ies BVI(8) = my,
since 8 is mazimal feasible. '
Let S € 2V S £ N, be a coalition. We have to show that

vg = PN (S, VDS) 3
or equivalently |

ug=PN (S uf,zs) .



5 THE NTU PRENUCLEOLUS ' 44

Since v = PN (N ) vg) and the (TU) prenucfeolus is (TU) consistent,

it follows that
s
vs =PN (S, (vg) ) .
Thus all we have to show is '

. _ s
(vg)y - UE’VS’

i.e., that the (TU) reduced game of uﬁ w.r.t. S and v is equal to the

(TU) B-game of the (NTU) reduced game of V w.rt. S and v.

Note that the definition of sy implies that if MY is a magimizer for mi,

then M?,: + st is a mazimizer for mﬂs. Thus we have for al T # §:

mis = <M$ + ST,pgy
= m‘lI; + <ST:p‘€'r>

T TUQ _ T
my + QISJ_%%{S {m 2(Q)} my

~ max (™ - 2(Q)).

Thus
S 55 )

€T
T
mvys

= g Am™ - @)

]
w
’—\‘
~
—
I

= max {Ué (TUQ)— y(Q)}

QENAS

= (+) @.

v
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It remains the case T = 5:

() ) = b -vv\5)
' = N —y(N\S)
= y(5)
>

€5
S
= mIVS

cN”-;/(N\S)
= v(S5)

vy (S)
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