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Cartels via the Modiclus

Abstract

We discuss market games or linear production games with
finite sets of players. The representing distributions of initial as-
signments are assumed to have disjoint carriers. Thus the agents
decompose into finitely many disjoint groups each of which hold
a corner of the market. In such a market traditional solution con-
cepts like the core or the Shapley value tend to favour the short
side of the market excessively. Following a paper of HART we
argue that the formation of cartels should be explained endoge-
nously. Accordingly, we exhibit a solution concept which not only
* predicts cartelization but also explains the profits of the long side
by its preventive power. This concept is the modified nucleolus
or modiclus. '
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1 Introduction

Within this paper we attempt to explain the endogenous formation of cartels
in large markets. We refer to a paper by S. HART [3]. This author argues
that in a model of a pure exchange economy with continuously many agents
the formation of cartels has to be a result, cartels should form endogenously.
He points out that general equilibrium theory or related approaches via coali-
tion formation in exchange economies are unable to predict the endogenous
formation of cartels within sectors or corners of the market.

Hart favours the vNM-Stable Set for his discussion. Indeed, this concept
seems to be able to predict cartelization. From the view point of our present
results this is most likely due to the fact that the external stability of the
vINM-Stable Solution concept provides some preventive power for coalitions
during the bargaining process. .

Hart is essentially concerned with the coalitions that form according to his
solution concept. A description of vNM-Stable Sets is not his aim. A more
recent result by ROSENMULLER-SHITOVITZ [7] about the characterization
of convex vNM-Stable Sets corroborates his analysis. It is seen that the
convex vNM-Stable Sets indeed indicate the formation of cartels within the
different corners of the market. First of all, cartels bargain by representatives.
Thereafter, symmetric distribution of the gains inside the cartels is organized
internally in a most plausible fashion.

The present paper offers to discuss the formation of cartels in view of a point
valued solution concept, the modified nucleolus or modiclus.

This concept particularly respects the increasing blocking power of a cartel:
it is not only of relevance what a coalition of traders can attain but also
what they can prevent others to achieve. The modiclus formalizes the idea
of preventive powers of coalitions even more precisely than the viNM-Stable
Set.

Formally, the tool to assess the preventive power of a coalition is the dual
game. The dual game assigns to a coalition the complementary worth of the
complementary coalition. Hence, if the complementary coalition is powerful
then the original coalition is weak and visa versa.

The modiclus takes care of both the achievement power and the preventive
power of coalitions simultanecusly. Within the framework of a market game
with distinct separate corners it turns out that this concept, similar to the
vNM-Stable Set, assigns positive worth to those corners of the market which
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are located on the large side of the market.

As it turns out, the modiclus takes care of the achievement and preventive
forces of coalitions, because it involves the primal and dual game simulta-
neously. Let us shortly describe this concept. The framework is the one of
Cooperative Game Theory, which we introduce as follows.

" Consider a coalitional game given by triple (I, P, v), here I is the (finite)
set of agents or players, P the power set of I, called system of coalitions
and

v:P—> R, v0) =0,

a real valued function on P, the coalitional function. The dual game is
given by

(1) v*(S) = v(I)-v(I-8). (SeP)
This game reflects the preventive power of coalitions.

The modiclus is a nucleolus type concept (SCHMEIDLER[9]). For the nucle-
olus, one lists the excesses

e(S,z,v) = v(S) - =z(9)

(reasons to complain) for any preimputation z (ie., z € R!, z(I) = v(I))
in a (weakly) decreasing order, say ‘

(2) 6(x) = (...,e(S,z,v),...).
Then the prenucleolus v is the unique preimputation such that B(e) is
lexicographically minimal, i.e.
(3) 0(V) <lexic 8(z) for all preimputations .
The modified nucleolus or modiclus v lists bi-excesses
e(S, x,v) —e(T,z,v)

and proceeds accordingly. As differences of excesses or bi—excesses can be
seen as sums of excesses of the primal and dual game, the modiclus turns
out to be an ideal tool for representing achievement powers and preventive
powers of coalitions alike.

To realize this more clearly, it is useful to construct a further game which
incorporates v and v* simultaneously. This game is the dual cover. To
construct it, we take two copies of the set of players or agents, say

'? = Irx{0,1},
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and construct a game @ : P — R on the coalitions of this set {the power
sets are indexed canomca.lly) by defining

(4)  B(S+T) = max{v(S) + v*(T),v(T) +v*(5)} (S € P’ T € PY).

The game ¥ takes pairs of coalitions into account, in one of them players
act “constructively” and in the other one “preventively”. The roles are then
reversed and one measures the maximal joint worth players could achieve by
combining their forces this way. This game reflects the joined effects of the
game and its dual. Note that it is defined for the “union” of both copies of
the player set. We obtain a concept that is defined for the original set of
players.

As can be seen, the modiclus takes care of both, the primal game (the
“achievement power of coalitions”) and of the dual game (the “destructive
power of coalitions’) in the most natural way — and allows for all interpre-
tations the nucleolus is capable of. For (see [13]), the modiclus v is the
projection of the prenucleolus of the dual cover game ¥ defined on I L2 on
the original player set I. '

The analysis of the modiclus provides insight into the exogenous or exter-
nal bargaining process (between representatives of the cartels) as well as the
endogenous (internal) bargaining process (inside the various cartels). Essen-
tially, the maximal dual excess is provided by the cartels: their preventive
power is the greatest. The maximal primal excess by contrast is achieved
by coalitions which are “diagonal”. This means that the representatives or
partners from all corners of the markets are present in a carefully balanced
proportion (the precise meaning is explained in Secrion 3). Taking the
maximal bi-excess into account means that the modiclus assigns certain pro-
portions of the worth of the grand coalition to the various cartels. This
reflects the result of the external bargaining process.

The internal bargaining process inside a cartel is an even more complicated
matter. If we assume that there are many corners with uniformly distributed
initial assignments, then, within these corners, the symmetry properties of
the modiclus render the payoff to be symmetric hence indistinguishable be-
tween the players. However, a corner with varying total size of the initial
assignment causes a great deal of problems: How should the internal bar-
gaining process be captured? '

It turns out that the modiclus is astonishingly sensitive. The internal bar-
gaining process takes two “internal games” into account and carefully com-
putes the resulting payoffs. One of these games is the reduced game which
results from the distribution obtained by the external bargaining process in
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the sense of Davis and Maschler. The second game is even more surprising:
It turns out that one has to consider a “contested garment game” as discussed
by Aumann and Maschler. Within this type of game the various members of
a cartel have certain claims which implicitly result from their ability to form
diagonal coalitions with players outside the cartel. These claims (like those
in the contested garment game) are not totally realizable. The “estate”, that
is the assignment to the cartel by the external bargaining process is limited
and hence the coalitions worth is also limited by the size of the garment.
It turns out that the contested garment solution, the reduced game and the
external bargaining process provided by the modiclus have to be carefully
knitted together in order to provide the internal share of a player according
to the modiclus concept. For the details see SEcTION 6.

The paper is organized as follows. In SECTION 2 we introduce the model,
recall some important definitions and discuss simple properties of excesses.
SECTION 3 exhibits the formation of cartels: the treatment of the various cor-
ners of the market is described for markets the large corners of which possess
a certain weak balancedness property. Under mild additional assumptions it
turns out that the corners of the long side of the market are treated equally
and proportional to the defining measures the carriers of which coincide with
the corners. A further result of SECTION 4 shows that the nucleolus of a
certain balanced game describes the amounts given to the players of the
remaining corners of the short side.

SecTioN 5 shows that the assumptions employed in the other sections are
automatically satisfied, if the game is “sufficiently large”. Sufficient largeness
can be reached by, e.g., replication of the market.

Moreover, SECTIONS 6 and 7 exhibit the assignments to the various members
~ of the cartels, reflecting the internal discussion within the cartels. In these
sections additional assumptions are employed.

Finally, SECcTION 8 contains examples and remarks.

2 Definitions, Simple Properties

A game, as explained in SECTION 1, is a triple (1, P, v) satisfying v(@) = 0. It
is not unusual to sloppily use the term just for the coalitional function and not
always for the triple. We are predominantly interested in market games or
totally balanced games which can be generated from exchange economies
(SHAPLEY— SHUBIK [10]). In order to represent such a game we use the
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representation as a minimum game. that is, v is the minimum of finitely
many nonnegative additive set functions (distributions or measures), say
Al ., A" € RL, defined on P via v(S) = min {A'(S),...,A"(S)} (S €P).
This we write conveniently :

(1) v=A{x,... a7}

According to KALAI-ZEMEL [4], every totally balanced game can be repre-
sented this way. Their interpretation is that v can be seen as a network game
within which players command certain nodes of a network-flow setup. A tra-
ditional example is that of a glove game. Here, coalitions need to combine
indispensable factors {right hand and left hand gloves) in order to acquire
utility by selling the product (pairs of gloves) on some external market.

We wish to concentrate on the orthagonal case, that is, the carriers of A°,
denoted by C(A?) = C* (p = 1,...,1), are disjoint. Also we shall assume
that [ = 37, C” describes a part1t1on of I (each player owns a quantity
of one and ouly one factor). Finally, we assume that there are at least two
measures (i.e., 7 > 2), because for r = 1 the game v is additive. Let us use
the term min-game for a game that satisfies these requirement.

Orthogonality is certainly a restriction within the class of market games. The
shape of a min-game appears more drastically, a coalition which completely
lacks one factor receives no utility. Thus, players occupy 7 different corners
of the market, each one defined by possession of a sole factor. The terms
corner and carrier are synonyms in this view.

We use the abbreviation M? in order to indicate the total mass of A?, that
is, the total initial assignment of goods in corner C?, formally:

(2) MP o= N(I) = N(CP) = Y N

eCr

For convenience, the corners of the market are ordered according to total
initial assignment, i.e., M' < --- < M" is satisfied. The min-game v given
by (1) is not changed, if every weight AY (o =1,...,r,7 € I) is replaced by
the minimum of M* and this weight, thus XY < M! is generally assumed.
Then the representation of the min-game is unique. Let

= Hpe{l,....,r} | M7 = M'}]

denote the number of minimal corners.
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Any coalition S € P decomposes naturally into the coalitions of its partners
in the various corners, this we write

(3) S=) S with S =5nC" (p=1,...,r).

p=1

(We use + instead of U to indicate the union of two coalitions if and only if
the coalitions are disjoint.)

An further important system of coalitions is provided by the diagonal which
is formally given by

(4) D := {SER|N(S)=v(S) (b=1,...,n)}

A coalition S € D is called a diagonal coalition because the image of S
under the vectorvalued measure (A*, ..., ") is located on the diagonal of R’.
Economically, diagonal coalitions are efficient, as there is no excess supply
of factors available in order to generate v(S). Note that on diagonal sets,
v behaves additively. As a consequence, it is not hard to see that any core
element & equals the game on the diagonal (z(S) = »(S5) (S € D)). In this
sense, diagonal coalitions S are also effective: they can afford =(S) by their
own productive power.

Within the diagonal we are particularly interested in mazimal elements.
These are diagonal coalitions S such that each corner assembles the maximal
possible amount of goods and hence the coalition’s worth is v(f). More
precisely, such coalitions satisfy

(5) AHS) == X"(S) =M.

The system of maximal coalitions is denoted by

(6) D™ := {5 € P|S satisfies (5)}.

The notion of excess is central to the discussion of nucleolus type solution

concepts. Given a vector & € R/, recall that the excess of a coalition S € P
(cf. SECTION 1) is

(7) e(S, z,v) = v(S) — =(9).

This quantity measures the amount by which coalition 5 misses its worth
v(S), hence is dissatisfied with . The mazimal excess of v at & is

(8)  p(z,v) = max{e(S,z,v)|SeP}.
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The task of computing excesses is a frequently imposed burden; we start
out with some versions concerning min-games. An tmputation x of a game
(I, P, v) is a vector z € R’ satisfying Pareto optimality (i.e. z(I) = v(I))
and individual rationality (ie. z; > v({i}) (i € I)). If v is the min-game
given by (1) then an imputation x satisfies

z; >0 (i €I)and =(I) = M?,

thus z; < X! holds true for any ¢ € C? and any corner C*. This means that
x can be written as

T .up
(9) T = MIZICPW
p:

such that the ¢ := (cp) »=1,..r i a vector of nonnegative coefficients summing
up to 1 (the vector of convexifying coefficients) and p* (p=1,...,7)
are normalized measures, i.e., measures with carriers C?, having the same
total mass pu?(C*?) = M’ as A?. Conversely, any vector ¢ of convexifying
coefficients together with normalized measures g (p = 1, ..., 7} determines
an imputation z by (9). '

Here is the first simple Lemma:

Lemma 2.1. Let v be a min-game given by (1) and ¢ be a vector of convez-
ifying coefficients. Let & be an imputation of the form

; _ ) r Mp
(10) z=M ZC‘OW
/=l
satisfying 7; < X! (i€ C?,p=0+1,...,7) and let S € B be any coalition.

1. The excess of S is given by
| —~ M 1N~ B(S) —v(S)
(11) e(S,=z,v) = v(5) (1 - ZCPW) -M ZCPT.
p=1 =1
2. For any T = 1,...,0 the dual ezcess of S satisfies
(12) e(S,z,v*) <max{M'(1—¢c,)—2(S—-5°)|p=7+1,...,7}
or

(13) (S, x,v*) < max{A\’(S) —z(S")—x(S—-S5°) |p=1,...,7}.
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Proof: The equation
e(S,x,v) = v(9)—=z(S)

= v(8) - M . c p(S)

(4 Mp
p=1
N M : P(S) — v(S
~ (S (1 - Zc”m) _ Mlz%%ﬁ
p=1 p=1

shows (11).

Choose py satisfying v*(S) = M! — A*°(I — 8). If py > 7 is valid, then the
observation

e(S,x,v™) = M- N°(I — §) — 2(57) — x(S — §%)
< M — 2(C*0) — (S — S™) (because z; < A° (i € C*))
— M1 -c,) - (S - 5%

implies (12). If py < 7, then (13) is implied by the equation

e(S,z,v*) =M' = A°(I — 8) — z(S5)
= A?(S) — x(S) (because 7 < 7).
q.e.d.

The first part of the lemma emphasizes the réle of the diagonal, in particular
that of the maximal diagonal, in the case that the imputation is a convex
combination of the underlying measures. Indeed, it directly implies the fol-
lowing result.

Corollary 2.2. Let v and c satisfy the assumptions of Lemma 2.1 and let
x be the imputation given by

r

AP
— i
(14) =MD 7.
p=1
If S € P is a coalition and S e D is a diagonal coalition satisfying v(g) >
v(S), then
(15) e(S, z,v) > e(S, x, v)

holds true.
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Proof: The inequalities M' < M? (p=1,...,r} directly imply

T Ml
= (1 - Zcp_ﬁJ_P) Z 0,
=l

thus we obtain

e(S,z,v) — e(S, z,v) = (v(5) — v(8))s + M* Z cp@ﬂ}”@ > 0.
q.e.d.

Due to the results of KOHLBERG ([5]} there is a closed connection between
a nucleolus type concept and the balanced systems of coalitions it generates
via the various levels of excesses. Let us shortly introduce our notion of bal-
ancedness. We use a slightly more general version which refers to collections
of vectors (and induces the notions for systems of coalitions).

Let S € P, S # 0 be a coalition. A finite nonempty collection of vectors
X C IR® is said to be balanced with respect to z € IRS, (or just “balances
2”) if there is a sequence of balancing coefficients (bz)zex satisfying

(16) by >0and » byz = z.
z€X

Moreover, we shall say that X is just balanced, if it is balanced with respect
to (1,...,1) € R®. Switching to systems of coalitions means to refer to the
mdlcator function. Thus, If S C P is a nonempty system of coalitions such
that S CT (S € ) is true for some T € P, then we say that S is balanced
with respect to T, if the collection {15 | .S € 8} balances 1. This amounts
to the traditional notion. However, in the context of the modiclus, systems
of pairs of coalitions are relevant. Indeed, we shall say that a nonempty
system § C P x P of pairs of coalitions is balanced w.r.t. some coalition
U, if the collection {1g + 1 | (R,T) € S} balances 1y. Of course we say
that a system of coalitions or a system of pairs of coalitions respectively is
balanced, if the system balances the grand coalition J.

We are particularly interested in balanced systems that span the correspond-
ing subspace generated by the indicator functions. This is based on the
following remark which is due to SUDHOLTER (cf. [13], Remark 2.7).

Remark 2.3. Let X C IR! be a finite collection of vectors and let z € RY. Assume
that X balances z. Also, let Y C IR! be a finite collection which contains X. If Y
15 contained in the linear span of X, then Y balances z as well.
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Clearly this remark greatly increases the possibilities of recognizing a system
or collection as balanced. For, usually a system we are dealing with is rather
large and unaccessible, so the construction of balancing coefficients is quite
out of the question. However, the general technique is to single out a sub-
system which is balanced and spanning in the above sense. Then the above
remark does the job.

The notion of nondegeneracy is introduced as follows (cf. [8]). A finite
collection XX C R’ is nondegenerate, if it spans R’. Analogously, a system
S of coalitions or a system S of pairs of coalitions respectively is said to be
nondegenerate w.r.t. some coalition T, if the collection of corresponding
indicators or sums of pairs of indicators respectively spans RT and T is the
union of all coalitions involved.

Occasionally, we shall also deal with weé.kly balanced collections. We say
that X is weakly balanced, if it allows for a set (by)zcx of weakly balancing
coefficients, i.e., the condition b, > 0 in (16) is replaced by b > 0.

Now, as we have mentioned above, some preimputation & (a Pareto optimal
vector) of some game v generates certain balanced system via the various
levels of excesses. In connection with the modiclus, it turns out that the
relevant definitions are useful also when bi-excessés are involved.

For o € R and any vector € € R’ define the system of coalitions with excess
at least o which is

- (17) S(a,z,u) = {SePle(S z u)>a}l

Now, as we want to deal with the modiclus, it is actually the notion of
bi-excesses which matters most. We approach this idea by the analogous
definition as follows.

(18)  S(a,z,v) = {(R,T)€P x P |e(R,x,v) +e(T,z,v*) > a}.

We are now in the position to discuss our solution concept the modified
nucleolus or modiclus. The definition has been indicated in the introduction:
the modiclus of a game v, denoted by #(v), is the unique preimputation, that
lexicographically minimizes the (ordered) vector of bi-excesses. Note that
the modiclus is an #mputation in the case that it is applied to a min-game.
Indeed it must be individually rational by Corollary 2.6 of [13], because a
min-game is zero-monotonic, i.e., v(SU{i})—v(S) > 0=v{i} (Se P, ie )
holds true.

Equivalently, it is the projection of the prenucleolus of the dual cover game
onto the set of primal players. For the details see SUDHOLTER {13].
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Theorem 2.4. Let v be a game and let T be a preimputation of this game.
Then x = 1(v) holds true, if and only if S(a, =, v) is balanced whenever this
system s nonempty.

For a proof of Theorem 2.4 see Theorem 2.2 of SUDHOLTER [13].

Remark 2.5. Note that Theorem 2.4 is the analogue of KOHLBERG's [5] well-
known resuli which characterizes the (pre)nucleolus by balanced systems of coali-
tions.

A further technique to be employed frequently is provided by the idea of
the derived game, which is a relative of the reduced game i la Davis —
MASCHLER ([2]). Recall that the reduced game v5* of a game (I, P, v) is
defined on the powerset of S for any nonempty coalition @ # S C I and a
any vector ¢ € R! by

0 , if R=0
v5%(R) = { v(I)—=x(I - 5) , fR=8 (RCS).
: maxger-sv(R+ Q) —2(Q) otherwise

But in the vicinity of the modiclus, the appropriate reduction takes into
account both, the game and its dual. Define the derived game with respect
to S and x to be the game vg . on the powerset of S given by

[ v5*(R) , fRe{0,5}
19 wsol) = { 7o bty o550 -t | b

Here we use the abbreviations p = p(z, v) and p* = p(z, v*).

Remark 2.6. Let (I,P,v) be a game.

1. If ¢ is a preimputation, then its projection to any nonempty coalition §
belongs to the core of the derived game vgs .. Indeed, for any R C § with
0 # R # S the inequalities

,e(Tv T35, ‘US’a:)

and

*\Sx = ) & gt
E(T,:CS, ('U ) ) Q%?i(se(T_i_Qam’v ) =M

are valid by the definition of the reduced game. Moreover, the equation
v5%(5) = £(8) holds true by Pareto optimality of z.. '



% SECTION 3: THE TREATMENT OF CORNERS * : 13

2. If v' is the game which arises from v by adding the constant { € R to the
worth of every nontrivial coalition, i.e., if v' is defined by

e [ W(S) , ifSe{dI}
vi(5) = { v(S)+1t , otherwise (5 €E).

then the prenuclecli of v and v* coincide (see Lemma 4.5 in [12)).

3. The prenucleolus satisfies the reduced game property (see SOBOLEV ({11])
or PELEG ([6])): The projection of the prenucleolus of a game coincides with
the prenucleolus of the corresponding reduced game. Of course reduction
has to be taken with respect to the prenucleolus.

4. It is well-known that the prenucleolus and the nucleolus coincide, when ap-
plied to a game with a nonempty core.

The following lemma will be used in several proofs and can be regarded as -
an adequate modification of the reduced game property.

Lemma 2.7. Let v be a game and let £ = ¥(v) be its modiclus. Further-
more, let S € P be a nonempty coalition. Then the nucleolus z := v(vssz) of
the derived game coincides with the projection of the modiclus, i.e., ¢ = Tg
holds true.

Proof: We abbreviate y := p(Z,v) and p* := p(Z, v*). The modiclus of v
is the projection to I of the prenucleclus of the dual cover © as defined in
(4) of SEcTION 1. Let Z denote the prenucleolus of . Proposition 1.4 in [12]
shows that
wZ,0) = p+u*

and

0 , fS=0
(20) o7%(S) =< w(l) , ifS=1

max{v(S) + p*,v*(S) + p} , otherwise

hold true. Let w := %/ denote this reduced game. By the reduced game
property the modiclus of v coincides with the prenucleolus of w. Let u =
w* denote the reduced game with respect to S. With t := —(u + p*) we
obtain u! = vgz, thus Remark 2.6 completes the proof. g.e.d.

3 The treatment of corners

During this section let A {)\1, e )\r} be a min-game. We claim that the
modiclus represents the formation of cartels within the various corners of the
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market. These cartels — or maybe their representatives — bargain about their
share of the total worth M* of the grand coalition. Let 2 be an imputation
represented as in formula (9) of SEcTION 2. As (C?) = ¢,M" holds true,
the convexifying coeflicients ¢, indicate the share the various corners obtain
at . Similarly, the normalized measure p”? indicates the internal distribution
according to « inside a corner p.

Within this section we begin to clarify the shape of the coefficient vector ¢ of
the modiclus. It turns out that there are basically three situations depending
on the relations of the total initial assignments in the corners in a peculiar
way. Accordingly, in the two extreme cases, the modiclus assigns the same
share to all corners or just to the minimal ones. In the intermediate case, the
modiclus chooses a carefully constructed combination of the two extremes.

The maximal diagonal coalitions play a crucial role (cf. (6) of SEcTION 2).
If we focus on a corner, we should consider the partners of such coalitions,
i.e., the system '

(1) D™ = {SNC*|S e D™}.

We shall impose some conditions (e.g. balancedness) upon this system which
allow the computation of maximal excesses and, later on, the determination
of the coefficient vector ¢. This condition is of interest in its own right,
however, we shall see in a later section that it is satisfied for “large games”,
i.e., for replicated versions or games with “sufficiently many” small players.

Lemma 3.1. Assume that D™ is weakly balanced w.r.t. C? for every p €
{o+1,...,7}. Also, let x be an imputation. Define a further imputation &
by :

o z(CP) N
@) 2= M
p=
such that ¢, = ﬂﬂ%ﬂ (p = 1,...,7) constitute convezifying coefficients.
 Then
- . M}
(3) wz,v) > w(Z,v) = M |1- ST
p=
and
(4) plx,v*) > p(@,v*) = M! (1 - min Ep)
A

holds true. If equation prevails in (4), then (S) = £(S) holds true for all
coalitions S of any balanced system in D™ (p=s+1,...,7).
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Proof: By the weak balancedness of D™ the system D™ of maximal diag-
onal coalitions is nonempty. Corollary 2.2 implies that the maximal excess
with respect to the primal game at & is attained by the coalitions of the
system D™. Inserting any coalition of this system into (11) of Lemma 2.1
yields that this excess is indeed the one listed in formula (3) for &.

Furthermore, an inspection of Lemma 2.1 ((12) and (13)) shows that the
maximal excess with respect to the dual game at # is attained at those
carriers which have minimal total weight. This shows indeed the equation in
formula (4). Of course these carriers have the same weight at x as they have
at . Thus, the statement of (4) is verified.

Now in order to compare the maximal excess at  and the maximal excess at
& we proceed as follows. As D™ is weakly balanced for all p, we fix some p
and choose balancing coefficients (cg)repme. Then we obtain the equations-

Z crz(R) = = Z crlg | = z(C*) =

ReD™ ReDms
:E(C”) = I Z CR]-R = Z CRi(R) =
ReD™me ReDme
M _
Z CRWQT(CP)
ReDm™e

Hence, for some 57 € D™ . we have

1

2(5°) < %::(CP) = 3($").

Thus, the excess of 5§ := 2:3:1 S? at @ exceeds the one at &, i.e.,

e(S,z,v) > (S, &,v) = p(&,v).

The final assertion is as well implied by these considerations. q.e.d.

Remark 3.2. It is the aim of the modiclus to minimize the maximal dual excess
simultaneously with the maximal excess. With the dual game, the “preventive
power” of coalitions enters the scene. Now, in view of formula (4) (and the subse-
quent proof), it is seen that the maximal dual excess (hence the maximal force of
complaints) is attained at the corners, to wit, at those corners with minimal coef-
ficient (share) c,. While this is presently proved with respect to &, it will also be
true with respect to the modiclus. Clearly, this indicates “the formation of cartels”
in the various corners of the market.
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Analogously, the fact that the maximal excess is attained at maximal diagonal
coalitions points to the maximal “achievement power” of this type of coalitions.
This is a consequence of the fact that these coalitions are efficient as well as effective
in the maximal possible fashion.

Lemma 3.3. Assume tha.t D™ is nonempty for every p € {1,...,r}. Also,
letx = M*S o=1 cp M,, be an imputation. Choose conve:czfymg coeﬁ‘iczents
(d,)p=1,..r Satisfying

d, >dysy =+ =dy =min{c, ] p=1,...,7} (r = 1,...,0)
and puty = M’ 3. VA2
Then
(5) plx, v) = py.v)
and
(6) plz,v*) = uly,v*)

holds true. Moreover, equation prevails in formula (5) if and only if
Cr 2o = =¢=min{c, |p=1,...,r} (r=1,...,0)
holds true.

Proof: Formula (6) is a direct consequence of Lemma 3.1.

Now we turn to formula (5). Recall that the maximal excess is attained at
the elements of D™ (Corollary 2.2) which is assumed to be nonempty. In
fact, this excess at z is given by (11) of Lemma 2.1, that is, we have

(7) plx,v) = M' (1 — Zcr%) )

The same formula holds true mutatis mutandis for y. But as the coefficients
defining ¥ are of the special shape indicated, the formula reduces at once.
We introduce

¢p = min{e,|p=1,...,r}

and obtain
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wy,v) = M ((T—U)Co—co > %)

p=o+1

T MI T MI
= M'¢ (r—o‘— Z —m) = M ("r— m)

p=o+1

Now the reader has to convince himself that this expression is smaller then
the one referring to & (cf. (7)), as the smallest coefficients are attached to
the smallest quotients of weights, q.e.d.

Theorem 3.4. Suppose that Qm‘;’ is weakly balanced w.r.t. C*? for every
pe{o+1,...,r}. Then the following holds true:

1 IF AL L A satisfy

M
(9) 14—:£:jﬁf? >r,

then the modiclus treats all corners egually, i.e., v is of the form

(10) o) = MY LE
p=1

with a suitable family of normalized measures p°.

2. If A, ..., AT satisfy
T Ml
(11) 1+21W <r,
p:

then the modiclus is of the form

ag [+
2
(12) Y(v) = M Z Conpe T Z cots’
/=1 p=1
with convezifying coefficients ¢, (p = 1,...,0). In particular, the mod-

tclus is located in the core.
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3. Finally, if
r 1
(13) 1+Z£ =r,

18 the case, then the modiclus treats all non-minimal corners equally,
and the minimal corners ot least as well, i.c.,

r ue
(14) P(v) = MZM

p= ‘
Herecopy=--=¢,<c, (p=1,...,0).

Proof: Put & := % (v). By weak balancedness of D™ (p=o0+1,...,1)
both, Lemma 3.1 and Lemma 3.3, may be applied. Indeed, the modiclus is
an imputation which minimizes the maximal bi-excess. Therefore we obtain

Z(CH>ZC M= =2C)=a>0 (p=1,...,0).

Thus,

is valid by Pareto optimality. We conclude that o < MTI holds true. It
remains to prove that o = MTI or o = 0 respectively holds in the case that
(9) or (11) respectively is satisfied. In view of (3) and (4), the maximal

excesses can be expressed by the two formulae

pa vy = M (1-3, E)

(15) = (e ey )
r T
= « (T - Ep:l _ﬁ_")
and
~ o

Hence the maximal bi-excess is given by

MP

=1

(17) p(:’i,v)+u(&?,v*)=M1+a(T—I—ZM1>.
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By the definition of the modiclus this maximal bi-excess must be as small
as possible. If (9} or (11), respectively, is satisfied, then the expression in
the brackets is negative or positive respectively. Hence o has to be maximal
(ie., @ = ¥ holds) in the first case and it has to be minimal (ie,a=0

T

holds) in the latter case. ' q.e.d.

This way we have now clarified the distribution of wealth between the cartels
as suggested by the modiclus. It depends crucially on the masses of the
initial assignments: if the excess supply on the long side of the market is just
moderate (in the sense of formula (9)), then the modiclus treats all corners
equally and this is essentially a result of the preventive powers the cartels can
exercise (Remark 3.2). If the excess supply on the long side is overwhelming,
the modiclus falls into the core (and the primal maximal excesses are the
important quantities). The intermediate case mixes both ingredients.

The determination of the coefficient vector ¢ (i.e., the shares of the cartels)
is not yet complete. The next section continues treating this task. It turns
out that the modiclus is determined by the nucleolus of a suitable derived
game (SECTION 2) defined on the playerset 2.,—1 C?, ie, on the short side.

4 The Derived Game on the Short Side

- During this section we fix a min-game v = A {/\1,'. . X"} and continue to
discuss the treatment of corners. It turns out that a suitable derived game
(cf. (19) of SecT1ON 2 ) defined on the short side S := > o1 C7 of the market
allows to further specify the coefficient vector e attached to the modiclus.
Since the derived game is a relative of the reduced game and reflects the
projection from the dual cover game down onto the original player set, one
might expect that the nucleolus enters the scene (recall our explanations in
SECTION 1 ). Indeed, it is seen that the modiclus can be described employing
the nucleolus of a suitable balanced game on the short side 3.

Motivated by Theorem 3.4 we introduce the notion of the index of powers
which is the quantity

1y (v) = 1+Z%.

This index depends on v only as the representation is unique (cf. SEcTION
2).
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Theorem 3.4 also suggests the classification of min-games as follows. We say
that v has a strong long side or a strong short side, if (9) or (11) of
Theorem 3.4 respectively is satisfied, i.e., if

(2) tfv)y>r or
(3) o) <r '

respectively holds true. In the remaining case, i.e., if
(4) v)=r

holds true, we say that v has balanced sides.

We start out with a strong short side.

Theorem 4.1. Let v have a sirong short side. If D™ (p=0c+1,...,7)
15 weakly balanced w.r.t. C? then the modiclus coincides with the nucleolus,
t.e., Y(v) = v(v) holds true.

Proof: Let Z := 1(v) and a := v(v) denote the modiclus and nucleolus of
the game v. Note that ; = z; = 0 holds true fori € I — § by Theorem 3.4
and the fact that the nucleolus is a member of the core. In view of Remark
2.6 and Lemma 2.7 it suffices to show that the corresponding reduced and
derived games coincide, i.e., that

- — ST .
V5p =0T = w

holds true. Note that w coincides with the reduced game with respect to Z,
because &, z = &, z holds true. Since both vectors show zero coordinates .

outside of S the computation of the reduced game is particularly easy and
yields

0 , fR=10 N
(5) w(R)=4{ M , ifR=S (RCS)
ming=; _, A’(R) , otherwise

Note that u(Z,v) = 0 and p(Z,v*) = M' hold true. In view of (19) of
SECTION 2 and by (5) it suffices to show that the inequality

(v*)58(R) - M' <0 (< w(R))

18 correct for any nontrivial coalition B C S. This inequality follows imme-
diately from (12) and (13) (see SEcTION 2) applied to 7 = 0. g.e.d.
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Now the case of balanced sides is considered. We shall show that, under some
additional assumptions, the convexifying coefficients ¢, occurring in (14) of
Theorem 3.4 can be determined.

Tentatively we have to introduce a new concept. Given a min game v,
let us say that the long side shows small players if some corner p with -
maximal weight M? = M" contains a player with minimal (positive) weight
£ '=min,—__; minece AY. Now we have

Theorem 4.2. Let v have balanced sides and let the short side show small
players. If D™ is nondegenerate and balanced w.r.t. C? for every p €
{o +1,...,7}, then the modiclus is of the form

N M +e pf d MT N
. 1 o
(6)_ P(v) =M (Z g +rMrT ]\/If’-{-pZ oge+rM" MP)

p=1 =o+1

with a suitable family of normalized measures p* (p=1,...,0).

Proof: 1°* STEP: Let ¥ denote the modiclus of v. By Theorem 3.4 there

are normalized measures pf and convexifying coefficients ¢, (p =1,...,7)
satisfying
Cp 2 Cop1 = - =Cp =17
such that
P A R =S 4
(7) r=M (Zlcp}‘—d—p+ Z-H'y—M—;)
o= p=c

holds true. By Lemma 3.1 the maximal excesses are given by the expressions
(8) #(@,v) = M'y and p(Z,v*) = M' — M'y

and they are attained by all maximal diagonal coalitions. Hence, nondegen-
eracy and balancedness of the D™ (p=c+1,...,0) implies that p? = A?
holds true.

274 STEP: Define
(9) di=--=dyi=

and put

| il A’ £ bV
. 1
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Then the d, are convexifying coefficients and by Lemma 3.1 and Lemma 3.3
the maximal excesses are given by the expressions .

(11) p(x, v) = M6 and p(z,v*) = M* — M6,

Hence the maximal bi-excesses at £ and at z coincide and can be computed
as ‘

(12) WE, v} + u(E,v") = M' = p(z, v) + p(e, v*).

The next two steps serve to determine the second highest excesses at a.

3 STEP: Let S € P —D™ be any coalition which is not a maximal diagonal
coalition. We are going to prove that

Se M1
M =i 2

holds true. As § ¢ D™ two cases may occur.

(13) B(S, L, 'v) < plz, U) -

1. If S € D — D™ holds true, then e(5, z,v) < (M! - £)8 = u(z,v) — de

is valid by (11) of SEcTION 2.

2. In the remaining case there exist p,7 € {1,...,7} with p # T such that,
A?(5) > AT(S) + ¢ holds true. In this case we conclude via (11) of

Lemma 2.1 that e(S, =, v) < u(z,v) — 65%} holds true.

4 STEP: Let S€ P~ {C? | p=s+1,...,7} be any coalition which is
not a nonminimal corner. We are going to prove that
deM |

(14) B(S, :C,'U*) < ,U,(CC,'U*) - Mr = Mg

holds true. We distinguish two cases.

1. If S is contained in C™ for some 1 = o +1,...,7, then we § # C” holds
- true by the assumption. Therefore the dual excess is given by

(15) e(S,z,v*) = M' — min{M*, \"(I — 8)} — =(9).

If the minimum is M7, then (14) follows from the fact that u} > 0
holds true. In the remaining case we obtain

Ml

e(S,2,0%) = M — X(I - §) —x(S) = M' = A"(I - §) — 52

AT(S5)
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holds true. By (9) this expression yields

(S, 2, v") = plz, v*) ~ (1 _ i\i{l) A1 9).

The fact that

_6eMP  MT - M! N SM!
MT M7 Mr

holds true implies (14) in the current case.

1

2. If S is not contained in any nonminimal corner, then by Lemma 2.1
((12) or (13) applied to 7 = o) it suffices to show that

(16) py> max MY l-48)—=z(5—C")
. p=o+1,....p

and

(17) W52 max N(S)—a(S)

hold true. By the assumption S —C? is nonempty, thus the inequalities

M M
— {7 i .
2(9-C°) zminzs 2 30 2 30

show (16). Moreover, the obsetvation that

max A°(S) — 2(S) = max AN(S)(1—d,) < M1 ~dy) = 1

p=l,...,00 p=l,..,0
holds true directly shows (17).

5% STEP: In view of the fact that u(z, v) — gy = p(2, v*) — 5 we conclude
that

oM?

(18) e(R,z,v) +e(T,z,v*) < M* — e

holds true for any pair of coalitions such that R ¢ D™ or T & {C? | p =
o+ 1,...,7}} is satisfied. By (12) the same property must be satisfied for
Z. Indeed, the modiclus lexicographically minimizes the bi-excesses. Let
7 € {1,...,0} be such that Z{C") is minimal. Moreover, let ¢ € C? satisfy
Al = 1. Equation (4) shows that M™ > M? holds true. By balancedness of
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D™ there is a coalition T € D™ such that ¢ ¢ T is valid. Put B := T U {i}.
Then we have the equations

(19) E(R,EE, ’U) = Ju'(?ﬁ? 'U) - TF and

{20) e(CT,Z,v*) = p(@,v*) - M.

These equations imply v > 8 and ¢, > d,. The coefficients d, and the
coefficients ¢, are convexifying coefficients, thus ¢, = d, (p = 1,...,7)
holds true. g.e.d.

In order to describe the modiclus via the nucleolus of a certain game with
playerset S in the case that the min-game v has a strong long side or balanced
sides an additional assumption is needed. We say that (A',...,\") allows
matches, if the following condition is satisfied: -

(21) Yr=1,...,0¥8€C Vp=0+1,...,r AT €C? : X7(S) = N(T)

Theorem 4.3. Let v have either a strong long side or balanced sides. Let
the long side show small players and let (A',..., A7) allow matches. Put

7:={ 1 . if (2) is true

M?‘ . -
ey y NP (4) is true °

7 Ml
Bi=1—1v Zl'ﬂ",_,—,,: E=M(1~(r-o)y), F=M7,
=0+t .

and let the game w on the short side S be defined by

(22) w(R) := max {E - f max M (5 —R), F— min AP(S — R),O} .
=Ll =Ly

Let @ := v{w) be the nucleolus of w. Then the modiclus T := 1p(v) is given

by

P

hY:
(23) Egzmandfi:Fﬂ—J‘; (1eC’, p=c+1,...,7).

In other words, the modiclus coincides with v(w) on S and with the measure
FY7 A% on I - S.

p=o+1 Me
Proof: In view of balancedness and nondegeneracy of the D™ Theorem 3.4,

Lemma 3.3, and Theorem 4.2 show that the modiclus has the desired shape
onf—S. '
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In view of Lemma 2.7 it suffices to show that the derived game vz 3z coincides

with w. For the “trivial” coalitions, i.e., for S and @, coincidence is certainly
true. Let R C S, 0 # R # S be a nontrivial coalition and let %, := v>% and
u, := (v*)5® be the corresponding reduced games. In view of (3) and (4) of
SECTION 3 we obtain

o — M! N P
ﬂ::p(ﬂ:,‘!}):F(T— m),f_}, ::u(m1v):Ml—F_
p=1
In order to show that

(24) u(R) p=FE— B max A(S—R)

p=ly.,0

is satisfied, let Q C I — S. An application of (11) of SECTION in 2 yields

v(R+ Q) — Z(Q) £ min A(R) (1—F Z ﬂ/}f")’

thus

vR+Q)—-Z(Q)—p < (M1 —~ MaXp=1,.., aAp(g—R)) B—wu

(25) g
= E - fmaxy=, s A(S - R).

On the other hand the measures allow matches. Take coalitions Q7 C
- CP (p=o0+1,...,r) satisfying A°(Q®) = min,—;_,A(R), define Q :=
> p=s+1 @° and note that (25) is now, in fact, an equation. We conclude
that (24) is satisfied.

Moreover, we want to show that

(26) F— min M(5 — R) < uy(R) —

and

(27) max {F — min AP(§ — R),O} > ua(R) —
=1, o

hold true. Indeed, an application of (12} and (13) of SECTION in 2 in the
case T = ¢ yields
v(R+Q)-2(Q) <M - F

or

v (R+Q) - 8(Q) < max M(R)
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thus
(28) v*(R+ Q) — £(Q) — ¢* < max {F — min_ M(S — R), 0} :
On the other hand we have
v (R)-pu*=F— pgf,iﬁg N(S - R).
We conclude that (26) and (27) are satisfied.

If r > ¢ holds true, then the equation
V(R+C)-E(C)—p =M - F—y* =0,
is satisfied. Hence the derived game coincides with w in this case.

A game is exact, if any coalition is effective with respect to some core ele-
ment. Clearly a min-game is exact, iff ¢ = r holds true. For an exact min-
game the inequality (2) is necessarily satisfied; formally we have a strong
long side. In the exact case we obtain § =1 and E = M?, thus
E-p5 max MI-R)= IIlliIl NMR)Y>0
p=1,...,r =1,..,r
is satisfies. Therefore w(R) is given by

onny

and the proof is again finished by (24}, {26), and (27). qg.e.d.

Note that the proof of the theorem, when applied to min-games with a strong
long side only, does not require the assumption that some maximal corner
contains a player of minimal weight.

The internal discussion inside each cartel determines the shape of the solu-
tion or rather the shape of each p?. This goal we approach in SEcTION 6.
Within the next section we explain that the assumptions about balancedness
employed so far follow from requirements concerning the size of the game.
For “large games” the modiclus behaves as indicated in Theorems 3.4, 4.1,
and 4.3.

5 Large Games, Balancedness, and Nondegen-
eracy

This section has the character of an interlude. We want to introduce the
notion of “large games” in a suitable sense and show that the results of
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the previous sections indeed clarify the treatment of corners when “many
players” (of the smallest type) are present. In fact it will turn out that
the ¢—fold replication of a min-game, the determining measures of which
are integervalued and assign weight 1 to at least ome player, satisfies all
assumptions employed in the Theorems of the subsequent sections, if ¢ is
large enough. |

In order to simplify the framework, we will tentatively change the notation
and replace (C*, A?) by (I, X). Thus, we consider a finite set I of cardinality
n and a positive measure A >> 0 on I with total weight A(I) = m. Moreover,
we fix a total ordering < on I satisfying A; > A; whenever i < j holds true.
Throughout this section we shall assume that A is integervalued. Also we
write A™* for the maximum of {); | i € I}.

Lemma 5.1. Let p € N satisfy A™** < p < A(I). Then the system
AS) <p, A(S+{i})>p (i€1-9),

(1) Sa<p = {SER| AM(S+i)N{kel|k=j})<p
(jelI—S, j <max$)

is balanced.

Proof: We proceed by induction. If || = 1, the requirements imply imme-
~diately that I is the unique member of § := 8, ., and the lemma follows.

Assume now, that |7| exceeds 1 and the lemma has been verified for all player
sets of less cardinality. Moreover, w.l.o.g. assume that ] = {1,...,n} and
that < is the natural ordering of integers. Let S € S be the lexicographically
first coalition (i.e., collect the largest weights until reaching but not exceeding
p). Fix player i € § and consider the following two cases that may occur:

1. A(J—{4}) < p. Then I—{i} is an element of §. Moreover, this coalition
is the unique element which does not contain 3.

2. A(I - {i}) > p. Then, by induction hypothesis, the system S which
is obtained on I — {i} using p and the restrictions of X and <, is
balanced. It turns out that §' = {S € 8|1 ¢ S}. For, the inclusion
C is straightforward. Moreover, D follows from the fact that every
subcoalition of {k € I'| k <} has measure less than or equal to p.

Consequently, in both cases, the indicator 1 I-{i) 18 a positive linear combi-
nation of the indicators 15 (S € 8, ¢ ¢ S). Finally, we can write

1
1; = |—§—| (15--4-211_{,-}),

ies
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which proves the lemma. g-e.d.

Theorem 5.2. Let M' € N be such that A™> < M' < m holds true. Sup-
pose J1 C I consists of players of weight 1 only. If the conditions
(2) my = XNI-J1) > M,

2m ymax
3 Al) = *
() (l) lJll > MI_)\max_l_l: an
(4) [1? > 2m, xme

d

are fulfilled, then the system
) Qun = {SER|\S) = M)

15 balanced and nondegenerate.

Proof: 1°* STEP: Assume I = {1,... ,n} and }; > --- > XA,. Thus ), is
the maximal weight. Define m; := m —m; = |/i| = A(J;) and let p € N

satisfy
(6) MEp< mo.
We denote by S the system on I — J; := It which is obtained via Lemma

9.1 applied to the restriction of A, the natural ordering, and p.

By Lemma 5.1 there are balancing coefficients b(p) = 6% > 0 (R € 8})
satisfying

Z bEIR = 1;+.

ReS*
By definition of 87 the weight A(R) of any coalition R € S/ satisfies

By integration with A we conclude that

(8) my= Y bEAR) > (p— A +1) > bk

ReS+ Reg+

holds true. Using (6) we obtain that p > A; — 1 holds and, thus, we obtain
an estimate

m
9 b <
©) R§+ TP At
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Let ¢ € N now satisfy

(10) p<gsim—-A+1

and define |

(11)  Spq == {R+T|Re€8;, TCJi, A(T)=q¢—A(R)} C Qun.

We conclude from (3), (6), and (7) that my + A(R) > g holds true for any
R € 8}, thus the coefficients

bk
{T € L [R+T € 8o}l

(12) bR-i-T(pa Q) = bpyr =

are well—deﬁned. We obtain

(13) Z bpirlrir = 1+ + K(p, @)l = =™
R+T€8p,q

with a suitable constant K(p,g) > 0. We want to show that this constant
can be estimated. Indeed, for R+ T € 8, ,, inequality (7) implies that

Tl=g—AR)<g—p+X -1
holds true. By (9) we obtain

me(g—p+ A — 1)
ml(p—)\l—l-l)

(14) K{p,q) <

27d STEP: We are going to apply (14) in the case p = ¢ = M*. Indeed, the
assumption (3) shows that (10) holds in this case. Moreover, S := Syn an
is a subset of the system Qpg, thus @ := z™>M" is a nonnegative linear
combination of indicators of this system. The inequalities

1 > il (by (3))

> pmeacl o > K(M', M) (by (9))

show that K := K(M', M) < 1 holds true.

34 STEP: We are going to apply (14) in the case p := m, — max{0, M! —
ma } and ¢ :== m — M. First of all note that p satisfies (6) by (3). Secondly
g satisfies (10) by (3) and the fact that m = my +m, > M! +m; holds true.
Next we shall show that L := K(p, ¢} is strictly less than 1. Two cases may
be distinguished.
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1. If M* < m; holds true, then p = m is valid. In this case S, , consists of
all coalitions of the form 77+ T where T C .J; satisfies |T'| = m,~M".
Hence L < 1 is satisfied.

2. If M > m, holds true, then the inequalities

my(m—M' —my+ M —my + X —1)

L= by (14
= ma(my — MY+ — X + 1) (by (14))
A—1
< — (:nn:(_ 1Ml l ) (because (3) implies m; > 2);)
2m+/\1
< <1 (by (4
- (my)? (by (4))

show the assertiop.

Let bpir (R+ T € S,,4) be the coefficients as defined in (12) and put
B:=3 g TES brir — L > 0. Then the equation

5 YRiTes,, brerli-rery = 3((B+ L)y — 11+ — L)
(15)
=8 41y, = Y+l =y

shows that y is a positive linear combination of the indicators of the system
T={SER|I-SeS}

Moreover, v < 1 holds, because L < 1 is valid. The definition of p and ¢
implies that T is a subset of Qp1.

4*® STEP: The third system of coalitions that will be used is the set R
which is defined as follows. For any i € I define the system R;) and R by

(16) Ry :={R-{i}+T|Re8*, TCJ, [T|=M - AR-{i})}

and R = |J;c;+ R®. Here the natural notation 8* = {SNI*|S € 8} is
used. Let b+ (Re §*) be balancing coefficients of this system. Condition
(3) implies that my > M' — A(R - {i}) (R € $") holds true, thus the
coefficients

_ bt
17 b(’-) R
(17) BT T ITC I |[R—{i}+T € R}
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are well-defined. Similarly to (13) it is seen that

(18) Y R erlroir = Ly + KOLy, = 20
R—{i}+T€§(i)

holds. Summing up the vectors z(* and normalizing yields

1 ) -
(19) mZE(Z)ZlH-FKlJl =: z.
7 V7% e+
Hence we have shown that z can be expressed as a positive linear combination
of the indicators of the system Ry C Q.

5" STEP: Put Q = RUSU L. The last three steps show that Q is,
indeed, a subsystem of Q. In view of Remark 2.3 it suffices to show that
Q) is balanced and nondegenerate. -

In view of the fact that K > 1 holds true, we can find I > £ > 0 such that
K —e(K - K) > 1is true. Then & := (1 — £)& + £2 can be expressed as

E=1;++K 1

with a suitable 0 < K < 1. Moreover, the equation
1-K 1—

— —F =1
1R Tk,

shows that Q is balanced, because the coefficients are strictly positive.

Now we turn to nondegeneracy. The vectors & and y can be used to show
that 1;+ and 1;, are spanned by the indicators of Q). Additionally using the
@ (i € I) defined in (18) shows that every indicator 1p; (i € I') as
well belongs to the span. Then pick any ¢ € I and any coalition R € §*
which contains 7. All indicators 17 satisfying R— {i} +7 € Ry; are spanned.
The corresponding coalitions are exactly those subsets of J; that possess the
cardinality M' — A(R) + X;. This cardinality is, by (3), strictly less than m;
and, by definition of S*, it is strictly positive. Therefore iy (G e Jy)is
spanned. q.e.d.

Now we draw the conclusions of our results. To this end, we return (tenta-
tively) to the original setup within which we deal with a min-game. Recall
that the shape of the modiclus (with respect to the coefficients determining
the share of the cartels) was clarified in SEcTIONS 3 and 4. We want to show
that the conditions employed are satisfied if there are sufficiently many small
players present.
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For 7 € N, the t—fold replication of any measure A is denoted by AD,
Likewise, I is used for the t—fold replication of J. Thus, we assume that
the t—fold replication of the game (I, P,v), denoted by (), P®, v9) is a
concept well known to the reader.

Corollary 5.3. Let v = A{A',..., X"} be an integer valued min-game.
Assume that, for some p > o, there is at least one player with weight 1 in
corner C?. Then there is tg € N such that for any t > ty with respect to the
replicated game v® the system of partners of mazimal diagonal coalitions,
1.e., the system '

(20) D™ = {5eP® | NO(S)=tM}
is balanced and nondegenerate.

Proof: Given p, let k be a player with weight 1 in corner p. We appeal
to Theorem 5.2 which will be applied to C*), A?Y and tM'. To be more
precise, we have A?(C? — {j}) > M" and hencé, for any natural ¢, we have
MPB(CP® _ 1) > tM*' where J; is the coalition of all ¢ copies of player
k. Thus, using A = A*® for the moment, condition (2) is satisfied for all
teN.

Now, the right hand term in (3) is clearly bounded in ¢. For, tm, as well as
tM! increase linearly and MaXecelo A; does not change with ¢. therefore, if
IJ1| = t is large enough, equation (3) will be satisfied.

Similarly, the left hand side in (4) equals t* while the right hand side again
increases linearly. It is mow obvious how to choose the desired bound g
in order to ensure the statement of Theorem 5.2. Thereafter, it satisfies
to realize that Qn as defined in (5) equals the system of partners we are

concerned with, that is (20), q.e.d.
Remark 5.4. 1. Note that, under the assumptions of Corollary 5.3, {y can be
chosen in such a way that the vector (A®1, .. X®7) of replicated measures

allows matches (cf. (21) of SEcT1ioON 3) for t > 1.

2. The index of relative powers, i.e., the quantity i(v) (c¢f. formula (1) of
SecTioN 4) is preserved under replication. This means that a min-game
possesses a strong long side, a strong short side, or balanced sides, respec-
tively, if and only if this property holds for any replicated game.

3. It is not hard to see that another procedure can be implemented which
also preserves the index of relative powers and ensures that Theorem 3.4
holds true eventually. One can add players of weight 1 in large numbers to
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each corner. This way the mass relations can be kept constant and again
it is possible to show that the balancedness as well as the nondegeneracy
condition (see Theorem 5.2) is ensured after finiiely many steps. The proof
is actually much easier and we will not dwell on this subject excessively. We
refer to this procedure by adding small players.

4. We shall say that an integervalued min-game A {X',..., A"} is large, if
D™ is balanced and nondegenerate, C* contains a player of weight 1 (p =
c+1,...,7), and (A,...,\") allows matches.

Corollary 5.5. Let v = A{X',...,A"} be an integer valued min-game,
Assume that, for all p > o, there is at least one player with weight 1 in
corner CP. Then both, replication and adding small players, generate large
games after finitely many steps. Hence, the assertions of all theorems of
SECTIONS 3 and { are valid.

6 The VIP Formula and a Bankruptcy Problem

Within this section let v = A {A',..., A"} be min-game. We assume that
A%, ..., X7 are uniformly distributed, ie.,

(1) XN=1(ieC”? p=2,...,0),

and that all measures are integervalued. Also, we assume that v has a strong
long side or balanced sides. Moreover, the corners D™ are assumed to be
balanced and nondegenerate w.r.t. C? for any p = ¢ + 1,...,r. Finally,
during the whole section, it is assumed that no weight in any nonminimal
corner exceeds the sum of the smaller weights by more than one, i.e., that

(2) MNSI+X({Fel|M<X)) (e’ p=0c+1,...,7)

holds true. Note that (2) is equivalent to the condition that every natural
number smaller than or equal to M” is the weight of some coalition with
respect to A’

Given these assumptions, we are going to classify the behavior of Z := ¥(v)
by a formula involving the shape of the initial assignments represented by Al.
First of all recall that Theorems 3.4, 4.2, and 4.3 completely determine the
shape of the modiclus restricted to the union of nonminimal corners I — §.
Here S = 77, C” is the short side of the market as in SEcTION 4. Moreover,
these theorems determine the vector ¢ of convexifying coefficients given by
c,M' = Z(CP) for any p = 1,...,7. As a consequence, for any player in
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b

C?,...,C? the modictus is completely determined by the equal treatment
property (see [13]).

Imagine a situation in which the modiclus Z is agreed upon by the bargaining
process of the representatives of the various cartels (corners), and hence is
externally fixed. As in SEcTION 5, for the sake of the internal discussion,
we will tentatively replace corner C' by I - this will now be the player
set. The initial assignment A! will be replaced by X and because of the
external influence the players will have to agree on the distribution of M1 —
Z(3__, C?). This quantity is now replaced by a positive real E. Which kind
of “internal game” should we have in mind in order to discuss the bargaining
process inside the cartel C*?

Of course players will internally argue with their strength in the global game
v given the modiclus (which is fixed on the corners outside}. These arguments
may formally be based on the quantity

(3) max {v({i} +T)—FT)|T C Zcﬂ}

p=2

for ¢ € C!. That is, player ¢ argues with coalitions he could form with
partners (who are already assigned a definite share by the modiclus based
on the uniform distribution in their corner). Player ¢ could try to join these
partners at the same conditions and then he would get the surplus. In view
of Lemma 2.1 and Corollary 2.2 we expect this quantity to be maxima}, when
player 4 attempts to form diagonal coalitions (the excess appears more or less
in equation (3}).

Now, based on Z and the coeflicient ¢, of corner C*, we compute for player
k € C* the payoff
. Ml M!
Ti — ——-Cp)\z = mcp,

hence the quantity specified in (3) when {i} + T is diagonal turns out to be
] e M1 T M
v({i} +T) — 22 ch/\} = Al (1 - 2 mcp) i
p= p=

This quantity, for the sake of the internal discussion, is now abbreviated

by AlB. Consequently, coalitions S of players would have an aspiration of
ANSH1 - ﬂ—;cp) or A*(S)p5. Note that E < SA}(C?) can be verified.

Let us focus on a player set 7, a measure A and positive real numbers F
and § satisfying E < SA(I). Each player enters the discussion with a “claim”
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based on his external possibilities. This claim is given by A;3. However,
the total of claims, i.e. SA(I) (weakly) exceeds the “estate” E that can be
allotted at all inside the cartel. This kind of problem is well known in the
literature and was first discussed by AUMANN-MASCHLER [1] who discuss
a bankruptcy problem that appears already in the Talmud. In this context,
the data SA; appear as “debts” of the estate towards the contestants. The
game w derived from this problem is given by

(4) w(S) = (E~BNI-8))" (Sep).

and reflects a pessimistic attitude: If the opposing coalition 7 —.S successfully
leaves booking its claims, the remainder towards F is what is left for coalition
S to distribute. The solution concept mentioned in the Talmud according
to AUMANN-MASCHLER is the “contested garment consistent solution” (the
CG-solution). It coincides with the nucleolus of the corresponding game
w (the CG-game).

The solution concept one might adopt is, therefore, suggested by the proce-
dure developed in [1]. In the present context, we are going to introduce this
concept as follows.

Imagine that a quantity of % 1s guaranteed to each of the players. This is
the average of his individually rational payoff (which is 0) in the global game
v and the aspiration in the endogenous game of the cartel.

Now the rich players have to pay a constant fee £ and the poor ones are
allotted E{,\—‘ Who is considered to be rich and who is poor depends on the
size of the fee which is determined by the requirement

(5) > max (BAi—e, 52’\") = E.

el

Thereafter, if ¢(E, 8) is the (unique) solution of (5), the labels “rich” and
“poor” can immediately be allotted. The smallest rich player is the one, say
ko, such that Ay, — &(E, 3) just exceeds or equals 'B%Q and Ag,1 —e(E, B) is
below @%Qﬂ

To have a nice term, we call the rich players in this context the VIPs. The
final formula arising eventually for the modiclus of the corner with big chunks
of initial assignments will be called the VIP Formula.

Remark 6.1. Recall that the total mass is A(I}) := m. Now, for fm > E > ‘BTm,
it is not too hard to see that (5) indeed admits of a unique solution e(E, 8) > 0.



* SECTION 6: THE VIP FORMULA AND A BANKRUPTCY PROBLEM x - 36 -

Now we are going to present the endogenous solution in a precise manner.
The result will be called the E-3~-CG measure.

Definition 6.2. Let E, 3 be real numbers. Assume that (E, 3) satisfies

(6) 0<ﬁand§m<E<_:,8m.
Define the real number ¢(E, §) by the requirement

F A'
7 max s ;3 —e(E,B),=B¢:=F
© ) {8 etz 0,56

and the E-8—-CG measure 55 by
A
(8) 2" = max {Aiﬁ ~&(E, B), 3‘5} :
Remark 6.3. 1. The assumption (6) implies that £(E, ) and, thus, =(E#)
are well-defined. Moreover, by definition, we have
(9) B8 (I) = E.

Again (6) implies that e(E, B) is nonnegative. Note that e(E,B) = 0 holds
true if and only if E coincides with Sm.

2. The following procedure shows how to compitte e(E, 8) recursively. Indeed,
for any A € {\; |i € I} let Sy := {i € I | \; > A} be the set of players of a
weight weakly exceeding A\ and define € by the requirement

(10) dh—eaxt Y. ;3521=E,
€85 jeEI—5)
ie., by
_ 1 (Bm  BA(SN)
(11) gy 1= EA ( 2 + 2 E) .

Let A™2* and A™% denote the maximum and minimum of {X; | i € I} and
observe that

xmin = ~(Bm ~ B) 20 (by(6))

holds true as well as

1
25)\max = —(ﬁm + -\(S,\max) - 2E)
S ymax|
1

< mﬁ)\(s max) = (A (2 € Symax).

Thus X := min{); | i € I, 265, < BN} is a member of {)\; | 7 € I}. A
comparison of (7) and (10) shows that e(E, 8) coincides with ¢5.
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3. The measure @'F#} is indeed the nucleolus of the game w given by (4),
hence it is the contesied garment consistent solution of the underlying
bankruptcy problem ([1]).

In order to describe the modiclus of the game v let -y be defined as in Theorem
4.3, i.e., v is given by )

! , if v has a strong long side
(12) v= 543‘
——, if v has balanced sides
o+ rMr

and define the quantities

(13) ’5:31‘*‘(7"‘2(0_1)’7_7 i %1 E:le(l—(ra—a)’y).

p=c+1 ’

Remark 6.4. If v has a strong long side, then 8 can be written as

I— M 1
(14) ,B——].‘—; m—;(lf“'b(ﬂ)‘l-z)
=2
and F can be written as
1
(15) g=M
T
thus 1 5
- S ﬁ < =
T i
is valid. Therefore
(16) Ml—g <E< M3

holds true. Moreover, (16) is also valid in the case that v has balanced sides.
Indeed, in this case 8 and F are given by

1+2M" L1+ M
7 B=T2Y pdE=M(1FM
1) o+ rarr 2 (o+er)’

thus (16) is valid even with strict inequalities in this case.

Hence the pair (E, ) satisfies condition (6) and the quantity e(E,S) and the
E-B-CG measure (E8) are well-defined. Of course we apply the corresponding
definitions to the finite set C! and to the restriction of A! to C1. In what follows
the measure £E%) on C is as well considered as a measure on I with carrier C1
whenever this is needed.
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Theorem 6.5. The modiclus of v is the imputation given by

(18) o) = 204y )

p=2

Proof: By Theorem 3.4, Theorem 4.2, Theorem 4.3 and [13] (Corollary 2.6)
the modiclus (v} =: & has the desired form, when restricted to I — O.

Let w be the bankruptcy game with player set C* defined by
w(S) = (E ~ BAL(C* - 9)*.

By Remark 6.4 2 := (®#) js the nucleolus of w (see [1]). In view of Lemma
2.7 it suffices to show that w coincides with the derived game ve1 5. For the
trivial coalitions, coincidence is certainly true. Let R C C', § # R # C?
be a nontrivial coalition and let u; = v®# and u, = (v*)€"% be the
corresponding reduced games. In view of (3) and (4) of SEcTI0N 3 We obtain

(19) - p=p(@ v) =M ((’"‘U)’Y—T > %;) =pM' - E

p=c+1

and

(20) Ut = p(@,0%) = MY (1 — ).

In order to show that
(21) u(R) —pu=E = 8AY{C' — R)

is satisfied let @ C I — C'. An application of (11) of SEcTION in 2 yields

W(R+Q)~E@ <N (RB) [1- 1 -yt oy 3 M
= o ot M H
thus v(R + Q) — £(Q) < A'(R)A holds true as well as
(22) w(R+Q)—B(Q) —p< (A (R) - M)8+E=E—BA(C —R).
On the other hand the measures allow matches. Take coalitions Q¢ C

C? (p=2,...,r) satisfying A*(Q*) = A'(R), define Q := > rmer1 @ and
note that (22} is now, in fact, an equation. We conclude that (21) is satisfied.
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Now let @ C I — C! be a coalition. Lemma 2.1 ({(12) and (13) applied to
7 = 1) implies that

(R + Q) — F(Q) < max{M'(1 - 7),A'(R)}
and, thus,
(23)  w(R) S (VB - M-
hold true. On the other hand we obtain
v*(R+C™) - Z(C") = M'(1 - ),
thus us(R) > 0 is valid. Hence- it suffices to show that
(24) wi(R) — u > A(R) - M'(1 - )

holds true. By (12) we obtain 7y < 1, thus inequality (24) implies that

(25) E+M'(1—~)=M (1+1;‘m) > M*

holds true. Equation (21) together with (25) show that

(ur(R) — ) — (A'(R) — *)
E—BAY{C*—R) - X' R)+ M(1-4v)
MY — BM" — (1~ H)N(R) >0

vl

holds true. . q.e.d.

7 A Strong Short Side

In this section we discuss the modiclus of a min-game with a strong short
side. Under some conditions it coincides with the barycenter of the measures
on the short side. This means that the modiclus equals the nucleolus of the
exact game generated by the measures on the short side. The preliminary
result, therefore, deals with the nucleolus of exact min-games. Next, we
show that the nucleolus and the modiclus of an exact min-game coincide, if

and only if the nucleolus treats all corners equally. Recall that a min-game
v=A{X,..., A"} is exact, iff ¢ = r holds true.
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Theorem 7.1. Let v = A{A',..., A"} be an ezact min-game and let N°

(p=1,...,7) be integervalued. Denote by C¥ = {i € C? | ¥ =1} and
assume that, for all p=1,...,r, the condition
(1) IC?| 2ma.x{,\:-1 z’ech}

TED

1s satisfied. Then the nucleolus is the barycenter of the measures involved,
e _

@) Wo) = 2 = -3 W

r

Proof: 1**STEP : We are going to show that the coalitions of maximal
excess form a balanced system. Moreover, we show the same fact for the
coalitions of second largest excess and prove that this system is nondegener-
ate. This suffices in view of Remarks 2.5 and 2.3.

First of all we discuss the maximal excess with respect to Z. Since the game
1s exact and ¥ is in the core, this excess is 0 and it is attained exactly on
diagonal sets. Note that the system D of diagonal sets is easily recognized
to be balanced, as the complement of a diagonal set is diagonal as well.

2"dSTEP : We turn to the second largest excess. Note that, in view of
equation (1), there is at most one corner C? with C? # @. If so, we assume
without loss of generality that this is the first corner.

Now, for every j € C¥ (p=2,...,r) the excess of {7} turns out to be -1

Next, let S be an arbitrary coalition which is not diagonal. Then there are
corners 7 and 7 such that A™(5) > v(S) = A"(S) holds true. Then the
excess is

v(S) — &(S) = X’(S)—%Z.\"(S)

= =12 (8) - () <~ (5) - X(5) < -
p=1

T

Consequently, the second largest excess is -—}.

3"STEP : We define, for p=1,...,r and i € C*? a system of coalitions

(3) 8 = {SeP|S={i}, SCC[, [ST|=M-1(r#p)}.
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Observe that these systems are contained in §(—%, Z,v). Now by summing
up we obtain for each p

1
— P
(4) . E |§p’i| E .1S = lce +¥°.
‘ i€ECr '= SE§""

Here, %” is a nonnegative vector which has positive coordinates exactly in
> rzp, C7- This we write

(5) Z esls = ler +y°
sesr
with 8¢ := [J,cc, 8”* and nonnegative coefficients c,. From (5) we obtain
by again summing up
(6) Zag].g = 1;+¥y
_ Ses
with § := |J,-, , S and an obvious choice of ¢.. Moreover, ¥ is nonnega-

tive and positive exactly on 37, C7. This coalition (the one of players with
weight 1) we now abbreviate by C, = 77, C}.

Next, for 7 = 1,...,r, we introduce a further system
(7) T = {Teg[A"(T):Ml—l (p#71), X’(T):Ml}

the elements of which have second largest excess as well. Take T = | JJ_; T”
and observe that

(8) Sir=|T L2

TeT

where 2 is a nonnegative vector with positive coordinates exactly on C;.
Choose ¢ > 0 sufficiently small such that

(9} Q-+ +e(l;—-2) = 1;,— =

satisfies z > 0. Again, z has positive coordinates at most on Cj. Now the
system R := {{j}|7 € C:} consists of coalitions of second largest excess
(2" STEP) and yields

(10) z = Z zjl{j}.
{ilcR

Note that R C S holds true. Hence, S U T is a balanced system. Moreover,
this system (actually 8) is nondegenerate. q.e.d.
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Theorem 7.2. Let v = /\{/\1,...,.\1"} be an exact min-game. Then the
following two assertions are equivalent.

1. The nucleolus v(v) treats all corners equally, i.e., it satisfies

() =L (p=1,...n).

T

2. The modiclus 1 {v) coincides with the nucleolus v(v).

Proof: One direction {(2)=>(1)) is implied by Theorem 3.4, because condi-
tion (9) is automatically satisfied and the assumption is empty in the exact
case (¢ = r). It remains to prove the opposite direction.

Note that the inequalities

(11) 0<z; <A (ieC? p=1,...,r)and

(1) M1 1(’;’" D

—N(T)+2(T7) = -e(T"+ Y C%z,v)>0 (T€P)
pET
are immediate consequences of the fact that the nucleolus of the game must

be a member of its core. Therefore the maximal excesses p := p(2, v) and
p* = p(x, v*) satisfy the equations

MM(r—1)
(13) sza.nd,u*=——(T—1—)
”
and are attained by (ﬂ; I and by any corner C? (p=1,...,7) respectively. Let
a < p*. In view of Theorem 2.4 it remains to show that §(a) := S(a, z, v)

is balanced. Note that (S,T) € S(a) implies that

(14) (S,C?)
(1) @,7)

() and e(S,z,v) > a— p* =: 5 and
(@) and e(T,z,v)>a~p = «

o no

=
€

hold true. Moreover, all pairs (0,C?) (p=1,...,r) belong to §(a) as well.
In view of the fact that balancedness of a system S implies balancedness of
the system SU {C* | p=1,...,r} it suffices to show that

5(8, =, v) U 8(a, z, v")
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is balanced. By Remark 2.3 and the characterization of the nucleolus (see
Remark 2.5) it suffices to show that

§:={ls|Se€8b,z,v)U{C?|p=1,...,r}}

spans {1r | T € S(e, z,v*)}. Let T € S(e, ,v*) and C" be some carrier
satisfying A"(T) = max,=;, . A (T) = v*(T). By (12) and the fact that
>z 2(C?) = p* holds, we obtain the equation

—e(T"+ Y _C*,a,v) = p* — e(T", z, ")
pFT
and the inequality

(T -T) < p' —e(T",&,v")+ (T~ T") = p* — e(T7, , v").

Hence the coalitions 77 + 3 . C? and T — T™ both belong to the system
S(B,x,v). The proof is completed by the observation that

17 = (]-T" + Z 1cp) + lp_pr — Z: 1cs

PFET PET
holds true. g.e.d.
Theorems 4.1, 7.1, and 7.2 yield the following result.

Corollary 7.3. Supposev = A\ {X',..., X"} is a min-game which possesses
a strong short side. Assume that D™ is weakly balanced for every p =
o+1,...,7 and that, for all p=1,... 0, the condition (1) is satisfied and
A is integer valued. Then the modiclus is given by the equation

B =3 N

p=1

8 Examples and Remarks

Within this section we present a few examples. In particular, these examples
show that some conditions used in the theorems are crucial. We start out with
an exact game. In the following example the nucleolus is not the barycenter
of the measures involved and neither does it coincide with the modiclus.
Clearly this is at variance with Theorem 7.1, the conditions of which are not
satisfied.
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Example 8.1. Let r = 3, C* = {p} (p = 1,2) and C* = {3,4}. The
measures are defined by

Al = (3,0,0,0),
A2 = (0,3,0,0),
X = (0,0,2,1).

Then the arising min-game v is exact. We claim that the nucleolus and the
modiclus are given by

(1) v(v) = %(5, 5,5,3) =: « and $(v) = %(2,2, 1,1) = &,

In order to show that z indeed is the nucleolus, note that the three highest
excesses with respect to z, namely 0, —%, and -%, are exactly attained by
coalitions of the systems

{1,0}, {{1,2,3},{4}}, and {{s} |1 =1,2,3}

respectively. Thus Remarks 2.3 and 2.5 show that the nucleolus coincides
with z. '

In order to show that the modiclus coincides with %, first note that the
largest bi-excess (which is 2) is exactly attained by the pairs (I, C*) and
(8,C?) (p = 1,2,3) and that this system of pairs of coalitions is balanced.
The second highest bi-excess (which is g—) is attained, e.g., by the system of
pairs of coalitions (R, T) satisfying

Re{{1,2,3},{4}}, Te{C? | p=1,2,3}.

It is easy to check that this system is balanced by assigning the same co-
efficient 1 to any pair ({1,2,3},C”) and any pair ({4}, C*). Moreover, this
system is already nondegenerate, thus Remark 2.3 and Theorem 2.4 imply
that the modiclus is Z. :

Now, if we add (at least) one small player of weight 1 to each corner, then we
can employ Theorem 7.1 and hence the modiclus and the nmucleolus coincide
and are given by the barycenter. That is, the measures

Al = (3,1,0,0,0,0,0),
A? = (0,0,3,1,0,0,0),
A’ = (0,0,0,0,2,1,1)

generate a min-game with modiclus and nucleolus equal to

1
5(3,1,3,1,2, 1,1).
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Example 8.2. Let r = 5, let the measures A\* on their carriers C? (p =
1,2, 3) be defined as in Example 8.1, and let A%, A’ be the uniform measures
with carriers C*, C° which are assumed to be disjoint, not to intersect C! +
C? + C3, and to satisfy

(2) |C° > |C¥ > M" and M* (|C*| + IC?)) < ICY| |CP).

The arising min-game is denoted by u. Then u has a strong short side,
because '
MY M M3 M
MG S MEaE T MR
holds true. Theorem 4.1 explains that the nucleolus of the derived game on
the short side determines the modiclus. In view of Example 8.1 we, therefore,

obtain 1
llb U = 5 5 5 3 0 .- () ’ .
( ) 6 ( y 2 7 ? b ?

MA4AS

Of course, if we add (at least) one player in the first three corners and make
sure that (2) is satisfied, then the derived game of the short side yields
a modiclus which coincides with a nucleolus {c¢f. Example 8.1), hence an
application of Corollary 7.3 results in 2 modiclus represented I’)y

1

3
Remark 8.3. Note that the nucleolus of any replicated game of v or u of Exam-
ples 8.1 and 8.2 assigns the largest amount to the third corner C3®. Namely, if

t > 2, then the players with weight 2 receive the payoff 1, the players with weight
1 receive %, whereas all players in the other minimal corners receive %.

=1

(3,1,3,1,2,1,1,0,...,0)

The following example shows that the second assertion of Theorem 3.4 does
not hold without the weak balancedness of restrictions of maximal diagonal
coalitions to the nonminimal corners.

Example 8.4. Let 10<n <29, r=3, C' = {1,2,3},0?% = {4,5,6},C% =

{7....,n}, and A', A* be uniform measures, and let A be given by
A*=1(0,0,0,2,1,1,0,...,0).
n—~6

Finally, let v be the corresponding min-game. In what follows we shall use
the abbreviation & := |C?| = M3 (i.e, 4 < k < 23) and we shall show that

1 ~
(3) Yv) = %(Sk,3k,3k,7k—-6,k+3,k+3,9,...,9} =T

k times
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holds true.

Proof of (3): Note that & is, indeed, an imputation. Let p := p(Z,v) and

p* = p{Z,v*) denote the maximal excesses. In view of Remark 2.3 and

Theorem 2.4 it suffices to show that

S(u+ 4%, 2,0) = 8(u, 2,v) x S(u*, %, v*)

is balanced and nondegenerate. For any coalition R € P an application of
(11} of Lemma 2.1 yields

(]ROCP]='3 (p=1,3), [RNC?| =2, 4eR)
(,u,ﬁ,’v)(:} or
(IBnCrI=2(p=1,2,3), 4¢R)

4) Re

in

Moreover, it is seen directly that
(5) 8(u* =z, v") ={C" | p=1,2,3}

holds true.
Let the mapping & : R? — R* be defined by

Z = (x(C), 24, 75 + 76, 2(C?)) (x € RY).

(Note that, for any coalition S, the vector 15 is the type of S.) Hence,
S(u, Z,v) consists of all coalitions of type (3,1,1,3) and of type (2,0,2,2),
the type of I is (3,1,2, k) and S(u*, %, v*) consists of all coalitions of types
(3,0,0,0),(0,1,2,0), and (0,0,0, k). Adding the indicators of any coalition
of maximal primal excess of one type to any corner vields 6 types which are
collected to the 4 x 6 matrix

6 3 3 52 2

12 1 01 0
A= 13 1 24 2 ’

3 3 k+3 2 2 k+2

the columns of which are the types. In order to show balancedness of S(,u +
L5, &, v) it suffices to prove that there is b € R* which is strictly positive
and satisfies Ab = (3,1,2, k). It can easily be checked that

1

b= m(?, 107, ok — 109, 70 — 3k, 15k — 35, 15k — 35)
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has the required property.

In order to show nondegeneracy it should first be noted that a careful in-
spection of the matrix A shows that its rank is 4, hence the columns span
R*. The pairs of coalitions the types of which are the first and last col-
umn together with the vectors corresponding the canonical basis elements
(1,0,0,0),...,(0,0,0,1) span R'. - q.ed.

Hence the modiclus treats all corners equally for k = 4,...,23. For k = 12
the game has balanced sides and for k > 13 it possesses a strong short
side. Hence Theorem 3.4 (2) is not true without the weak balancedness
assumption. Moreover Theorem 4.2 is not longer valid when the assumption
concerning the D™ is not satisfied.

Example 8.5. Let k = 3, C' = {1},C? = {2,3},C°® = {4,5,6}, and X be
given by

Al (4,0,0,0,0,0),

A? (0,3,3,0,0,0),

A® = (0,0,0,3,3,3).
The arising min-game v has a strong long side. However, in contrast to

Theorem 3.4, the modiclus does not yield equal treatment of the corners.
Indeed, we claim that

il

$(v)=£(83,3,222)

holds true. Indeed, the corners C? and C? are the only coalitions attaining
maximal dual excess, whereas the maximal primal excess is attained by all
coalitions containing 1 member of each corner and by all coalitions contain-
ing 1 member of the minimal and 2 members of each of the other corners.
It can be checked that the pairs of coalitions of maximal bi-excess form a
nondegenerate and balanced system. '

Remark 8.6. 1. In case k > 25 the modiclus of the game defined in Example
8.4 is concentrated to the first corner. Hence the ‘region” in which the
modiclus guarantees equal treatment of the corners, is just much larger than
in the case of the presence of weakly balanced C™ (p = o +1,...,7). We
conjecture that the corresponding assertion (2) of Theorem 3.4 remains true,
if “weak balancedness” is replaced by “nonemptiness”.

2. The t—fold replication of the game in Example 8.4 satisfies the balancedness
and nondegeneracy property of C*™ whenever t > 2, thus Theorem 3.4 and
4.2 can be applied in the replicated case.
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3. It should be noted that the modiclus of the t—fold replication of the game
defined in Example 8.5 coincides with the barycenter of the measures in-
volved, if t is sufficiently large. However, balancedness and nondegeneracy
of C™(t) (p = 2,3) are only satisfied in the case that t is 2 multiple of 3.

4. Finally it should be remarked that the modiclus treats the corners equally
in the case that only two corners are present. In this case, no further condi-
tions have to be satisfied in order to guarantee this kind of “equal treatment
property” among corners. For a proof see [14].
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