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Abstract.

Modelling social interdependence has to deal with the fact that interaction,
communication, and competition is mainly limited to other people located in a
neighbourhood. The concept of social space uses geometric structure for describing
neighbourhoods. The evolution of social processes like segregation or the decay and rise
of conventions can then be described by corresponding cellular automata.

Studies in local interaction by psychologists, sociologists, philosophers and economists
(cp. Lewenstein/Novak/Latané 1992, Hegselmann 1992, Kandori/Mailath/Rob 1993,
Ellison 1993, Berninghaus/Schwalbe 1993) focus on only two special cases of finite
homogeneous spaces: the circle and the torus endowed with the ,natural® metric.

The following study was motivated by the discovery of some counterexamples showing
other kinds of attractors in the evolution of coordination problem as derived in Ellison
1993 and Kandori/Mailath/Rob 1993. In order to identify the causes of such strange
behaviour we redefine the concept of local interaction with the help of geometrical
axioms. We classify all possible symmetric homogeneous local interaction structures for
small numbers and develop some tools that can be used for describing the dynamics of
evolutionary processes in such spaces.
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1. Definition, notation, examples

Imagine a finite population P={1,2,...,v} of individuals locally interacting with each
other. Let N(p) be the set of individuals a fixed individual p interacts with. The set N(p)
is called the neighbourhooed or the reference group of p. N=N(.) can be seen as a
correspondence assigning a set N(p) to each individual p. In order to get simple
formulas we set the assigning convention that p is element of N(p).

The term ,local interaction” refers not only to #N(p)<v for all individuals p, but also to
the property that for every pair of individuals the reference groups are not identical.
Formally we state the following overlap axiom: if p=£q and peN(q), then N(p)-N(q)=@.

An ordered pair (p,q) is called (forward-)connected if there exists a number n and an n-
vector of individuals (r,...,r,} such that r;=p, r,=q and r,,eN(x,) for all ie {1 22,e. 01},
Usually in models for local interaction processes within a population it is assumed that a
signal given by an individual can spread out all over the population. We say that the
connectivity axiom is fulfilled if every ordered pair (p,q), p,geP is connected.

Whereas in empirical studies on social networks the correspondence N rarely shows
further regularities in theoretical studies we usually find two strong regularity
conditions. The first one can be called the balancedness axiom stating that all reference
groups are of the same size. Formally: #N(p) =k forallp € N.

The second one, called two-sidedness, is only assumed in models representing situations
in which individuals of every pair are related to each other in the same way. Formally :
peN(q) iff geN(p). Such symmetry assures that the , forward neighbourhood* N(p) and
- the ,,backward neighbourhood“ N'(p):={q; peN(q)} coincide.

Definition: (P,N) is called an finite local interaction structure (FLIS) if P is a finite
set and N a correspondence on P fulfilling the following axioms:

(I1)  assigning convention

(I2)  overlap

(I3)  connectivity

(I4) balancedness

The FLIS is called symmetric if additionally the following axiom is valid:

(I5) two-sidedness

A FLIS (P,N) induces an incidence structure (P,8,€) by % = {N(p).peP}. Moreover
(P,8,€) is a tactical configuration (abbr. TC; sometimes called 1-design; its defining
property translates to axiom (I4) ). In this paper we restrict our analysis to symmetric
FLIS. In this case N induces a polarity on the TC.

Definition: A bijection (one-to-one mapping) g from one incidence structure (P,%,<)
onto another (P’,%',€) is called an isomerphism iff gB € @° forall B € 3. An
isomorphism from an incidence structure (P,%,€) onto itself is called an
automorphism. The group of automorphisms is denoted by I':=Aut (P,3,<).



Definition: a one-to-one mapping © from P onto $ and from % onto P is called a
- polarity if 7’=id and it is incidence preserving, i.e. peB implies n(B)en(p). -

Proposition: N induces a polarity.

Proof: Let n(p)=N(p) and n(B)=p if B=N(p). By axiom (I12) = is well-defined. By
definition of & the equality n’=id is guaranteed. W.l.o.g. let pe B-‘N(q) We get n(B)=q
and n(p)=N(p). By axiom (I5) we get n(B)en(p).

Definition: Let n be a polarity. A point pen(p) is called an absolute point (or pole) of
=. Correspondingly =(p) is called a polar.

Note: Every individual p of a FLIS (P,N) is an absolute point w.r.t. the above used
polarity induced by N.

Definition: A bijection (one-to-one mapping) g from one FLIS (P,N) onto another one,
say (P".N’) is called an isometry iff g translates neighbourhoods into neighbourhoods,
formally:

gN(p) = N'(gp), or

gnp = n’gp with = and 7’ representing the respective polarities.

The group G=Aut(P,N) of isometries from (P,N) on itself is called the isometric group
of the respective FLIS.

Note: The isometric group G=Aut (P,N) is the subgroup of the group I'=Aut (P,%,<) of
automorphisms g of the induced tactical conﬁguratlon (P,%,e), which commute with the
given polarity n, formally gnp = ngp.

Definition: A FLIS is called homogeneous iff
(H)  the isometric group acts transitively on P

Note that for a homogeneous FLIS we can drop axiom (14) - it is implied by (H): the
number #N(p) is fixed. We use the following symbols:

k :=#N(p) _
m := k-1 =#(N(p)-{p})
v =#P

P(r) .= {ScP; #S=r}

Lemma 1: If the FLIS is symmetric, then k>2.

Proof: It follows trivially from (I3) that k>1. Suppose that there is a symmetric FLIS for
k=2, Let N(p)={p.q}. Axiom (I5) impiies N(p)=N(q). This is a contradiction to axiom
(12).

Lemma 2: k<v
Follows trivially from (12).



Incidence structures and FLIS can be represented by (binary) incidence matrices A=(ag;)
and A=(ay,,) respectively: Blocks and neighbourhoods are represcnted by rows, points
and individuals are represented by columns.

Lemma 3: For v odd and k even there are no symmetric FLIS.

Proof: in each row of the incidence matrix there are v-k zeroes. It follows that the
incidence matrix contains an odd number of zeroes. By axiom one there are no zeroes
on the diagonal. It follows that it is not possible to symmetricly assign the zeroes. This -
is a contradiction to axiom (I5).

Lemma 4: Two incidence structures are isomorphic if there exist two permutation
matrices P and Q that can transform the incidence matrix A of the first one into the
incidence matrix B of the other one; formally PA = BQ. Two FLIS are isometric if there
exist additionally P=Q.

Proof: for the first part see Dembowsky. Remember that P represents permutations of
neighbourhoods and Q permutations of individuals. The polarity assures that for
neigbourhoods and individuals the same renumbering is used. It follows that P=Q).

Corrollary: Isometric FLIS have the same eigenvalues.
From PA = BP we get B ~ A (i.e. PAP'=B).

Lemma 5: Incidence matrices of symmetric FLIS have real eigenvalues.
Symmetric matrices show real eigenvalues. Symmetry is assumed in axiom (I5).

2. Dihedral structures

Definition: A FLIS (P,N) is said to be dihedral, if its group of isometries contains the
dihedral group D, with the usual action (on P).

" We use the following representation: P={0,1,...,v-1} and D, generated by the generator
(0 1 ... v-1) of the cyclic group C, and the reflection (01)...((v+3)/2,(v-1)/2) or
(01)...((v/2)+1,(v/2)) respectively.

Lemma 6: If the group G of isometries of a symmetric FLIS contains the cyclic group
C, with the usual transitive action on P, then symmetry of the FLIS implies that the
structure is dihedral.

Proof: Let C, be generated by the element g. Let us fix some point p. The following
permutation b is an isometry: b(g*p)=g“p. We have to show that for all q in P there
exists some q’ P such that bN(q)=N(q"). First let g=p: Let N(p)={g*"p ; r=1,... .k} and
a(1)=0. By applymg g we get peN(g™*"p) from g“’peN(p). By symmetry we get g
*p eN(p) and q’=p. Second: By transitivity of C, we can assume q=¢’p.

We get bN(q)=bN(g’p)= b{g’s*"p}={g"g*p} = g N(p) = N(g"p) and q’=g"p.

For v=k-+1 there is only one FLIS, it is dihedral.



For even v in case k is odd all homogeneous symmetric dihedral FLIS can be generated
by chosing N(0) and applying the rotations. N(0) can be constructed by doing half of the
neighbours, applying the reflection with the fixed point 0 for constructing N(0). Ifk is
even the antipodal point also belongs to the neighbourhood and the remaining k/2-1
neighbours on the one hemisphere have to be distributed asymmetrically with respect to
the reflection orthogonal to the axis {0,v/2},

For odd v all symmetric dihedral FLIS can be constructed by chosing one point p and
half of the neighbours, applying the reflection with the fixed point p for constructing

N(p).

3. Homogeneous designs admitting non-dihedral structures

3.1 Basics and overview

The following table lists the number of all TCs (for small k and v) admitting a polarity
(up to isomorphy). It includes asymmetric and dibedral structures.

Table 1. The list of Betten/Selzer of TC admitting a polarity

NI RN TR VO

Theorem: Up to isomorphy there are 14 non-dihedral symmetric homogeneous FLIS
for v<11 (they are listed below). The respective isometric groups are either spheric
groups (8,xC,, [A]C,), or torus groups (D;xC,, [D;XD,]C,, D;xC,), with the usual action
Or - In one exceptional case - a dihedral group with an unusual action (D,, see 3.2 case
4).

Proof: By construction. Possible candidates for homogeneous FLIS are drawn out of the
list of Betten & Selzer. Axiom (I14) is implied by homogenuity. Axioms (I12) and (I3)
have to be checked for every polarity that fulfills the two-sidedness axiom (I5). In some
cases the incidence structure admits more than one polarity (up to isometry).

The result of the check is given in table two:



Table 2. Number of non-dihedral FLIS

~N Oy b b

For v=10 the structures are representable by the ikosahedral group (isomorphic to the
dodekahedral group), for v=9 by the corresponding torus group, for v=8, by the
octahedral group (isomorphic to the hexahedral group), for 7 by the corresponding
projective group, and for v=6 by the corresponding small (asymmetric) torus group.

For v=6 let us use the following numbeﬁng:

0(11]2

31415

There is only one non-dihedral symmetric structure N6K4 generated by C, with the
usual action (i.e. (012)(345)), the permutation (05)(14)(23), and the following

generating block N(0)

The polarity is represented by the entry x.

For v=7 the only candidates for FLIS are projective structures with k=5 (cp. Lemma 3);
the projective plane of 7 points (group PGL(3,2), size 168) admits only asymmetric
structures because the corresponding incidence matrices show complex eigenvalues. By
lemma 5 there are no symmetric FLIS for v=7.

In the following we list the remaining cases. We refer to the numbering of Betten &
Selzer by v_k geo x, for example: 8 4 geo 4 refers to incidence structure no. 4 in the
sublist for v=8 and k=4. In case v and k are known from the context v_k is dropped.

3.2 The four octahedral structures (v=8).

Individuals are represented by the 8 vertices of the hexahedron.

0|1 415

213 6|7

At left we represent the top layer (or hemisphere), at the left the bottom layer of the
hexahedron.



Case one: N8K4 (geo 4)
Partners are the 3 adjacent vertices. G=5,xC..

For the incidence structure geo 1 we get two FLIS since the two non-isometric polarities
x and y. are identical(geo 1). ‘

Case two and three: N8K5 (x) and N8K5D (y)

In N8K5 neighbourhoods consist of the individuals of the own hemisphere and the
antipodal one. In N8K5D all individuals of the opposite hemisphere are partners.

Case four: N8K.6 ‘
Neigbourhoods are generated by the usual action of C, , the (antipodal) reflection
(07)(16)(25)(34), and the following generator: '

The iébmetric group is isomorphic to the dihedral group: [D,]C, ~ D,.
The action of the group on the circle is not as usual. Thus the FLIS N8KS is not
dihedral.

3.3 The two torus structures for v=9.

Individuals are represented by the 9 cells of the 3x3-torus.

01112
31415
678

Case one: N9K5 (BS 3479)
The structure is generated by D;xD; with the usual action and the following generating
block

G=[

XD,]C,

Case two: N9K7 (geo 1)
The structure is generated by D,xD; with its usual action and the following generating
block




3.3 The nine ikosahedral structures for v=14.

Individuals are represented by the 10 antipodal pairs of the vertices of ikosahedron.

O 11 [2]3 4]

s16]7]819]
At the top we represent the pairs induced by a polar cap (= a fixed face).

An alternative representation of the antipodal pairs starts with a central pair, say 2 and
its 3 adjacent neighbours 1, 3, 7 (in bold). The former polar cap {0,1,2,3.4} is shaded in
the following sketch. The other two faces adjacent to the pole are {1,2,6,7,9} and
{2,3,5,7,8}.

For the incidence structure geo 4 we get the following two FLIS.

Case one and two: Torus structures N10K4T (x) and N10K4TD (v)

L1 Il [ ]
The isometric group is G = DxC,.

The incidence structure of the following FLIS is geo 7. The isometric group [A,]C, is
the composition of a reflection and the group A, of rotations of the ikosahedron group.
The structure can also be generated by composition of the two non-isometric dihedral
structures D5K3 and D5K3D (induced by icosahedral structure).

Case three: N10K4
Neigbourhoods are generated by the usual action of C, and the following two
generators:

Shifting to the other representation we can see that the above generators can be
substituted by a single highly symmetric generator.
Moreover it becomes clear that the isometric group is [A;]C,.



Case three: N10K4 — ikosahedral representation.

L | | |

Case four and five: Icosahedral structures N10K6 (x) and N10K6D (y); geo 3.
1sometric group is [A;]C,.

L |




4. Binary local interaction processes

Let (P,N) be a homogenious FLIS with neighbourhoods of size k=m+1, and isometric
group G. A state of the population P is given by a v-vector x = (x,). Every point peP (or
every individual of the population P) can exhibit two states x, = 0 (,,dead,,) and x, = 1
(,,alive,,). Let us identify a subset S of the population with the corresponding state x
such that x, = 1 iff peS.

The counting # induces a measure on the state space. Let y, := #({qeN(p); g=p and
x=1}).

Definition: (P,N,H) is called a (deterministic homogeneous binary) local interaction
process (in discrete time), if (P,N) is a homogenious FLIS with neighbourhoods of size
m+1 and the transition function H:2* — 2% is induced by N and a function h:
2x%{0,1,....m} — 2 in the following way:

H (x)=h(x,.y,) for all peP

The group G of isometries of a FLIS (P,N) acts on 2, the space of states, and on its
subspaces P(r).

Definition: Two states x and x’ are said to be equnivalent if there exists a group element
geG moving x to x’. Correspondingly 2*/G and P(k)/G are the spaces of equivalence
classes. .

Lemma: For every local interaction process (P,N,H) with X(t) = x and x’=g(x) the state
X(t+s) after s steps is equal to g X’(s), X* being the path with initial state X*(0) = g(x).

Main principle of classification: For deriving the full information on the dynamics, we
can restrict our analyses to 2°/G.

A main tool for the classification of all possible dynamics is Burnside's Theorem
(setting Z to be the set P(r) of all subsets of P of a fixed size 1).

Burnside's Theorem: Let G be a finite group that acts transitively on a finite set Z. For
each geGlet Fix g := { zeZ ; g{z)=z }. If { is the number of orbits of Z under G, then

C#G=Z {#Fixg;geG}

For every homogeneous FLIS (P,N) the action (G,P) of its isometry group G and the
corresponding space 27/G shows the following characteristics
- let SeP(r); the equivalence class GS is a subset of P(r); if =1 or r=v-1 then #GS=1
- 2¥/G inherits the structure of a lattice with complement.
Thus it is enough to consider Z=P(r) for v/2 LT < v-2.
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Example 1:

The dihedral group D, with the usual action on the circle {0,1,2,3,4,5,6}. The group is
acting transitively on P - this is why both P/G and P(v-1)/G are singletons (P=P(1)).
Using the mapping which assigns the complement to each set we get that P(r)/G is
isomorphic to P{v-r}

Thus we only have to consider the cases 3 =v/2 <r<v-2=4,

Table 3. Fixed elements in P(k)

Typeof g Order of g [Numbers,of| #Fixg s#Fix g
elements

r=4 r=3 =4 =3
Tdentity 1 1 15 20 15 20
Reflection about a 2 3 3 4 9 12
line |
Reflection about an 2 3 3 0 9 0
imaginary line -
IRotation by hailf 2 1 3 0 3 0
Rotation by thirds 3 2 0 2 0 4
Other rotations 2 2 0 0 0 0
Table 4. Number of orbits for 2F/G

=0, =6 r=1,r=5 =4, =2 r=3

E{#leg;geG} 36 _ 36
Number of orbits 1 1 3 ' 3

For example: we get { =36/12 = 3 for P(4) and for P(3).

Example 2:

The dihedral group D, with the usual action on the circle {0,2,4,6,8,7,5,3,1}. We have to
consider the cases 4.5 =v/2<r<v-2=17.

Table 3. Fixed elements in P(k)

Type ofg Orderof g [Number s, of #Fix g s#Fix g
elements

=5 | =6 [ =7 | =5 | =6 | =7
[dentity 1 1 126 84 36 126 84 36
Reflection about a 2 9 6 4 4 54 36 36
line
Rotation by thirds 3 2 0 3 0 ¢ 6 0
Other rotations 9 6 0 0 0 0 0 0
Table 4. Number of orbits for 27/G

=0, =9 r=1,r=8 | r=2,1=7 =3, =6 =4, =5

2. {#Fixg;geG} 72 126 180
Number of orbits 1 1 4 7 10

11



5. Game induced dynamics

Let A be a 2x2-matrix
a b
c d

Using indices i,je {0,1} we can write A as
A(0,0) | A(O,])
A(LO) | A(LL)

Let (P,N) be a homogeneous FLIS with #N(p)=k=m+1. If every pair of neighbours (i,j),
i# €N(1) is equally likely to meet for a contest given by the 2 by 2 base game given by
A, every individual faces the following expected payoff matrix B=(b(i,r))=A(m)

()
X,[0 r m
0
1

a| ((m-rja+rb)/m|b
¢| ((m-r)c+rd)/m | d

If for a given state (x,(t)),€ 2° of the population P at time t individual p faces the local
aggregate partner state yy,,(t) = Z{(x,(1)); geN(p), p#q} the expected payoff of player p
at time t in the global game is given A(m)(x,(1), Ynp)(t))- The corresponding v-person
game is called a population game based on A and (P,N).

‘By adding a transition function h population games generate processes. One of the most
examined transition function h for such population games is the so-called myopic best
reply (we assume that there are no ties in arg max) defined by

X,(t+1) = h(x (1), YN(p)(t)) = arg max b( . , yug(t)-

Note that because of the linear structure of B the are only three best reply structures:
1. h is constant (prisonners’ dilemma type)

2. h(x,,r)=0 iff r<A (coordination type, i.e. a>c, d>b)

3. h(x,,r)=0 iff 1>A (hawk-dove type, i.e. c>a, b>d)

. 6. Myopic best reply for coordination games

In the following we consider a base game A of coordination type.

Additionally let *

(1) d>a

In this case the equilibrium (1,1) is payoff-dominant.

Moreover let

(2) a-c>d-b

Le. (0,0) is the so-called risk-dominant equilibrium.

Note: by (1)+(2) we get d-¢ > a-¢ > d-b > a-b, i.e. the possible loss if the partner will

12



break the convention is larger for the payoff-dominant strategy.

For the mixed strategy extension of the game we get a third equilibrium described by
the probability 7 of deciding for option/strategy 1 (for both players):

(3) b+ (I-m)a==d + (1-m)c

or :

4) 7 = (a-c)/({(d-b)+(a-c)).

By considering the local decision problem represented by A(m) we get a limit A=m,
such that below that value the best response is 0 and above switches to 1:

(5) Ab+(m-A)a=2Aid+ (m-A)c

(6)  m(a-c)=A{(d-b) + (a-c)}

we get by using of (1)

(7Y m<2u

Assuming that A is not an integer we get the corresponding best reply function
h(x,.r) = 0 iff r<A (and =1 else).

Example 1:

Let (a,b,c,d)=(4,3,1,5). We get m = A/m=0.6 and the following myopic best replies:
.. for k=m+1=3:

r 0 1 , 2
h(x_.r) 0 0 1
... for k=m+1=5:
T 0 1 2 3 4
h(x,,1) 0 0 0 1 1

For our purpose more adequate is the following

Example 2:

Let (a,b,c,d)=(12,7,0,14). We get 7 = A/m=12/19=0.63157 and no integer thresholds
within a wide range. Let A” = min {reV; r> A}. The myopic best reply, given by
h(x,,r)=1 iff r> A, can be read from the table 5:

Table 5. Reaction threshold for the cooperation game

m 2 3 4 5 6 7 8 14 15
A 1.26 1.89 | 253 | 3.16 | 3.79 | 442 | 505 | .. 8.84 | 947
A 2 2 3 4 4 5 6 9 10

Note that for m=2 and m=4 the best reply function for this game coincides with that of

example 1.

Let us denote a given initial state by z(0)=(x,(0)),.p and the corresponding state at time t

by z(t). Let us simply say ..z dies out,, if the state of the population reaches the zero-
vector in finite time.

13




7. An example that the dynamic flow for very similar structures can be
very different :

In the following we consider the two dihedral structure and the one non-diedral structure
with v=6 and k=4. The both diedral structures are governed by the same group. Thus we
can directly compare the dynamical flow in the quotient space 2"/G (as described in
section 3). There are 13 = 1+1+3+3+3+1+1 classes of states. Note that for the non-
dihedral structure we get a very similar quotient space with 12 = 1+1+3+2+3+1+1

classes of states (see appendix). Thus a comparison of the flows is also possible for this
case. For the coordination game considered in example 2 of the previous section we get
the following classification of the dynamics:

Table 6. Comparison of dynamics.

structure attractor types fixed types blinker types transient types
D6K4 3 2 1 10
D6K4D 3 3 3 7
N6K4 2 3 4 5

An attractor type is an equivalence class of a fixed set or a within-class blinker that
attracts flow from at least one other class. Fixed, blinker, and transient types sum up to
#2%/G. The flow of the diedral structure is sketched in the following figure. Fixed types
are represented by filled circles, blinkers by (unfilied) circles. Shaded regions contain
those types that move to the respective attractor in one step.

Fig.1: Flow charts for the diedral structures D6K4 (at left) and D6K4D (file: d6k4b.gif)
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Note that the central blinker in D6K4 exhibits the largest region of attraction (it attracts
the four neighbouring classes). It is evident (by symmetry) that for the usual
stochastically pertubed processes of evolution (cp. Diekmann 1995) the limiting
asymptotic distribution is not concentrated on the zero-vector as for the special case
considered by Ellison 1993. Moreover the bias of the pertubation processes towards sets
of mean size (n/2 or 1 + n/2) clearly favours the central blinking attractor in case of
D6K4.

The following figure shows the non-diedral structure N6K4 that slightly favours paths
towards the zero-vector.

Fig.2: Flow charts for the non-diedral structure N6K4 (file: n6k4.gif)

7. Examples of more different structures

In this section we consider the dynamics of the two non-isometric non-dihedral FLIS
N8KS5 and N8K5D. The isometric group is the octahedral group G=A xD, (#G=48).
Remember: A, is a simple group isomorphic to AGL(2,2). For constructing the lattice
2N/G it is enough to consider the subsets of size r such that 4 =v/2 <r<v-2=6.

15



Table 7. Fixed sets in P(k)

Type of gw.rt.P  |Orderofg [Number s of #Fix g s#Fixg
elements g
=4 | =5 | r=6 | =4 |.1=5 | =6

[[dentity 1 1 70 56 28 70 56 28
2 4-cycles 4 12 2 0 0 24 0 0
2 3-cycles 3 8 4 2 1 32 16 8
2 2-cycles 2 6 14 12 8 84 72 48
4 2-cycles 2 13 6 0 4 78 0 52
1 2-cycle, 1 6-cycie 6 8 0 0 1 0 0 8
Table 8. Number of orbits for 2V/G

=0, =8 =1, =7 r=2, =6 =3, =5 =4
Z {#Fixg;geG} 144 144 288
Number of orbits 1 1 3 3 6
For the same coordination game as considered in the previous section we get the
following flow structure:
Table 9. Comparison of dynamics.
structure attractor types fixed types blinker types transient types’
N8KS5 4 3 3 17
N8KS5D 3 2 1 19

Note that N8K5D is governed by fast attraction: every transient point reaches the
attractor in one step, whereas in N8KS5 there are 3 intermediate classes. A corresponding
sketch is given in the following figure (Fig.3):

Fig.3: Flow charts for the non-diedral structures N8KS5 (at left) and N8K5D (n8k5.gif)

8
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Appendix

Burnside table for dihedral structures:

For even v we get the following table:

Type of g Order of g Numbers, of |#Fixg s#Fix g
. elements

Identity 1 1 v v

Reflection about a |2 v/2 2 R

line

Reflection about (2 v/2 0 0

an imaginary line

Rotations v-1 0 0

For odd v we get:

Type of g Order of g Numbers, of [#Fixg s#Fixg
elements

Identity 1 1 v v

Reflection about a |2 v 1 v

line

Rotations v-1 0 . 0

Examples of section 3:
In example 1 (section 3) we get the following generators:

3 orbits in P(4). Generating subsets:
-{0,1,2,3}, {0,1,2.4}, {0,1,3,4}

3 orbits in P(3). Generating subsets:
{0,1,2}, {0,1,3}, {0,2,4}

In example 2 (section 3) we get the following generators:

10 orbits in P(5). Generating subsets:
10,1,2.3,4}, {0,1,2,4,5}, {0,1,2,4,7}, {0,3,4,5,6}, {0,1,2,5,6},
{0,3,4,7,8}, {0,1,2,7,8}, {0,1,2,5,8}, {0,1,4,6,7}, {0,1,2,6,8}

7 orbits in P(6). Generating subsets:
{0,1,2,3,4,6}, {0,1,3.4,6,8}, {0,1,2,4,5,8}, {0,1,2,5,6,8},
{0,2,3,5,6,8}, {0,1,2,3,4,8}, {0,1,2,3,6,8}

4 orbits in P(7). Generating subsets:
{0,1,2,3,4,5,6}, {0,1,2,3,4,7,8}, {0,1,2,4,5,7,8}, {0,3,4,5,6,7.8}
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Burnside table for the non-dihedral structure N.6K4:

Type of g Orderof g [Numbers,of| #Fixg s#Fix g
elements
=24 | =3 r=2,4 r=3

[[dentity i 1 15 20 15 20
[Reflection (axis) 2 3 3 0 9 0
[Reflection (point) 2 4 3 0 12 0
Cyclic 3 2 0 2 0 4
Cyclic 6 2 0 0 0 0
Number of orbits for 27/G

' r=0, =6 =1,=5 | =4, =2 =3
> {#Fixg;geG} : 36 24
Number of orbits 1 1 3 2
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